
This is a preliminary version of a paper
that will appear in Electronic Proceedings
in Theoretical Computer Science.

c©M.R. Mousavi
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

Causality in the Semantics of Esterel: Revisited

MohammadReza Mousavi
Department of Computer Science, Eindhoven University of Technology,

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

We re-examine the challenges concerning causality in the semantics of Esterel and show that they per-
tain to the known issues in the semantics of Structured Operational Semantics with negative premises.
We show that the solutions offered for the semantics of SOS also provide answers to the semantic
challenges of Esterel and that they satisfy the intuitive requirements set by the language designers.

1 Introduction

Esterel [Ber99, PBEB07] is an imperative synchronous language used for the specification and program-
ming of embedded systems. Esterel is based on the synchronous hypothesis, i.e., instantaneous reaction
to signals and immediate propagation of signals in each time-instant. The combination of the imperative
programming style and the synchronous hypothesis in Esterel has led to semantic challenges addressed
in the literature [BG92, Ber99, Tin00, Tin01, TdS05, PB02]. In this paper, we present the main semantic
challenge posed by Esterel, namely, the issue of causality. We show that it is reminiscent of the semantic
challenges [Gro93, BG96, Gla04] in Structured Operational Semantics [AFV01] (esp. in the setting with
negative premises; the same challenges were encountered before in logic programming [AB94]). We
then show that using the known solutions for the latter simplifies the presentation of the semantics of the
former substantially and leads to the desired intuitive properties set forth by the language designers.

The rest of this paper is organized as follows. In Section 2, we present a brief overview of the Esterel
language and its intuitive semantics. Section 3 introduces Structured Operational Semantics and notions
of semantics and well-definedness associated with SOS specifications. Section 4 connects these two
worlds by first presenting an SOS specification for Esterel and then studying the notions of semantics
and well-definedness for the given specification. There, we show that certain notions of semantics for
SOS formalize the intuitive criteria given by the language designers. Section 5 concludes the paper and
presents directions for future research.

2 Esterel and Its Semantics: A Cook’s Tour

The abstract syntax of Esterel is given by the grammar in Figure 1.
A short introduction to the intuitive semantics of each of these constructs follows. In this grammar,

0 stands for the terminated process. Emitting signals is denoted byemit s, which is instantaneously
visible to all parts of the system (and may in turn cause more signals to be emitted). Reacting to present

p,q ::= 0 | emit s | pres s? p � q end |
p ; q | p || q | sign sin p end |
1 | susp p when s | trap t in p end | exit t | loop p end

Figure 1: The Abstract Syntax of Esterel

http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/

2 Causality in the Semantics of Esterel

and absent signals is done via the if-then-else constructpres s ? p � q end, where if s is currently
present (emitted by some other part of the system),p is executed, otherwise ifs is absentq is executed.
The combination of synchronous assumption, i.e., instantaneous propagation of signals, and checking
for absence/presence of signals leads to semantic complications, presented shortly. Parallel composition
of p andq is denoted byp || q. Processsign s in p end encapsulatess in p, i.e., declaress local to
p. Another way of reacting to signals is by using the suspend constructsusp p when s, which initially
acts asp, but after one synchronous round will stopp as soon as signals is emitted (suspension may
happen after a number of rounds). Process1 stands for a process that passes one unit of time and then
terminates. One can define traps (exit points, exception handlers) to which a program can jump to by
trap t in p end. The actual jump (raising the exception) is performed by executingexit t. A program
can engage in a loop by means ofloop p end (it can either keep on executing in the loop or exit the loop
usingexit t).

An Esterel program is usually suffixed by a header declaring input and output signals. The syntax of
this header is of the forminput i;output o; and we assume that the set of input and output variables in
a program is disjoint from the set of its local signals. Moreover, to unclutter the syntax, we assume fixed
setsι , ω andλ , respectively, of input, output and local variables. We pick typical membersi, i′, i0, . . .∈ ι ,
o,o′,o0, . . . ∈ ω ands,s′,s0 ∈ λ . This way, one does not need to consider the input and out declaration
anymore since input and output (and local) variables are recognized by their names. In some cases output
and local variables can be treated uniformly, in which case we denote them byx,x′,x0 ∈ ω ∪λ .

To study the semantic challenge concerning causality it suffices for us to look at the first two rows of
our grammar. The other constructs, e.g., traps and time passing, are semantically interesting on their own
but are treated satisfactorily in the literature and are orthogonal to the causality problems addressed here.
Hence, in the remainder, we focus on the subset of Esterel given in the first two lines of our grammar and
only in passing mention how to include time and traps in our presented semantics.

A causality relation between eventss ands′ (signals in this case), means that the presence and ab-
sence ofs directly influences the presence or absence ofs′. For example, consider the following Esterel
program:

P0 pres i ? emit s� 0 end ; pres s? 0 � emit o end

In the above program, there is a causality chain starting from the input variablei to the local variables
and froms to the output variableo, namely the presence ofi determines the presence ofsand eventually
leads to the absence ofo, while the absence ofs (caused by the absence ofi), determines the presence of
o. Using the syntax of Esterel one can easily write programs with cyclic dependencies (e.g.,s is present
if and only if s is present) or even worse, cyclic dependencies of a paradoxical nature (e.g.,s is present
if and only if s is absent). To illustrate these issues in Esterel, consider the following simple programs,
which are all due to [Ber99]. These programs are canonical examples of different issues concerning
causality in Esterel programs.

