CPP2XMI: Reverse Engineering of UML Class, Sequence,
and Activity Diagrams from C++ Source Code

E. Korshunova!, M. Petkoviél, M.G.J. van den Brand!, M.R. Mousavi?
Laboratory for Quality Software, *Technische Universiteit Eindhoven,
Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{e.korchounova, M.Petkovic, M.G.J.v.d.Brand, M.R.Mousavi} @tue.nl

1. Introduction

The Unified Modeling Language (UML) is the de-
facto standard in object-oriented software development.
Although mainly used during the design phase, UML
models can still be valuable after the delivery, when a
system enters the maintenance phase. However, for many
software systems only the source code and possibly very
limited and inconsistent documentation is available. In
order to fully understand an existing object-oriented
system (e.g., a legacy system) that is potentially
incomplete, information regarding its structure, behavior,
and internal states has to be extracted from the source
code and must be represented in the form of an abstract
(e.g., UML) model. The process of analyzing the source
code to represent it at a higher level of abstraction, by
extracting architectural artifacts from the code, is called
reverse engineering.

In the context of this work, reverse engineering is used
as a part of the verification and validation chain of
software systems, where the static structure and the
dynamic behavior of the system are derived from the
source code and represented in XML Metadata
Interchange (XMI) format. The obtained model is further
analyzed for such characteristics as soundness and
complexity of the system. XMI [4] is a standard that
enables to express objects using Extensible Markup
Language (XML). XMI can be used to represent objects
from UML model in XML.

In this paper, we describe the reverse engineering tool,
CPP2XMI, which allows extracting UML class, sequence,
and activity diagrams in XMI format from C++ source
code, and its position in the toolset for software system
analysis.

2. CPP2XMI - a reverse engineering tool

Most Computer Aided Software Engineering (CASE)
tools can reverse engineer class diagrams while there is
little tool support for extracting sequence or activity
diagrams from C++ source code. Therefore, we have

developed a reverse engineering tool called CPP2XMI for
transforming C++ source code into UML class, sequence,
and activity diagrams. We decided to use as much of the
existing technology as possible, and thus exploited
existing tools and standards, such as the Columbus/CAN
fact extractor [1], XMI [4], and DOT [2].

Fig.1 shows an elaborated architecture of CPP2XMI.
This architecture divides the tasks of a system into several
sequential processing steps. Each processing step is
encapsulated in a separate module, represented as an oval
in Fig.1.

CPPML

Pre-

C++ Source Pre-processor processed Columbus Parser’ Filter
Code P C++ Source & Exporter

Code

XMI Class

Filtered Diagram

Diagram
Extractor

Columbus
CPPML

DOT Layout
Creator

(without
layout)

XMI (with
layout)

Filtered
Columbus
XMl

XMI
Sequence
Diagram
(without
layout)

Sequence
ayout Creator,

XMI Activity
Diagram
(without

layout)
Figure 1. Elaborated architecture of CPP2XMI

The main modules of the system are the following:

1) Columbus Parser and Exporter

Columbus/CAN [1] is a fact extractor that offers
functionality for parsing source code and exporting the
generated Abstract Syntax Tree (AST) into different
formats. Two of them are of interest for our project: UML
XMI (v.1.1) and C++ Markup Language (CPPML). The
UML XMI output contains all information about class
diagrams, including classes and relations between them.
The CPPML output is an XML formatted file that
contains all the information from the AST including
detailed information from the method bodies. It can be
used to generate UML sequence and activity diagrams.

2) Filter

The Columbus output is huge because it includes
information from standard C++ libraries, which is not




relevant for UML diagram creation. Therefore, we have
developed the Filter module that, by removing the
redundant information, reduces the Columbus output size
signiticantly. This, in turn, saves extra etfort from the
subsequent modules and enhances the readability of the
outcome as well as the performance of our tool.

3) Diagram Extractor

The main purpose of the Diagram Extractor module is
to perform a transformation from filtered output of the
parser into the format suitable for UML v.1.3 diagram
representation, i.e., the XMI v.1.1 format, in our case.

