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We re-examine the challenges concerning causality in the semantics of Esterel and show that they per-
tain to the known issues in the semantics of Structured Operational Semantics with negative premises.
We show that the solutions offered for the semantics of SOS also provide answers to the semantic
challenges of Esterel and that they satisfy the intuitive requirements set by the language designers.

1 Introduction

Esterel[[Ber99, PBEB07] is an imperative synchronous language used for the specification and program-
ming of embedded systems. Esterel is based on the synchronous hypothesis, i.e., instantaneous reaction
to signals and immediate propagation of signals in each time-instant. The combination of the imperative
programming style and the synchronous hypothesis in Esterel has led to semantic challenges addressed
in the literature[[BG9Z, Ber99, Tin00, Tin01, TdS$S05, PB02]. In this paper, we present the main semantic
challenge posed by Esterel, namely, the issue of causality. We show that it is reminiscent of the semantic
challenges [Gro93, BG96, Gla04] in Structured Operational Semalntics [AFV01] (esp. in the setting with
negative premises; the same challenges were encountered before in logic progrdmming [AB94]). We
then show that using the known solutions for the latter simplifies the presentation of the semantics of the
former substantially and leads to the desired intuitive properties set forth by the language designers.

The rest of this paper is organized as follows. In Segtjon 2, we present a brief overview of the Esterel
language and its intuitive semantics. Secfipn 3 introduces Structured Operational Semantics and notions
of semantics and well-definedness associated with SOS specifications. $ection 4 connects these two
worlds by first presenting an SOS specification for Esterel and then studying the notions of semantics
and well-definedness for the given specification. There, we show that certain notions of semantics for
SOS formalize the intuitive criteria given by the language designers. Sg¢tion 5 concludes the paper and
presents directions for future research.

2 Esterel and Its Semantics: A Cook’s Tour

The abstract syntax of Esterel is given by the grammar in F{gure 1.

A short introduction to the intuitive semantics of each of these constructs follows. In this grammar,
0 stands for the terminated process. Emitting signial denoted byemit s, which is instantaneously
visible to all parts of the system (and may in turn cause more signals to be emitted). Reacting to present

p,q = O]emitS|pressS? po(end|

p;9|pllq|signsinpend |
1|susp pwhensS|traptin pend|exitt|loop pend

Figure 1: The Abstract Syntax of Esterel
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2 Causality in the Semantics of Esterel

and absent signals is done via the if-then-else constities s 7 p ¢ q end, where ifs is currently

present (emitted by some other part of the systgniy,executed, otherwise is absent] is executed.

The combination of synchronous assumption, i.e., instantaneous propagation of signals, and checking
for absence/presence of signals leads to semantic complications, presented shortly. Parallel compaosition
of pandqis denoted byp | | g. Processign S in p end encapsulatesin p, i.e., declares local to

p. Another way of reacting to signals is by using the suspend constuiggt p when s, which initially

acts asp, but after one synchronous round will stppas soon as signalis emitted (suspension may
happen after a number of rounds). Processands for a process that passes one unit of time and then
terminates. One can define traps (exit points, exception handlers) to which a program can jump to by
trapt in p end. The actual jump (raising the exception) is performed by executirig t. A program

can engage in a loop by meanslebp p end (it can either keep on executing in the loop or exit the loop
usingexit t).

An Esterel program is usually suffixed by a header declaring input and output signals. The syntax of
this header is of the fornmput i; output 0; and we assume that the set of input and output variables in
a program is disjoint from the set of its local signals. Moreover, to unclutter the syntax, we assume fixed
setst, w andA, respectively, of input, output and local variables. We pick typical memibiéris, ... € 1,
0,0,00,... € @ ands,s,sp € A. This way, one does not need to consider the input and out declaration
anymore since input and output (and local) variables are recognized by their names. In some cases output
and local variables can be treated uniformly, in which case we denote tham'by € w UA.

To study the semantic challenge concerning causality it suffices for us to look at the first two rows of
our grammar. The other constructs, e.g., traps and time passing, are semantically interesting on their own
but are treated satisfactorily in the literature and are orthogonal to the causality problems addressed here.
Hence, in the remainder, we focus on the subset of Esterel given in the first two lines of our grammar and
only in passing mention how to include time and traps in our presented semantics.