P1 pres s? emit s� 0 end
Program P1 relies on the presence ofs in order to emit signals. The logical semantics of Esterel
rejectsthis program on the ground that it has two “models”. The first one is by assuming that
s is present, which leads to a justification of this assumption by emittings. The other one is by
assuming thats is absent, which is supported by that0 does not emit (denies emitting) signals.

In each synchronous round, the “model” of an Esterel program is defined by aglobal status, which
defines the status (presence/absence) of signals in this round. A global status of a program is called
coherentwhen the presence/absence of signals are determined consistently by the emit statements
in the program [Ber99]:

M.R. Mousavi 3

The global status of a program islogically coherentiff at least oneemit statement is
executed for each signal assumed present and noemit statement is executed for each
signal assumed absent.

For example, program P1 has two logically coherent global statuses, namely presence ofsand ab-
sence ofs, as motivated above. The basis for rejecting program P1 is called “logical determinism”
and is defined as follows [Ber99].

A program is logically deterministic if it has at most one logically coherent global
status.

P2 pres s? 0 � emit send

Program P2 relies on the absence ofs in order to emit signals. According to the logical semantics
of Esterel, the above-given program has no logically coherent global status. Assuming thats is
absent leads tos being emitted and hence, incoherency. Likewise, assuming thats is present
requires emission ofs, which is only justified whens is absent.

The basis for rejecting program P2 is called “logical reactivity” and is defined as follows [Ber99].

A program is logically reactive if it has at least one logically coherent global status.

The conjunction of logical determinism and logical reactivity is called logical coherency and is the
main well-definedness criterion for thelogical semanticsof Esterel.

P3 pres s? emit s� emit send

The program above has only one logically coherent global status, namely thats is present. This
global status is also coherent since assuming the presence ofs leads to emitting it and moreover, it
is not logically coherent to assume the absence ofs, because it leads to its emission. Hence, as far
as logical coherency is concerned this program is accepted and the logical semantics defines the
semantics sketched above for this program.

However, the semantics of Esterel used for its compiler, called theconstructive semantics[Ber99,
PBEB07], has further constraints which lead to the rejection of the above program. In this paper,
we consider the issue of causality in both variants of the semantics and hence, also study the issue
of constructiveness defined below.

A program isconstructive, if for each signal, it either proves its presence (must emit
the signal) or proves its absence (cannot emit it).

Program P3 is rejected by the above criterion since it can neither prove the emission ofs (its only
possible proof is cyclic since relies on the assumption thats is emitted), nor can it coherently prove
its absence, since to prove the absence ofs it should prove that neither of the two emit statements
can be executed, thus it should prove thats can neither be present nor absent.

P4 pres s0 ? emit s0 � 0 end ||
pres s0 ? pres s1 ? 0 � emit s1 end � 0 end

Note that P4 is logically coherent, since its only logically coherent global status is that boths0 and
s1 are absent. To check its constructiveness, let us focus on the emission ofs0. It definitely does
not have to emits0, since the only reason for emittings0 is theemit s0 statement in the left-hand
side of the parallel composition, which is guarded by the check on the presence ofs0. Hence, the
only proof for emittings0 is cyclic. But it can potentially emits0 (because it contains anemit s0

4 Causality in the Semantics of Esterel

statement) and the only way to make sure thats0 cannot be emitted is to prove that the guard for
emit s0 never becomes true, i.e., we need again to show thats0 cannot be emitted, which is also a
cyclic reasoning. Hence, we conclude that P4 is not constructive because it neither must emits0,
nor it can deny its emission.

P5 pres s0 ? emit s1 � 0 end ; emit s0

The above program is logically coherent and its unique logically coherent global status is that
boths0 ands1 are present. However, it is again rejected by the constructive semantics of Esterel.
The reason is that in order to reach the emit statement fors0, we should first make sure that the
first statement has a well-defined semantics in this context, i.e., it either takes the if branch or the
else branch and then terminates. However, giving a constructive proof for the transition of the
conditional requires a constructive proof for the emission ofs0. This is another instance of the
cyclic proof phenomenon rejected by the constructive semantics.

3 Structured Operational Semantics

Structural Operational Semantics (SOS) was originally proposed by Plotkin [Plo04] as a syntax-directed
and compositional way of defining semantics. Gradually, SOS has gained popularity and by now has
become a de facto standard in defining operational semantics. This popularity has called for a richer
syntax for SOS deduction rules and thus, in some applications, SOS deduction rules lost their structural,
i.e., inductive, nature. Some authors then decided to use the same acronym for Structured Operational
Semantics [AFV01, GV92]. With the richer syntax of SOS rules, one can write deduction rules whose
meaning is not clear any more.

Example 1 Examples of cyclic rules are the deduction rules(r1) and(r2) given below.

(r1)
p

s−→ p

p
s−→ p

(r2)
p

s9

p
s−→ p

The reader may already note the curious similarity between program P1 and deduction rule(r1) on
one hand and program P2 and deduction rule(r2) on the other hand. Moreover, program P3 resembles
the combination of(r1) and (r2). These similarities materialize as formal definitions in the remainder
of this paper.

To formalize the syntax and semantics of SOS, we first formalize the concepts of formulae and
(transition) formulae.

