A Rule Format for Unit Elements*

Luca Aceto!, Anna Ingolfsdottir!,
MohammadReza Mousavi2, and Michel A. Reniers?

1 ICE-TCS, School of Computer Science, Reykjavik University,
Kringlan 1, IS-103 Reykjavik, Iceland
2 Department of Computer Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

Abstract. This paper offers a meta-theorem for languages with a Struc-
tural Operational Semantics (SOS) in the style of Plotkin. Namely, it
proposes a generic rule format for SOS guaranteeing that certain con-
stants act as left- or right-unit elements for a set of binary operators.
We show the generality of our format by applying it to a wide range of
operators from the literature on process calculi.

1 Introduction

In many process algebras and specification languages, one encounters constructs
that are unit elements for certain composition operators. The concept of (left)
unit element for a binary operator f can be concisely summarized in the following
algebraic equation, where 0 is the left-unit element for f: f(0,2) = x.

In this paper, we propose a generic rule format guaranteeing that certain
constants are left- or right-unit elements for a set of binary operators, whose
semantics is defined using Plotkin’s style of Structural Operational Semantics
(SOS) [2,12,13]. The notions of left and right unit are defined with respect to
a notion of behavioural equivalence. There are various notions of behavioural
equivalence presented in the literature (see, e.g., [7]), which are, by and large,
weaker than bisimilarity. Thus, to be as general as possible, we prove our main
result for all equivalences that contain, i.e., are weaker than, bisimilarity.

This paper is part of our ongoing line of research on capturing basic proper-
ties of composition operators in terms of syntactic rule formats, exemplified by
rule formats for commutativity [11], associativity [6], determinism and idempo-
tence [1].

This line of research serves multiple purposes. Firstly, it paves the way for
a tool-set that can mechanically prove such properties without involving user
interaction. Secondly, it provides us with an insight as to the semantic nature of

* The work of Aceto and Ingolfsdottir has been partially supported by the projects
“The Equational Logic of Parallel Processes” (nr. 060013021), and “New Develop-
ments in Operational Semantics” (nr. 080039021) of the Icelandic Research Fund.
The first author dedicates the paper to the memory of his mother, Imelde Diomede
Aceto, who passed away a year ago.

such properties and its link to the syntax of SOS deduction rules. In other words,
our rule formats may serve as a guideline for language designers who want to
ensure, a priori, that the constructs under design enjoy certain basic algebraic
properties. There is value in determining what conditions on the SOS description
of the semantics of operators guarantee that certain elements are left or right
units. The fact that the constraints imposed by our general format are non-trivial
indicates that the isolation of a widely applicable syntactic characterization of
the semantic properties that underlie the existence of unit elements is, perhaps
surprisingly, difficult.

The rest of this paper is organized as follows. In Section 2, we define some
basic notions that are required for the technical developments in the rest of the
paper. In Section 3, we present our rule format and prove that it guarantees
the unit element property. In Section 4, we apply the rule format to various
examples from the literature. In order to ease the application of our rule format
to operators whose operational semantics is specified using predicates, we extend
the format to that setting in Section 4.2. Section 5 concludes the paper and
discusses directions for future work. Proofs can be found in [3].

2 Preliminaries

We begin by recalling the basic notions from the theory of SOS that are needed
in the remainder of this study. We refer the interested readers to, e.g., [2,12] for
more information and background.

Definition 1 (Signatures, Terms and Substitutions) We let V' represent
an infinite set of variables and use x,x’,x;,y,vy ,yi,... to range over elements
of V. A signature X is a set of function symbols, each with a fixed arity. We
call these symbols operators and usually represent them by f, g, An operator
with arity zero is called a constant. We define the set T(X) of terms over X as
the smallest set satisfying the following conditions.

— A wvariable x € V is a term.
— If f € X has arity n and t1,. .., t, are terms, then f(ty,...,t,) is a term.

We use s,t, possibly subscripted and/or superscripted, to range over terms. We
write t; =ty if t1 and ty are syntactically equal. The function vars : T(X) — 2V
gives the set of variables appearing in a term. The set C(X) C T(X) is the set of
closed terms, i.e., terms that contain no variables. We use p,q,p’, p;, ... to range
over closed terms. A substitution o is a function of type V.— T(X). We extend
the domain of substitutions to terms homomorphically and write o(t) for the
result of applying the substitution o to the term t. If the range of a substitution
lies in C(X), we say that it is a closed substitution. An explicit substitution
[x +— t] maps x to t and is the identity function on all variables but x.