A causality relation between evergsands' (signals in this case), means that the presence and ab-
sence o directly influences the presence or absencg.dfor example, consider the following Esterel
program:

PO presi ?emit S¢ 0 end ; presS?0¢ emit O end

In the above program, there is a causality chain starting from the input varitbtbe local variables

and fromsto the output variable, namely the presence bfletermines the presencesdind eventually

leads to the absence ofwhile the absence a&f(caused by the absenceijpfdetermines the presence of

0. Using the syntax of Esterel one can easily write programs with cyclic dependencies iepresent

if and only if sis present) or even worse, cyclic dependencies of a paradoxical natures {g jgresent

if and only if sis absent). To illustrate these issues in Esterel, consider the following simple programs,
which are all due to [Ber99]. These programs are canonical examples of different issues concerning
causality in Esterel programs.

Pl pres S? emit S¢ 0 end

Program P1 relies on the presencesai order to emit signas. The logical semantics of Esterel
rejectsthis program on the ground that it has two “models”. The first one is by assuming that
sis present, which leads to a justification of this assumption by emistinbhe other one is by
assuming thasis absent, which is supported by tliatloes not emit (denies emitting) sigrsal

In each synchronous round, the “model” of an Esterel program is definedlbpal statuswhich

defines the status (presence/absence) of signals in this round. A global status of a program is called
coherentwhen the presence/absence of signals are determined consistently by the emit statements
in the program([Ber99]:
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The global status of a programlimgically coherentff at least oneemit statement is
executed for each signal assumed present anghiv® statement is executed for each
signal assumed absent.

For example, program P1 has two logically coherent global statuses, namely pressand ab-
sence of, as motivated above. The basis for rejecting program P1 is called “logical determinism”
and is defined as follows [Ber99].

A program is logically deterministic if it has at most one logically coherent global
status.

P2 press?0¢emit Send

Program P2 relies on the absence of order to emit signas. According to the logical semantics
of Esterel, the above-given program has no logically coherent global status. Assumisgsthat
absent leads ts being emitted and hence, incoherency. Likewise, assumingsttgapresent
requires emission of which is only justified whersis absent.

The basis for rejecting program P2 is called “logical reactivity” and is defined as follows [Ber99].
A program is logically reactive if it has at least one logically coherent global status.

The conjunction of logical determinism and logical reactivity is called logical coherency and is the
main well-definedness criterion for thagical semanticef Esterel.

P3 pres S7 emit S¢ emit Send

The program above has only one logically coherent global status, namelyithptesent. This

global status is also coherent since assuming the presesdeaafs to emitting it and moreover, it

is not logically coherent to assume the absencg bécause it leads to its emission. Hence, as far

as logical coherency is concerned this program is accepted and the logical semantics defines the
semantics sketched above for this program.

However, the semantics of Esterel used for its compiler, calleddhstructive semantigBer99,
PBEBOQT], has further constraints which lead to the rejection of the above program. In this paper,
we consider the issue of causality in both variants of the semantics and hence, also study the issue
of constructiveness defined below.

A program isconstructive if for each signal, it either proves its presence (must emit
the signal) or proves its absence (cannot emit it).

Program P3 is rejected by the above criterion since it can neither prove the emissigts ohly
possible proof is cyclic since relies on the assumptiongiaémitted), nor can it coherently prove
its absence, since to prove the absenceib$hould prove that neither of the two emit statements
can be executed, thus it should prove the&an neither be present nor absent.

P4 press?emit S ¢ 0end ||
pres  ?pres S 7 0o emit § end ¢ 0 end

Note that P4 is logically coherent, since its only logically coherent global status is thagtaotd
s1 are absent. To check its constructiveness, let us focus on the emisspntodefinitely does
not have to emity, since the only reason for emittirsg is theemit sy statement in the left-hand
side of the parallel composition, which is guarded by the check on the presesceHsnce, the
only proof for emittingsy is cyclic. But it can potentially emity (because it contains amit
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statement) and the only way to make sure thatannot be emitted is to prove that the guard for
emit § hever becomes true, i.e., we need again to showsghannot be emitted, which is also a
cyclic reasoning. Hence, we conclude that P4 is not constructive because it neither mugst emit
nor it can deny its emission.