Definition 2 (Signature and (sub)terms) We let V represent an infinite set of variables. AsignatureΣ
is a set of function symbols (operators), each with a fixed arity. An operator with arity zero is called a
constant. We define the setT(Σ) of termsoverΣ as the smallest set satisfying the following constraints.

• A variable x∈V is a term.

• If f ∈ Σ has arity n and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.
We write t1 ≡ t2 if t1 and t2 are syntactically equal. The function vars: T(Σ) → 2V gives the set of
variables appearing in a term. The setC(Σ) ⊆ T(Σ) is the set ofclosed terms, i.e., terms that contain
no variables. Asubstitutionσ is a function of type V→ T(Σ). We extend the domain of substitutions to
terms homomorphically. If the range of a substitution lies inC(Σ), we say that it is aclosing substitution.

M.R. Mousavi 5

A term s is considered asubtermof itself; if s is a subterm of ti , then s is also a subterm of
f (t0, . . . , ti , . . . , tn−1), for each s, ti ∈ T(Σ), 0≤ i < n, and n-ary f∈ Σ. The set of subterms of a term
t are denoted by subterms(t).

Next, we formalize the syntax of SOS in terms of Transition System Specifications.

Definition 3 (Transition System Specifications (TSS))A transition system specificationis a triplet(Σ,L,D)
where

• Σ is a signature.

• L is a set of labels. If l∈ L, and t, t ′ ∈ T(Σ) we say that t
l−→ t ′ is apositive formulaand t

l9 (also

denoted by¬t
l−→) and t

l9 t ′ are negative formulae. A formula, typically denoted byφ , ψ, φ ′, φi ,
. . . is either a negative formula or a positive one.

• D is a set ofdeduction rules, i.e., tuples of the form(Φ,φ) whereΦ is a set of formulae andφ
is a positive formula. We call the formulae contained inΦ the premisesof the rule andφ the
conclusion.

We write vars(r) to denote the set of variables appearing in a deduction rule(r). We say a formula is
closedif all of its terms are closed. Substitutions are also extended to formulae and sets of formulae in
the natural way.

A deduction rule(Φ,φ) is typically written asΦ
φ

. For a deduction ruler, we writeconc(r) to denote
its conclusion andprem(r) to denote its premises. A set of positive closed formulae is called atransition
relation. Given a transition relationT, L′-labeled transitions of closed termp, denoted byT ↓ (p,L′) is
the subset ofT containing all formulae inT that havep as their source and somel ∈ L′ as their label. A
TSS is supposed to define a transition relation but for the TSSs such as those given by deduction rules
(r0) and(r1), it is not clear what the associated transition relation is. Several proposals are given in the
literature, of which [Gla04] gives a comprehensive overview and comparison. In this paper, we shall use
some of these proposals to define the semantics of Esterel. In order to facilitate the presentation of these
proposals, we need two auxiliary definitions, namely contradiction and contingency, which are given
below.

Definition 4 (Contradiction and Consistency) Formula t
l−→ t ′ is said tocontradictboth t

l9 and t
l9 t ′,

and vice versa.Φ is consistentw.r.t. Ψ, denoted byΦ � Ψ, when for each positive formulaψ ∈ Ψ, it
holds thatψ ∈ Φ and for each negative formulaψ ∈ Ψ, there is noφ ∈ Φ such thatφ contradictsψ.

In the remainder, we only use negative formulae of the formt
l9 in our specifications. We now have

all the necessary ingredients to present different proposals for the semantics of TSSs. The first proposal
is the following notion of supported model, which is a slight modification of the definition in [Gla04]
(restricting it to particular sets of terms and labels).

Definition 5 (Supported Model) Given A TSS, a transition relation T is a supported model for a set
P⊆ C(Σ) of closed terms and a set L′ ⊆ L of labels, when

1. for each q,q′ ∈ T(Σ) and l∈ L if q
l−→q′ ∈ T, then there exists a deduction rule

Φ
φ

and a substi-

tution σ such thatσ(φ) = q
l−→q′ and T� Φ, and

2. for each p∈ P and l∈ L′, p′ ∈ T(Σ), if there exists a deduction rule
Φ
φ

and a substitutionσ such

that σ(φ) = p
l−→ p′ and T� Φ, then p

l−→ p′ ∈ T.

6 Causality in the Semantics of Esterel

A transition relation T is a supported model for a TSS when it is a supported model forC(Σ) and L.

Note that in the above definition and throughout the rest of the paper, we only consider the “imme-
diate transitions” ofp as its semantics. One can adapt the above definitions (and the subsequent ones) to
consider the “transition system” associated withp as its semantics. For the subset of Esterel considered
in this paper, these two notions lead to the same conclusion concerning the well-definedness and the
semantics of a program.

Semantics 1 (Unique Supported Model Semantics)Given a set P∈ C(Σ) of closed terms and a set
L′ ⊆ L of labels a TSS ismeaningfulw.r.t. P and L′ when it has a unique supported model for P and
L′; the transition systemassociated with P and L′ is the unique supported model for P and L′. A TSS
is meaningful when it has a unique supported model; the transition relation associated with a TSS is its
unique supported model.

To illustrate these concepts, we give a few simple TSSs and study their supported models.

Example 6 Consider the deduction rules given in Example 1.
Consider the TSS comprising only deduction rule(r1). This TSS is not meaningful (w.r.t.{p} and

{s}) according to Semantics 1 because it has two supported models, namely/0 and{p
s−→ p}.