The XMI creation process used by the Diagram
Extractor module is shown in Fig.2.

Filtered
Columbus
CPPML

Extract
Information
6”" XMI Ta% Grm XMI Ta%

Diagram Extractor

Filtered
Columbus XMI

Make Internal
Corrections Structure

3 Y 3

XMI Class XMI Sequence XMI Activity
Diagram Diagram Diagram

Figure 2. XMI creation using Columbus output

First, we extract complete information about the code,
including objects allocated in the program and function
calls from the Columbus CPPML output. We need this
information to create XMI elements for the sequence
diagram.

Furthermore, we cxtract information from conditional
and iterative statements, which is important for activity
diagram generation.

All retrieved information is stored in the internal
structure.

After the internal structure is created, we correct the
Columbus XMI output. We cannot use it directly, because
it has certain defects that we will not discuss in this paper.

Finally, we create XMI tags for sequence and activity
diagrams.

4) Layout Creator

The main purpose of the Layout Creator module is to
automatically generate layout for UML diagrams, in order
to visualize them with the in-house visualization tool
MetricView [3] or other CASE tools.

We use the DOT [2] tool (part of the Graphviz
framework) for the visualization of UML class diagrams.

To the best of our knowledge, no existing tool allows
generating coordinates of objects and messages in the
sequence diagram. Some tools sketch sequence diagrams,
but store them only in PNG or EPS formats. Therefore, to
generate sequence diagram layout, we developed our own

algorithm that determines coordinates for objects and
messages communicated between them.

3. CPP2XMI as the part of the software
analysis toolset

The availability of CPP2XMI closed the gap in our

toolset called SQuADT [8] used for the analysis of C++
source code. This toolset consists of the metric derivation

tool, called SAAT [5], and metric visualization tool,

called MetricView [3]. The SAAT tool takes UML model
in the XMI format as its input and generates metrics for it.
Some of the metrics can be visualized on top of the UML
class and sequence diagrams by the MetricView CASE
tool. MetricView can open UML class and sequence
diagrams in the XMI format and show metrics generated
by SAAT in 3D and 2D views. The metrics can help to
find out and to argue about possible flaws in the
architecture that is extracted from the source code.

Besides the analysis of UML class and sequence
diagrams, we also performed transformation of UML
activity diagrams into Petri Net models. Petri Nets can be
further analyzed by Woflan [6] or mCRL2 [7] tools for
checking such properties as the soundness of the system.

In order to prove an industrial value of the described
techniques, we have performed the analysis of two large-
scale case studies: one of about 30000 lines and another
one of about 60000 lines of C++ code.

References

[11 Ferenc, R., Beszédes, A., Tarkiainen, M., and Gyiméthy, T.
“Columbus - Reverse Engineering Tool and Schema for
C++”. In Proceedings of the IEEE International
Conference on Software Maintenance (ICSM 2002), pp.
172-181, IEEE CS, 2002.

[2] Gansner, E.R., Koutsofios, E., North, S.C., and Vo, K.-P.
“A Technique for Drawing Directed Graphs”. [EEE
Transactions on Software Engineering, 19:214-230, 1993.

[3] Termeer, M., Lange, C.F.J., Telea, A., and Chaudron,
M.R.V. “Visual Exploration of Combined Architectural
and Metric Information”. In Proceedings of VISSOFT
2005, IEEE CS, 2005.

[4] Grose, T.J., Doney, G.C., and Brodsky, S.A. Mastering
XMI: Java Programming with XMI, XML, and UML, John
Wiley and Sons, 2002.

[5] Lange, C. F. l., Empirical Investigations in Software
Architecture Completeness, Master’s Thesis, Eindhoven
University of Technology Press, 2002.

[6] Woflan home page,
http://is.tm.tue.nl/research/wotlan/index.htm.

[71 mCRL2 home page, hitp:/iwww.inicri2.org/.

[81 SQUADT home page,
http://www.laquso.com/research/repository.php.