PS5 pres s 7 emit $ ¢ 0 end ; emit S

The above program is logically coherent and its unique logically coherent global status is that
both g ands; are present. However, it is again rejected by the constructive semantics of Esterel.
The reason is that in order to reach the emit statemergysfave should first make sure that the

first statement has a well-defined semantics in this context, i.e., it either takes the if branch or the
else branch and then terminates. However, giving a constructive proof for the transition of the
conditional requires a constructive proof for the emissiorgofThis is another instance of the
cyclic proof phenomenon rejected by the constructive semantics.

3 Structured Operational Semantics

Structural Operational Semantics (SOS) was originally proposed by Plotkin [Plo04] as a syntax-directed
and compositional way of defining semantics. Gradually, SOS has gained popularity and by now has
become a de facto standard in defining operational semantics. This popularity has called for a richer
syntax for SOS deduction rules and thus, in some applications, SOS deduction rules lost their structural,
i.e., inductive, nature. Some authors then decided to use the same acronym for Structured Operational
Semantics/ [AFVO1, GVS2]. With the richer syntax of SOS rules, one can write deduction rules whose
meaning is not clear any more.

Example 1 Examples of cyclic rules are the deduction ru(ek) and (r2) given below.

S S
P—P p—-
(r2)

S S
P—P pP—pP
The reader may already note the curious similarity between program P1 and deductidinlrjten
one hand and program P2 and deduction r(i2) on the other hand. Moreover, program P3 resembles
the combination ofrl) and (r2). These similarities materialize as formal definitions in the remainder
of this paper.

(r1)

To formalize the syntax and semantics of SOS, we first formalize the concepts of formulae and
(transition) formulae.

Definition 2 (Signature and (sub)terms) We let V represent an infinite set of variablessignaturex
is a set of function symbols (operators), each with a fixed arity. An operator with arity zero is called a
constant We define the sét(X) of termsoverZ as the smallest set satisfying the following constraints.

e Avariable xe V is a term.

e If f € X has arity nandt,...,t, are terms, then (fty,...,t,) is a term.
We write § = t; if t; and & are syntactically equal. The function var§(z) — 2V gives the set of
variables appearing in a term. The s&{Z) C T(Z) is the set ofclosed termsi.e., terms that contain
no variables. Asubstitutiono is a function of type VV— T(X). We extend the domain of substitutions to
terms homomorphically. If the range of a substitution lie€{X), we say that it is @losing substitution
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A term s is considered aubtermof itself; if s is a subterm ofitthen s is also a subterm of
f(to,...,t,...,th—1), for each st € T(Z), 0<i < n, and n-ary fe X. The set of subterms of a term
t are denoted by subterrts.

Next, we formalize the syntax of SOS in terms of Transition System Specifications.

Definition 3 (Transition System Specifications (TSS))Atransition system specificatiaa triplet(Z, L, D)
where
e X is asignature.

e Lisasetoflabels. IfEL,andtt’ € T(Z) we say thatt-t'is apositive formulaand t (also

denoted byt L») and t--t' are negative formulaeA formula, typically denoted by, v, ¢’, ¢i,
... Is either a negative formula or a positive one.

e D is a set ofdeduction rulesi.e., tuples of the forni®, ¢) where® is a set of formulae ang
is a positive formula. We call the formulae containeddirthe premisesof the rule and¢ the
conclusion
We write var$r) to denote the set of variables appearing in a deduction (uje We say a formula is
closedif all of its terms are closed. Substitutions are also extended to formulae and sets of formulae in
the natural way.

A deduction rule®, ¢) is typically written as%. For a deduction rule, we writecondr) to denote
its conclusion angrem(r) to denote its premises. A set of positive closed formulae is calteghaition
relation. Given a transition relatiofi, L’-labeled transitions of closed terpy denoted byl | (p,L’) is
the subset of containing all formulae ifT that havep as their source and sorhe L’ as their label. A
TSS is supposed to define a transition relation but for the TSSs such as those given by deduction rules
(r0) and(rl), it is not clear what the associated transition relation is. Several proposals are given in the
literature, of which[[Gla04] gives a comprehensive overview and comparison. In this paper, we shall use
some of these proposals to define the semantics of Esterel. In order to facilitate the presentation of these
proposals, we need two auxiliary definitions, namely contradiction and contingency, which are given
below.