Also according to Semantics 1, the TSS comprising only deduction rule(r2) is not meaningful (w.r.t.
{p} and{s}) either, because it has no supported model. Particularly, T= /0 is not a supported model
because it follows from the right-to-left implication of Definition 5 that p

s−→ p∈ T. T = {p
s−→ p} is

not a supported model either since the only deduction rule providing a reason for p
s−→ p∈ T is (r2) but

it does not hold that T� p0
s9 .

The TSS comprising both(r1) and(r2) is indeed meaningful and its associated transition relation is
T = {p

s−→ p}. Transition relation T is indeed a supported model since(r1) now provides a reason for
p

s−→ p∈ T. Moreover T′ = /0 is not a supported model for this TSS because it then follows from(r2)
and the right-to-left implication of Semantics 1 that p

s−→ p∈ T ′.
If one takes the transition system of a program as a formalization of its global state, then the TSS

comprising of deduction rule(r1) is rejected because it has no coherent global state and the TSS with
only (r2) is rejected because it does equivocally define a coherent global state.

This suggests that Semantics 1 provides a suitable formalization for logical coherency. Next, we give
a formalization of constructiveness in terms of supported proofs and denials.

Definition 7 (Supported Proofs) A TSST provides a supported proof for a formulaφ , denoted by
T `s φ , when there is a well-founded upwardly branching tree with formulae as nodes and of which

• the root is labelled byφ ;

• if a node is labelled by a positive formulaψ and the nodes above it form the set K thenK
ψ

is an
instance of a deduction rule inT .

• if a node is labelled by a negative formulaψ, and the nodes above it form the set K, then for each
instance of a deduction ruleKi

ψi
in T such thatψi contradictsψ, there exists a formulaψ ′

i ∈ K
contradicting a formula in Ki .

Semantics 2 (S-Complete Semantics)A TSS is s-complete for a set of closed terms P when for each
formulaφ with a p∈ P as its source, eitherφ or a formula contradicting it has a supported proof. A TSS
is s-complete when it is s-complete for the setC(Σ) of all closed terms and its transition relation is the
set of positive formulae, for which it provides supported proofs.

M.R. Mousavi 7

The following theorem is taken from [Gla04], which shows that constructiveness is indeed stronger
than logical coherency.

Theorem 8 A program (TSS) is s-complete only if it is meaningful according to Semantics 1 (has a
unique supported model) and its associated transition system (unique supported model) coincides with
the set of all positive formulae with a supported proof.

Another useful property of supported proofs is their consistency [Gla04], stated below.

Theorem 9 The notion of supported proof is consistent, i.e., for each formulaφ with a supported proof,
its negation does not have a supported proof.

Next, we re-examine the TSS of Example 6 using our new notion of semantics.

Example 10 The two TSSs comprising only(r1) and only(r2) are both rejected by Semantics 2, as
well, since neither p

s−→ p, nor p
s9 can be proven from either of them. (This is also an immediate

consequence of Theorem 8.)
In the case of the TSS comprising only(r1), any attempt to build a supported proof for p

s−→ p has
the same formula as its premise. Moreover, p

s9 cannot be proven because its proof tree should prove a
negation of a premise of(r1), i.e., again p

s9 . In other words, both p
s−→ p and p

s9 only have cyclic,
and thus unsupported, proofs.

Similarly, in the case of the TSS comprising only(r2), neither p
s−→ p, nor p

s9 have a supported
proof.

Consider the TSS comprising both(r1) and (r2); it does have a unique supported model T=
{p

s−→ p} but it is not s-complete and is thus rejected by Semantics 2. Any proof for p
s−→ p or its

negation leads to a cycle, i.e., repeating the node below in the node above, and are thus not supported.
Again drawing an analogy with Esterel programs, Semantics 2 requires the existence of a “con-

structive” (supported) proof for presence/absence of signals and thus rejects a program which uses both
possibilitiesfor a signal in order to establish its own presence.

4 Structured Operational Semantics for Esterel

Our semantic specification of Esterel is presented in Figures 2 and 3. The state of the SOS comprises the
syntax of the program currently being executed (defined by the grammar in Figure 1). The semantics is
supposed to define two predicate,pXI ,c, p ↑I ,c,s, respectively, where the former means thatp terminates
with input evaluationI and under contextc (if p is part of programc), and the latter means thatp emits
signals (in the present time-instant) under the same assumptions. (A predicate formula can be formally
interpreted as a transition formula with a dummy right-hand-side; in our case one can take0 to be the
dummy target of all predicate formulae, i.e., readp↑I ,c,s andpXI ,c asp↑I ,c,s 0 andpXI ,c0, respectively.)
In addition to the two predicates, the semantics is supposed to define a transition relation of the form

p
I ,c,s−→ p′, which denotes that programp emits signals under input evaluationI and contextc. Next, we

briefly describe the deduction rules in Figures 2 and 3 and then show how they formalize the intuitive
properties of Esterel programs discussed before. In all labels (of predicates and transitions) of Figures 2
and 3,I ⊆ {i+, i− | i ∈ ι} such that for eachi ∈ ι , eitheri− ∈ I or i+ ∈ ι (but not both),c∈ C(Σ), i ∈ ι ,
x∈ ω ∪λ ands,s′,s′′ ∈ λ .

In Figure 2,(e0) states thatemit scan emit signalsunder any arbitrary input evaluation and context.
Deduction rules(s0), (s1) and(s2) describe when a sequential composition emits a signal, namely, when

8 Causality in the Semantics of Esterel

(e0)
emit x ↑I ,c,x

(s0)
p ↑I ,c,x

p ; q ↑I ,c,x
(s1)

pXI ,c q ↑I ,c,x

p ; q ↑I ,c,x
(s2)

p
I ,c,x′−→ p′ p′XI ,c q ↑I ,c,x

p ; q ↑I ,c,x

(p0)
p ↑I ,c,x

p || q ↑I ,c,x
(p1)

q ↑I ,c,x

p || q ↑I ,c,x
(f0)

c ↑I ,c,s p ↑I ,c,x

pres s? p � q end ↑I ,c,x
(f1)

¬c ↑I ,c,s q ↑I ,c,x

pres s? p � q end ↑I ,c,x

(f2)
i+ ∈ I p ↑I ,c,x

pres i ? p � q end ↑I ,c,x
(f3)

i− ∈ I q ↑I ,c,x

pres i ? p � q end ↑I ,c,x

(en0)
p[s′′/s] ↑I ,c,s′

sign sin p end ↑I ,c,s′[s/s′′] s′′ fresh inp andr

Figure 2: Structured Operational Semantics for Esterel (Part I: Signal Emission)

either the first component of the composition emits it, or when the first component terminates (possibly
after a transition) and the second component emits the signal.

The notions of termination and transition are defined in Figure 3. A parallel composition emits a
signal if one of its components emits the signal, which is captured by deduction rules(p0) and(p1).
An if-then-else constructs emits a signal, if either, according to deduction rule(f0), the local signal in
its condition is emitted and the if-branch emits the signal or, according to deduction rule(f1), the local
signal in the condition cannot be emitted and the else-branch is taken. Deduction rules(f2) and(f3) take
care of the case where the condition is an input signal. In such cases, the condition is checked against
the given input evaluation. A programp with a local signalscan emit a signals′, if p with a fresh signal
s′′ substituted fors can emits′ (but if s′ is s, thenp should be able to emits′′).

In Figure 3, the concept of termination is defined through the predicateXI ,c, in a straightforward
manner. Exceptions are deduction rules(if4) and(if5), which rely on (the impossibility of) the emission
of the condition signal for proving termination. In Figure 3, the deduction rules specifying a transition
relation are almost identical to their counterparts in Figure 2. The most notable exceptions are deduction
rules(seq0) to (seq4) and(par0) to (par3), which should consider all possible combinations of simul-
taneous transitions and individual transitions with (non-)termination in order to record the right target for
the transition.

One advantage of our approach to the semantics of Esterel presented in [Ber99, Tin00, Tin01] is that
we can capture both the logical semantics and constructive semantics of Esterel using the same TSS (by
using two generic notions of semantics for TSS already known in the literature). Another advantage is
that it establishes a clear link between, respectively, the logical and the constructive approaches to Esterel
semantics, on the one hand and the model- and proof-theoretic semantics of TSSs on the other hand.

Definition 11 (Logical Semantics of Esterel)An Esterel program p is logically coherent if the above
given TSS is meaningful according to Semantics 1 for subterms(p) and (predicates and) transitions

labeled{XI ,p,↑I ,p,x,
I ,p,x−→}. The semantics of p is the set of above-mentioned predicates and transitions

associated with subterms(p).

Next, we show that Definition 11 indeed satisfies the intuition behind logical coherency by re-
examining the examples introduced in Section 2.

M.R. Mousavi 9

(nil)
0XI ,c

(em)
emit x

I ,c,x−→0

(seq0)
p

I ,c,x−→ p′ p′XI ,c q
I ,c,x′−→q′

p ; q
I ,c,x−→q′

(seq1)
p

I ,c,x−→ p′ p′XI ,c q
I ,c,x′−→q′

p ; q
I ,c,x′−→q′

(seq2)
pXI ,c q

I ,c,x−→q′

p ; q
I ,c,x−→q′

(seq3)
p

I ,c,x−→ p′ p′XI ,c qXI ,c

p ; q
I ,c,x−→ p′

(seq4)
pXI ,c qXI ,c

p ; qXI ,c

(par0)
p

I ,c,x−→ p′ q
I ,c,x′−→q′

p || q
I ,c,x−→ p′ || q′

(par1)
p

I ,c,x−→ p′ q
I ,c,x′−→q′

p || q
I ,c,x′−→ p′ || q′

(par2)
pXI ,c q

I ,c,x−→q′

p || q
I ,c,x−→q′

(par3)
p

I ,c,x−→ p′ qXI ,c

p || q
I ,c,x−→ p′

(par4)
pXI ,c qXI ,c

p || qXI ,c

(if0)
c ↑I ,c,s p

I ,c,x−→ p′

pres s? p � q end
I ,c,x−→ p′

(if1)
¬c ↑I ,c,s q

I ,c,x−→q′

pres s? p � q end
I ,c,x−→q′

(if2)
i+ ∈ I p

I ,c,x−→ p′

pres i ? p � q end
I ,c,x−→ p′

(if3)
i− ∈ I q

I ,c,x−→q′

pres i ? p � q end
I ,c,x−→q′

(if4)
c ↑I ,c,s pXI ,c

pres s? p � q endXI ,c
(if5)

¬c ↑I ,c,s qXI ,c

pres s? p � q endXI ,c

(if6)
i− ∈ I pXI ,c

pres i ? p � q endXI ,c
(if7)

i+ ∈ I qXI ,c

pres i ? p � q endXI ,c

(enc0)
p[s′′/s]

c,s′−→ p′

sign sin p end
c,s′[s/s′′]−→ sign sin p′[s/s′′] end

(enc1)
p[s′′/s]Xc

sign sin p endXI ,c

s′′ fresh inp andr

Figure 3: Structured Operational Semantics for Esterel (Part II: Transition and Termination)

10 Causality in the Semantics of Esterel

Example 12 Consider program P0, recalled below.