Definition 4 (Contradiction and Consistency) Formulat——t’ is said tocontradicboth t and tﬁ'qt’,
and vice versa.® is consistentv.r.t. W, denoted byd = W, when for each positive formulg € W, it
holds thaty € ® and for each negative formula € W, there is nop € ® such thatyp contradictsy.

In the remainder, we only use negative formulae of the fogmin our specifications. We now have
all the necessary ingredients to present different proposals for the semantics of TSSs. The first proposal
is the following notion of supported model, which is a slight modification of the definition in [Gla04]
(restricting it to particular sets of terms and labels).

Definition 5 (Supported Model) Given A TSS, a transition relation T is a supported model for a set
P C C(2) of closed terms and a set C L of labels, when

1. foreachqq € T(X)andle L ifq #q’ € T, then there exists a deduction ruipﬂa and a substi-
tution o such thato(¢) =q LN g and TE @, and
. : . o -
2. foreach pe Pand le ', p € T(Z), if there exists a deduction rulg and a substitutiors such

thato(¢) = p# p’ and TE @, then p'—> pPeT.
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A transition relation T is a supported model for a TSS when it is a supported mode{Iprand L.

Note that in the above definition and throughout the rest of the paper, we only consider the “imme-
diate transitions” op as its semantics. One can adapt the above definitions (and the subsequent ones) to
consider the “transition system” associated woths its semantics. For the subset of Esterel considered
in this paper, these two notions lead to the same conclusion concerning the well-definedness and the
semantics of a program.

Semantics 1 (Unique Supported Model Semanticsiiven a set Re C(X) of closed terms and a set

L’ C L of labels a TSS iseaningfulw.r.t. P and L. when it has a unique supported model for P and

L’; the transition systenassociated with P and’lis the unique supported model for P and IA TSS

is meaningful when it has a unique supported model; the transition relation associated with a TSS is its
unique supported model.

To illustrate these concepts, we give a few simple TSSs and study their supported models.

Example 6 Consider the deduction rules given in Exanjgle 1.

Consider the TSS comprising only deduction riae). This TSS is not meaningful (w.H{tp} and
{s}) according to Semanti¢s 1 because it has two supported models, n@uaredy p— p}.

Also according to Semant@s 1, the TSS comprising only deductiofr)lés not meaningful (w.r.t.

{p} and {s}) either, because it has no supported model. Particularly: T is not a supported model
because it follows from the right-to-left implication of Definit@n 5thatppeT. T= {pi> p} is
not a supported model either since the only deduction rule providing a reason-forpe T is (r2) but
it does not hold that F p0-2.

The TSS comprising bofhl ) and(r2) is indeed meaningful and its associated transition relation is
T= {p—s> p}. Transition relation T is indeed a supported model sifrd@ now provides a reason for
p—s> p e T. Moreover T =0 is not a supported model for this TSS because it then follows (frajn
and the right-to-left implication of Semant{ds 1 that® p e T'.

If one takes the transition system of a program as a formalization of its global state, then the TSS
comprising of deduction rulérl) is rejected because it has no coherent global state and the TSS with
only (r2) is rejected because it does equivocally define a coherent global state.

This suggests that Semanti¢s 1 provides a suitable formalization for logical coherency. Next, we give
a formalization of constructiveness in terms of supported proofs and denials.

Definition 7 (Supported Proofs) A TSST provides a supported proof for a formul, denoted by
T s ¢, when there is a well-founded upwardly branching tree with formulae as nodes and of which

e the root is labelled by;

¢ if a node is labelled by a positive formula and the nodes above it form the set K tt{i;ms an
instance of a deduction rule il .

¢ if anode is labelled by a negative formulg and the nodes above it form the set K, then for each
instance of a deduction ruI% in T such thaty; contradictsy, there exists a formula; € K
contradicting a formula in K

Semantics 2 (S-Complete Semanticsh TSS is s-complete for a set of closed terms P when for each
formula¢ with a pe P as its source, eithap or a formula contradicting it has a supported proof. A TSS
is s-complete when it is s-complete for the@&X) of all closed terms and its transition relation is the
set of positive formulae, for which it provides supported proofs.
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The following theorem is taken from [Gla04], which shows that constructiveness is indeed stronger
than logical coherency.