P0 pres i ? emit s� 0 end ; pres s? 0 � emit o end

It is straightforward to check that the following is the semantics of P0:

{P0↑{i+},P0,s, P0↑{i−},P0,o, P0
{i+},P0,i−→ 0, P0

{i−},P0,o−→ 0, emit s
{i+},P0,s−→ 0, emit s

{i−},P0,s−→ 0, emit o
{i+},P0,s−→ 0,

emit o
{i−},P0,s−→ 0, 0X{i+},P0, 0X{i−},P0}. 1

Consider program P1 quoted below.

P1 pres s? emit s� 0 end

It has two supported models, namely{P1 ↑ /0,P1,s, P1
/0,P1,s−→ 0, emit s ↑ /0,P1,s, emit s

/0,P1,s−→ 0, 0X /0,P1}
and{emit s

/0,P1,s−→ 0, emit s↑ /0,P1,s, 0X /0,P1}. Hence, P1 is not meaningful according to Semantics 1.
Consider program P2 recalled below.

P2 pres s? 0 � emit send

Program P2 does not have any supported model: Assume, towards a contradiction, that P2 ↑ /0,P2,s

is in the purported supported model of T . It then follows from item 1 in Definition 5 that there exists a
deduction rule whose conclusion can match P2 ↑ /0,P2,s and whose premises are consistent with T . The
only candidates are(f0) and (f1); we analyze both cases below and show that they both lead to a
contradiction.

(f0) The premises of the instance of(f0) are P2 ↑ /0,P2,s and0 ↑ /0,P2,s. It follows from item 1 of Definition
5 that both predicates should be in T and hence, item 1 again applies to both predicates and in
particular to0 ↑ /0,P2,s. Hence, there should exist a deduction rule whose conclusions matches with
the above predicate. A simple syntactic check on the deduction rules of Figures 2 and 3 reveals
that none of the conclusions can be unified with the above predicate and hence a contradiction
follows.

(f1) The premises of the instance of(f0) are¬P2 ↑ /0,P2,s andemit s↑ /0,P2,s, both of which should be in
T . Again item 1 of Definition 5 applies and thus,¬P2 ↑ /0,P2,s should be consistent with T , or in
other words, P2 ↑ /0,P2,s/∈ T, which contradicts our initial assumption.

The next program to consider is P3, quoted below.

P3 pres s? emit s� emit send

Program P3 is indeed meaningful and has the following unique supported model.

{P3 ↑ /0,P3,s, P3
/0,P3,s−→ 0, emit s↑ /0,P3,s, emit s

/0,P3,s−→ 0, 0X /0,P3}.
Note that P3↑ /0,P3,s (and/or the transition of P3) cannot be removed from the supported model; to see

this, it follows from item 2 of Definition 5 and deduction rule(e0) thatemit s↑ /0,P3,s∈ T, and following
the same reasoning and deduction rule(f1), we have that P3 ↑ /0,P3,s∈ T.

Program P4 is considered logically coherent but not constructive by the language designers. Next,
we show that this intuition is indeed supported by our formal definitions.

P4 pres s0 ? emit s0 � 0 end ||
pres s0 ? pres s1 ? 0 � emit s1 end � 0 end

1For each program, we chooseι , ω andλ , respectively, to comprise only the input, output and local variables mentioned in
the program at hand. This allows us to focus only on the possibly relevant part ofI when considering supported models.

M.R. Mousavi 11

Program P4 has a unique supported model, given below.

{emit s0 ↑ /0,P3,s0, emit s0
/0,P3,s0−→ 0, emit s1 ↑ /0,P3,s1, emit s1

/0,P3,s1−→ 0, 0X /0,P3}.
Note that neither emission of s0, nor s1 cannot be present in a supported model. First, concerning s1,

suppose that s1 can be emitted, then it follows from item 1 of Definition 5 that there should be a deduction
rule supporting this emission. This can only be due to(p1) and thus, the right-hand-side component of
the parallel composition. This component, in turn can only emit s1 (due to deduction rules(f0) and then
(f1)) if s0 is present and s1 is absent under the same context. The latter contradicts our assumption.
Similarly, suppose that the supported model contains a predicate (or transition) to the effect that s0 can
be emitted. We already know that no predicate for emitting s1 can be in the supported model. Hence,
it follows from successive application of item 2 of Definition 5 using deduction rules(f0), (f1) and(e0)
that s1 can be emitted under the same context, which is already shown to lead to contradiction.

P5 pres s0 ? emit s1 � 0 end ; emit s0

Program P5 is also meaningful and has a unique supported model, given below.

{P5 ↑ /0,P5,s0, P5 ↑ /0,P5,s1, P5
/0,P5,s0−→ 0, P5

/0,P5,s1−→ 0,

pres s0 ? emit s1 � 0 end ↑ /0,P5,s1, pres s0 ? emit s1 � 0 end
/0,P5,s1−→ 0,

emit s0 ↑ /0,P5,s0, emit s0
/0,P3,s0−→ 0, emit s1 ↑ /0,P5,s1, emit s1

/0,P3,s1−→ 0, 0X /0,P5}.
Note that none of the predicates or transitions concerning the emission of s0 and s1 can be omitted

from the supported model. If the predicate (transition) concerning the emission of s0 is omitted then the
first component of sequential composition terminates and hence s0 should be emitted due to the second
component. Since s0 should always be emitted, the emission of s1 is guaranteed by the first component
of sequential composition.

Definition 13 (Constructive Semantics of Esterel)An Esterel program p is constructive if for each sig-

nal s and each input evaluation I either p↑I ,p,s and p
I ,p,s−→ p′ (for some p′) or ¬p ↑I ,p,s and p

I ,c,s9 has a
supported proof and moreover, either pXI ,p or ¬pXI ,p has a supported proof.

To illustrate this semantics and identify its differences with the logical semantics, we reconsider those
programs whom are considered non-constructive but logically coherent in Section 2.

Example 14 Consider program P3. This program is both intuitively and formally shown to be logi-
cally coherent. Moreover, in Section 2, we introduced this program as a canonical example of a non-
constructive program. Next, we show that it is also formally non-constructive since neither P3 ↑ /0,P3,s

nor ¬P3 ↑ /0,P3,s have a supported proof (a similar reasoning shows that neither P3
/0,P3,s−→ p′ for any p′

nor P3
/0,P3,s9 have a supported proof). Suppose P3 ↑ /0,P3,s has a supported proof, then its proof is either

due to(f0) or (f1). In the former case, the nodes placed above our proof obligation are P3 ↑I ,P3,s and
emit s↑ /0,P3,s. While the latter has a supported proof (due to(e0)), the former was our original proof
obligation, thus, it only remains to check the alternative option due to(f1). The premises of(f1) are
then¬P3 ↑I ,P3,s andemit s↑ /0,P3,s. Again the latter formula has a supported proof but the former is the
negation of our proof obligation and thanks to Theorem 9, we know that if¬P3 ↑I ,P3,s has a supported
proof then P3 ↑I ,P3,s cannot have a supported proof. Similarly, if¬P3 ↑I ,P3,s has a supported proof, then
a negation of a premise of all deduction rules that can match P3 ↑I ,P3,s must have a supported proof.
These two rules are again(f0) and (f1). The negation of the common premise of these two rules, i.e.,
emit s↑ /0,P3,s cannot have a supported proof (following Theorem 9, because the premise itself has a sup-
ported proof). Hence a negation of both P3 ↑I ,P3,s and¬P3 ↑I ,P3,s should have supported proofs, which
is again impossible due to Theorem 9.

12 Causality in the Semantics of Esterel

Program P4 is not constructive since neither P4 ↑ /0,P4,s0, nor its negation have a supported proof.
The only possible proof for the emission predicate can be due to(p0) or (p1). The case for(p1) does
not lead to a supported proof since the right-hand-side does not contain any emit statement for s0. If
the supported proof is due to(p0), then it should hold that P4 ↑ /0,P4,s0 which was to be proven. The
negation of the predicate, i.e., P4 ↑ /0,P4,s0 does not have a supported proof, either. Since then a negation
of a premise of(p0) and(p1) should have a supported proof. The negation of the only premise of(p0) is
pres s0 ? emit s0 � 0 end ↑ /0,P4,s0, which in turn means that a negation of a premise of(f0) or (f1) must
have a supported proof. Consider(f0), its two premises are P4 ↑ /0,P4,s0, but we were seeking a proof of
its negation andemit s0 ↑ /0,P4,s0, whose negation cannot be proven.

Program P5 is not constructive, either. We next show that neither P5 ↑ /0,P5,s0 nor its negation are
provable. The purported supported proof for predicate P5 ↑ /0,P5,s0 is due to one of the rules(s0) to (s2).
Next, we analyze each case and show that it leads to a contradiction.

(s0) Then, it should hold thatpres s0 ? emit s1 � 0 end ↑ /0,P5,s0. This, in turn, can be either due to
(f0) or (f1). If the predicate is due to(f0), then we should have a supported proof for P5 ↑ /0,P5,s0,
which was to be proven. If the proof is due to(f1), then¬P5↑ /0,P5,s0 should have a supported proof,
which is impossible due to Theorem 9.

(s1) Then, it should hold thatpres s0 ? emit s1 � 0 endX /0,P5. This termination can be due to ei-
ther (if4) or (if5). None of these two are possible since otherwise, respectively, P5 ↑ /0,P5,s0 or
¬P5 ↑ /0,P5,s0 should have a supported proof.

(s2) Then, it should hold thatpres s0 ? emit s1 � 0 endX /0,P5,s′ p′ for some s′ and p′. This transition
is due to either(if0) or (if1). Again, both cases lead to a contradiction due to a similar reasoning
as in item(s0).