Theorem 8 A program (TSS) is s-complete only if it is meaningful according to Semauftics 1 (has a
unique supported model) and its associated transition system (unique supported model) coincides with
the set of all positive formulae with a supported proof.

Another useful property of supported proofs is their consistency [Gla04], stated below.

Theorem 9 The notion of supported proof is consistent, i.e., for each formuath a supported proof,
its negation does not have a supported proof.

Next, we re-examine the TSS of Examp]e 6 using our new notion of semantics.

Example 10 The two TSSs comprising onlyl) and only(r2) are both rejected by Semantick 2, as
well, since neither ps—> p, nor pi) can be proven from either of them. (This is also an immediate
consequence of Theor¢m 8.)

In the case of the TSS comprising ofil¥), any attempt to build a supported proof fop‘fée p has
the same formula as its premise. Moreoveﬁ,»p:annot be proven because its proof tree should prove a
negation of a premise dfl), i.e., again p=. In other words, both p= p and p= only have cyclic,
and thus unsupported, proofs.

Similarly, in the case of the TSS comprising ofil¥), neither pi> p, nor pi have a supported
proof.

Consider the TSS comprising bottl) and (r2); it does have a unique supported modek=T
{pi> p} but it is not s-complete and is thus rejected by Semacs 2. Any proof#es}p p or its
negation leads to a cycle, i.e., repeating the node below in the node above, and are thus not supported.

Again drawing an analogy with Esterel programs, Semairjtjcs 2 requires the existence of a “con-
structive” (supported) proof for presence/absence of signals and thus rejects a program which uses both
possibilitiesfor a signal in order to establish its own presence.

4  Structured Operational Semantics for Esterel

Our semantic specification of Esterel is presented in Figures P|and 3. The state of the SOS comprises the
syntax of the program currently being executed (defined by the grammar in Flgure 1). The semantics is
supposed to define two predicape; ¢, p 1165, respectively, where the former means thaérminates
with input evaluatiorl and under context (if p is part of progrant), and the latter means thptemits
signals (in the present time-instant) under the same assumptions. (A predicate formula can be formally
interpreted as a transition formula with a dummy right-hand-side; in our case one canttake the
dummy target of all predicate formulae, i.e., rgatl ¢S andpv'| c asp 1'% 0 andpv'| c0, respectively.)
In addition to the two predicates, the semantics is supposed to define a transition relation of the form
p"—c’s> p’, which denotes that programemits signak under input evaluatioh and context. Next, we
briefly describe the deduction rules in Figurés 2 ghd 3 and then show how they formalize the intuitive
properties of Esterel programs discussed before. In all labels (of predicates and transitions) of Figures 2
and 3,1 C {i*,i~ |i €1} such that for eache 1, eitheri— €1 ori* € 1 (but not both)c € C(%),i €1,
Xe wUA ands,S,s" € 1.

In Figur@,(eO) states thagémit scan emit signas under any arbitrary input evaluation and context.
Deduction rulegs0), (s1) and(s2) describe when a sequential composition emits a signal, namely, when
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I,c.X
p e pvic g1 p==p pYie gt
(eO) . l,c,x (SO) . l,c,x (Sl) C l,c,x (32) . I;E,x
emit X1 p;al p;ql p;qfl
(p0> p TI.,c,x (p]_) q TI ,C,X 0 C TI’C’S P TI ,C,X ” —C Tl,c,s q Tl,c,x
pllqgthex pllgthex press? pogend %X press? pogend %X
(f2) it cl P Tl,c,x . i~ el q Tl.c,x
presi? poQgend X presi? poQgend X
/ l,cs
(en0) PIs'/S 1 s’ fresh inp andr

signsin pend {¢S/s]

Figure 2: Structured Operational Semantics for Esterel (Part I: Signal Emission)

either the first component of the compaosition emits it, or when the first component terminates (possibly
after a transition) and the second component emits the signal.

The notions of termination and transition are defined in Figlire 3. A parallel composition emits a
signal if one of its components emits the signal, which is captured by deduction(p@leand (p1).

An if-then-else constructs emits a signal, if either, according to deductior{filethe local signal in

its condition is emitted and the if-branch emits the signal or, according to deductiotfXyl¢he local

signal in the condition cannot be emitted and the else-branch is taken. DeductiofiZukasd(f3) take

care of the case where the condition is an input signal. In such cases, the condition is checked against
the given input evaluation. A prograpwith a local signak can emit a signad, if p with a fresh signal

s’ substituted fos can emits’ (but if ' is s, thenp should be able to em#’).

In Figure[3, the concept of termination is defined through the predicate in a straightforward
manner. Exceptions are deduction rul#4) and(if5), which rely on (the impossibility of) the emission
of the condition signal for proving termination. In Figdire 3, the deduction rules specifying a transition
relation are almost identical to their counterparts in Figlire 2. The most notable exceptions are deduction
rules(seq0 to (seg4 and(par0) to (par3), which should consider all possible combinations of simul-
taneous transitions and individual transitions with (non-)termination in order to record the right target for
the transition.

One advantage of our approach to the semantics of Esterel presented in [Ber99, Tin00, Tin01] is that
we can capture both the logical semantics and constructive semantics of Esterel using the same TSS (by
using two generic notions of semantics for TSS already known in the literature). Another advantage is
that it establishes a clear link between, respectively, the logical and the constructive approaches to Esterel
semantics, on the one hand and the model- and proof-theoretic semantics of TSSs on the other hand.

Definition 11 (Logical Semantics of Esterel)An Esterel program p is logically coherent if the above
given TSS is meaningful according to Semaritics 1 for subt@nand (predicates and) transitions

labeled{v| p, T""PX, LpX }. The semantics of p is the set of above-mentioned predicates and transitions
associated with subterrfyg).

Next, we show that Definitioh 11 indeed satisfies the intuition behind logical coherency by re-
examining the examples introduced in Secfipn 2.
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Figure 3: Structured Operational Semantics for Esterel (Part II: Transition and Termination)
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Example 12 Consider program PO, recalled below.
PO presi ? emitSo 0 end ; presS? 00 emit 0 end

It is straightforward to check that the following is the semantics(mf P
{POT{'+}POS POT{' }POo PO{I }POIO Po{l },P0O,0 {it},pP {i*} {+}POS

0,em2tS —> 0 ts 0 emttO 0,
{i"},P0;s
emit0 — 0, 0\/{|+} PO» 0\/{, }po}.
Consider program P1 quoted below.

Pl press?emitS¢ 0 end

0.P1 0,P1
It has two supported models, namdR1 12PLs, P12=°0, emit s 10PLS, emit S— 0, OV gp1}

and{emit s WP 0, emit s10PLS, Ov'op1}. Hence, R is not meaningful according to Seman@s 1.
Consider program P2 recalled below.

P2 press?0¢ emitsSend

Program P2 does not have any supported model: Assume, towards a contradiction? tHst?P
is in the purported supported model of T. It then follows from item 1 in Defirfifion 5 that there exists a
deduction rule whose conclusion can match{®F2s and whose premises are consistent with T. The
only candidates aréf0) and (f1); we analyze both cases below and show that they both lead to a
contradiction.

(fo) The premises of the instance(&d) are P2 1%P%S and 0 12P25, It follows from item 1 of Definition
[5 that both predicates should be in T and hence, item 1 again applies to both predicates and in
particular to 0 1%P2S, Hence, there should exist a deduction rule whose conclusions matches with
the above predicate. A simple syntactic check on the deduction rules of Figureq 2 and 3 reveals
that none of the conclusions can be unified with the above predicate and hence a contradiction
follows.

(f1) The premises of the instance(&@) are =P2 1%P2S and emi t s1%P2S, both of which should be in
T. Again item 1 of DefinitioE]S applies and thusP2 1%P2s should be consistent with T, or in
other words, R 1%P?S¢ T, which contradicts our initial assumption.

The next program to consider is P3, quoted below.
P3 press?emitSo emitSend

Program P3 is indeed meaningful and has the following unique supported model.