As a side note, the common intuition and the similarities between deduction rules of Figures 2 and 3
may suggest that we can replace deduction rules of Figure 2 with the following rule (or even do without
the emission predicates and make the same changes in the deduction rule for if-then-else statements in
Figure 3):

(emit)
p

I ,c,x−→ p′

p ↑I ,c,x

This change leads to a much more restrictive semantics, which is unable to provide supported proofs
for transitions of perfectly acceptable programs such as the following:

P6 pres s? emit o � 0 end || emit s

To see this, the reader may try to prove that P6 can emit signalo using deduction rule(par0). The
proof of the premise of(par0) then should rely on(if0) and hence due to deduction rule(emit), we need
to prove thats can be emitted (for the if-then-else to be able to take a transition). In turn, this can only
be due to(par1). But to apply(par1), we need to know that the left-hand-side component can take a
transition (in order to record its target), which is what we wanted to prove initially. This cycle is broken
in our semantics, by deduction rule(p1) which only considers one of the two components to infer the
emission ofs0 (without trying to record the target of the transition). The following proof illustrates why
this program is indeed constructive.

M.R. Mousavi 13

emit s↑ /0,P6,s

P6 ↑ /0,P6,s
emit o

/0,P6,o−→ 0

pres s? emit o � 0 end /0,P6,o−→ 0 emit s
/0,P6,s−→ 0

P6
/0,P6,o−→ 0 || 0

5 Conclusions and Future Work

In this paper, we presented a link between the intuitive notions of logical coherency and constructiveness
in the semantics of Esterel on the one hand, and the formal notions of supported models and supported
proofs in the semantics of Structured Operational Semantics, on the other hand. By means of several
canonical examples from the literature, we showed that our formal definitions indeed capture the intuitive
criteria put forward by the language designers.

Several formalizations of these two intuitive criteria exist in the literature. For example [Ber99,
PBEB07] present three formalizations of constructive semantics of Esterel. In [Tin00, Tin01] another
formalization of constructive semantics of Esterel is presented and is proven to coincide with one of the
notions in [Ber99]. A rigorous comparison between all these notions and the ones presented in this paper
remains as a topic for future research.

In the semantics presented in this paper, we abstracted from the issues of exceptions (traps), loops
and time. We expect that one can include these aspects without any substantial change in the semantics
presented in this paper using the modular semantics approach of [Mos04, MN08]. This remains as
another interesting exercise for the future.

References

[AB94] Krzysztof R. Apt and Roland N. Bol. Logic programming and negation: A survey.Journal of Logic
Programming (JLAP), 19/20:9–71, 1994.

[AFV01] Luca Aceto, Willem Jan (Wan) Fokkink, and Chris Verhoef. Structural operational semantics. In Jan A.
Bergstra, Alban Ponse, and Scott A. Smolka, editors,Handbook of Process Algebra, Chapter 3, pages
197–292. Elsevier Science, Dordrecht, The Netherlands, 2001.

[Ber99] Gérard Berry. The Constructive Semantics of Pure Esterel. 1999. Draft version, available from:
ftp://ftp-sop.inria.fr/meije/esterel/papers/constructiveness3.ps.gz.

[BG92] Gérard Berry and Georges Gonthier. The Esterel synchronous programming language: Design, seman-
tics, implementation.Science of Computer Programming (SCP), 19(2):87–152, 1992.

[BG96] Roland N. Bol and Jan Friso Groote. The meaning of negative premises in transition system specifica-
tions. Journal of the ACM (JACM), 43(5):863–914, September 1996.

[Gla04] Robert Jan (Rob) van Glabbeek. The meaning of negative premises in transition system specifications
II. Journal of Logic and Algebraic Programming (JLAP), 60-61:229–258, 2004.

[Gro93] Jan Friso Groote. Transition system specifications with negative premises.Theoretical Computer
Science (TCS), 118(2):263–299, 1993.

[GV92] Jan Friso Groote and Frits W. Vaandrager. Structured operational semantics and bisimulation as a
congruence.Information and Computation (I&C), 100(2):202–260, October 1992.

[MN08] Peter D. Mosses and Mark J. New. Implicit propagation in structural operational semantics. InPro-
ceedings of the 5th Workshop on Structural Operational Semantics (SOS’08), pages 78–92, 2008.

ftp://ftp-sop.inria.fr/meije/esterel/papers/constructiveness3.ps.gz

14 Causality in the Semantics of Esterel

[Mos04] Peter D. Mosses. Modular structural operational semantics.Journal of Logic and Algebraic Program-
ming (JLAP), 60-61:195–228, 2004.

[PB02] Dumitru Potop-Butucaru.Optimizations for Faster Simulation of Esterel Programs. PhD thesis,́Ecole
des Mines de Paris, CMA, Paris, France, 2002.

[PBEB07] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry.Compiling Esterel. Springer-Verlag,
2007.

[Plo04] Gordon D. Plotkin. The origins of structural operational semantics.Journal of Logic and Algebraic
Programming (JLAP), 60:3–15, 2004.

[TdS05] Olivier Tardieu and Robert de Simone. Loops in Esterel.ACM Transactions on Embedded Computing
Systems (ACM TECS), 4:708–750, 2005.

[Tin00] Simone Tini.Structural Operational Semantics for Synchronous Languages. PhD thesis, Dipartimento
di Informatica, Universit̀a degli Studi di Pisa, Pisa, Italy, 2000.

[Tin01] Simone Tini. An axiomatic semantics for Esterel.Theoretical Computer Science (TCS), 269(1-2):231–
282, 2001.

	Introduction
	Esterel and Its Semantics: A Cook's Tour
	Structured Operational Semantics
	Structured Operational Semantics for Esterel
	Conclusions and Future Work