{P310P3s, P20 emits 10P3S emit 2350 ov 0.p3}-

Note that B 1%P3s (and/or the transition of B) cannot be removed from the supported model; to see
this, it follows from item 2 of Definiti 5 and deduction r&0) that emi t STO’Pg’SE T, and following
the same reasoning and deduction r(ii&), we have that B1%P3Sc T,

Program P4 is considered logically coherent but not constructive by the language designers. Next,
we show that this intuition is indeed supported by our formal definitions.

P4 pressg?emitpoOend /]
presSy ?presS; 200 emit S end < 0 end

1For each program, we choosaw and, respectively, to comprise only the input, output and local variables mentioned in
the program at hand. This allows us to focus only on the possibly relevant gastafn considering supported models.
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Program P4 has a unique supported model, given below.

{emit 9 10P3% omit 500&50 0, emit s 1OP3S1 emit Slmﬁsl 0, OV pp3}.

Note that neither emission af,310r § cannot be present in a supported model. First, concerning s
suppose that;scan be emitted, then it follows from item 1 of Definifidn 5 that there should be a deduction
rule supporting this emission. This can only be dugpb) and thus, the right-hand-side component of
the parallel composition. This component, in turn can only eimn(tiae to deduction rule§0) and then
(f1)) if sp is present and ssis absent under the same context. The latter contradicts our assumption.
Similarly, suppose that the supported model contains a predicate (or transition) to the effegt¢hat s
be emitted. We already know that no predicate for emittingas be in the supported model. Hence,
it follows from successive application of item 2 of Definifipn 5 using deduction (f¢s(f1) and (e0)
that 5 can be emitted under the same context, which is already shown to lead to contradiction.

P5 pressp 2emit s 0 0 end ; emit S

Program P5 is also meaningful and has a unique supported model, given below.

{P510P5%, p510PSs p5lPoP ) pstPos

0,P5,
pres Sy ?2emit S ¢ 0 end T07P5"51, pres Sy ?2emit S ¢ 0 end alliirg 0,

0,P3 0,P3,
emit So 10P5%, emit 59— 0, emit sy [OP5S, emit s~ 0, OV gps).

Note that none of the predicates or transitions concerning the emissignaafdsg can be omitted
from the supported model. If the predicate (transition) concerning the emissignsobsiitted then the
first component of sequential composition terminates and hensieosild be emitted due to the second
component. Sinceyshould always be emitted, the emission ofssguaranteed by the first component
of sequential composition.

Definition 13 (Constructive Semantics of Esterel)An Esterel program p is constructive if for each sig-

nal s and each input evaluation | either{p®s and p'—ps> p’ (for some P or —p 1"PS and p'fés has a

supported proof and moreover, eithev'p, or —pv'; p has a supported proof.

To illustrate this semantics and identify its differences with the logical semantics, we reconsider those
programs whom are considered non-constructive but logically coherent in Sgction 2.

Example 14 Consider program P3. This program is both intuitively and formally shown to be logi-
cally coherent. Moreover, in Sectiph 2, we introduced this program as a canonical example of a non-
constructive program. Next, we show that it is also formally non-constructive since neBHéF#s

nor —P3 12P3s have a supported proof (a similar reasoning shows that neitrﬁeﬁsp’ for any g

nor P3°53° have a supported proof). Supposg F:F3S has a supported proof, then its proof is either
due to(f0) or (f1). In the former case, the nodes placed above our proof obligation arg-P*s and

emit s T0P3S, While the latter has a supported proof (due(&®)), the former was our original proof
obligation, thus, it only remains to check the alternative option dugtp The premises off1) are
then—-P3 1"'P3S and emit s 1%P3S, Again the latter formula has a supported proof but the former is the
negation of our proof obligation and thanks to Theo@m 9, we know tha®31!-P3S has a supported
proof then B 1':P3S cannot have a supported proof. Similarly-P3 1':P3S has a supported proof, then

a negation of a premise of all deduction rules that can mat8h 'S must have a supported proof.
These two rules are agaiff0) and (f1). The negation of the common premise of these two rules, i.e.,
emit sT%P3S cannot have a supported proof (following Theo@m 9, because the premise itself has a sup-
ported proof). Hence a negation of bot® P:P3s and =P3 1!:P3S should have supported proofs, which

is again impossible due to Theoréin 9.



12 Causality in the Semantics of Esterel

Program P4 is not constructive since neithet FP4%, nor its negation have a supported proof.
The only possible proof for the emission predicate can be dypQGpor (pl). The case fofpl) does
not lead to a supported proof since the right-hand-side does not contain any emit statementifor s
the supported proof is due t@0), then it should hold that £#1%P4% which was to be proven. The
negation of the predicate, i.e.4R%P4% does not have a supported proof, either. Since then a negation
of a premise ofp0) and(p1) should have a supported proof. The negation of the only premigbfs
pres Sy ? emit S o 0 end %P4%, which in turn means that a negation of a premis¢foj or (f1) must
have a supported proof. Consid@b), its two premises are£%P4%_ but we were seeking a proof of
its negation ancemi t 59 1%P4%, whose negation cannot be proven.

Program P5 is not constructive, either. We next show that neit/8et®P>% nor its negation are
provable. The purported supported proof for predicae®”>% is due to one of the rulgs0) to (s2).
Next, we analyze each case and show that it leads to a contradiction.

(sO) Then, it should hold thapres sy 2 emit S o 0 end [®P>%. This, in turn, can be either due to
(f0) or (f1). If the predicate is due t(0), then we should have a supported proof f&r P>,
which was to be proven. If the proof is dug(tb), then—P5 1%P5% should have a supported proof,
which is impossible due to Theoréin 9.

(s1) Then, it should hold thapres sp 2 emit 1 ¢ 0 endv'gps. This termination can be due to ei-
ther (if4) or (if5). None of these two are possible since otherwise, respectivelj? % or
—P5 12P5% should have a supported proof.

(s2) Then, it should hold thagres 5o ? emit S; ¢ 0 endv g psy P for some Sand g. This transition
is due to eithe(if0) or (if1). Again, both cases lead to a contradiction due to a similar reasoning
as in item(s0).

As a side note, the common intuition and the similarities between deduction rules of figures|2 and 3
may suggest that we can replace deduction rules of Figure 2 with the following rule (or even do without
the emission predicates and make the same changes in the deduction rule for if-then-else statements in

Figure[3):

l,c,x
—_—

p/
P TI ,C,X

This change leads to a much more restrictive semantics, which is unable to provide supported proofs
for transitions of perfectly acceptable programs such as the following:

(emit)

P6 press?emit 00 0end || emit S

To see this, the reader may try to prove that P6 can emit signsaing deduction rul¢par0). The
proof of the premise afpar0) then should rely oitif0) and hence due to deduction rgemit), we need
to prove thats can be emitted (for the if-then-else to be able to take a transition). In turn, this can only
be due to(parl). But to apply(parl), we need to know that the left-hand-side component can take a
transition (in order to record its target), which is what we wanted to prove initially. This cycle is broken
in our semantics, by deduction rulpl) which only considers one of the two components to infer the
emission ofsy (without trying to record the target of the transition). The following proof illustrates why
this program is indeed constructive.
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emit S Tm*PG’S

0,P6, . _0.P60
P6 1™ S emit0— 0

0,P6,0 0,P6,s
presS?emit0¢0end — 0 emitS—0

PG,
P6®™ 0 110

5 Conclusions and Future Work

In this paper, we presented a link between the intuitive notions of logical coherency and constructiveness
in the semantics of Esterel on the one hand, and the formal notions of supported models and supported
proofs in the semantics of Structured Operational Semantics, on the other hand. By means of several
canonical examples from the literature, we showed that our formal definitions indeed capture the intuitive
criteria put forward by the language designers.

Several formalizations of these two intuitive criteria exist in the literature. For example [Ber99,
PBEBOT] present three formalizations of constructive semantics of Esterel._In [Tin00] Tin01] another
formalization of constructive semantics of Esterel is presented and is proven to coincide with one of the
notions in [Ber99]. A rigorous comparison between all these notions and the ones presented in this paper
remains as a topic for future research.

In the semantics presented in this paper, we abstracted from the issues of exceptions (traps), loops
and time. We expect that one can include these aspects without any substantial change in the semantics
presented in this paper using the modular semantics approach_of [Mos04, MNO8]. This remains as
another interesting exercise for the future.
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