Definition 2 (Transition System Specifications) A transition system spec-
ification (T'SS) is a triple (X, L, D) where:

— X' is a signature.
— L is a set of labels (or actions) ranged over by a,b,l. Ifl € L, and t,t’ € T(X)

we say that tht is a positive transition formula and t is a negative
transition formula. A transition formula (or just formula), typically denoted
by ¢ or 1, is either a negative transition formula or a positive one.

— D is a set of deduction rules, i.e., pairs of the form (®,$) where @ is a set
of formulae and ¢ is a positive formula. We call the formulae contained in
@ the premises of the rule and ¢ the conclusion.

We write vars(r) to denote the set of variables appearing in a deduction rule r.
We say that a formula is closed if all of its terms are closed. Substitutions are
also extended to formulae and sets of formulae in the natural way. For a rule r
and a substitution o, the rule o(r) is called a substitution instance of r. A set of
positive closed formulae is called a transition relation.

We often refer to a positive transition formula t Lt as a transition with t
being its source, [its label, and ¢’ its target. A deduction rule (@, ¢) is typically
written as 2. An aziom is a deduction rule with an empty set of premises. We
call a deduction rule f-defining when the outermost function symbol appearing
in the source of its conclusion is f.

In this paper, for each constant ¢, we assume that each c-defining deduction

rule is an axiom of the form ¢ - p for some label [and closed term p.

The meaning of a TSS is defined by the following notion of least three-valued
stable model. To define this notion, we need two auxiliary definitions, namely
provable transition rules and contradiction, which are given below.

Definition 3 (Provable Transition Rules) A deduction rule is called a tran-
sition rule when it is of the form % with N a set of negative formulae. A TSS T

proves %, denoted by T + &, when there is a well-founded upwardly branching
tree with formulae as nodes and of which

— the root is labelled by ¢;
— if a node is labelled by 1 and the labels of the nodes above it form the set K
then:
®) is a negative formula and ¢ € N, or
®) is a positive formula and % is a substitution instance of a deduction
rule in 7T .

Definition 4 (Contradiction and Entailment) The formula tLt s said

to contradict ¢ - , and vice versa. For a set @ of formulae and a formula 1,
@ contradicts 1, denoted by @ ¥ 1), when there is a ¢ € D that contradicts 1.
We write @ E W if & does not contradict any ¢ € ¥. A formula ¢ entails 1 when
there is a substitution o such that o(¢) = 1. A set @ entails a set ¥ of formulae,
when there exists a substitution o such that, for each v € ¥, there exists a ¢ € @

such that o(¢) = 1.

It immediately follows from the above definition that contradiction is a sym-
metric relation on (sets of) formulae. We now have all the necessary ingredients
to define the semantics of T'SSs in terms of three-valued stable models.

Definition 5 (Least Three-Valued Stable Model) A pair (C,U) of disjoint
sets of positive closed transition formulae is called a three-valued stable model
for a TSS T when the following conditions hold:

— foreachp € C, T % for a set N of negative formulae such that CUU E N,
— for each p €U, T F % for a set N of negative formulae such that C' E N.

C stands for Certainly and U for Unknown; the third value is determined by
the formulae not in C UU. The least three-valued stable model is a three-valued
stable model that is the least one with respect to the ordering on pairs of sets of
formulae defined as (C,U) < (C",U") iff C CC' and U' CU. We say that T is
complete when for its least three-valued stable model it holds that U = (). In a
complete TSS, we say that a closed substitution o satisfies a set of formulae @
if (@) € C, for each positive formula ¢ € &, and C E o(¢), for each negative
formula ¢ € .

Definition 6 (Bisimulation and Bisimilarity) Let 7 be a TSS with signa-
ture X and label set L. A relation R C C(X) x C(X) is a bisimulation relation
if R is symmetric and, for all po,p1,p) € C(X) andl € L,

l 1
(poRp1 AT F po—pp) = Iprecizy(T F pr—py Apg Rph).

Two terms po,p1 € C(X) are called bisimilar, denoted by po < p1, when there
exists a bisimulation relation R such that po R p1.

Bisimilarity is extended to open terms by requiring that s,t € T(X) are
bisimilar when o(s) < o(t) for each closed substitution o : V. — C(X).

3 Rule Format

We now proceed to define our rule format guaranteeing that certain constants in
the language under consideration are left or right units for some binary operators.
In the definition of the format proposed in the remainder of this section, we make
use of a syntactic characterization of equivalence of terms up to their composition
with unit elements; we call such terms unit-contexrt equivalent. Intuitively, if s
is unit-context equivalent to ¢, then s and ¢ are bisimilar because one can be
obtained from the other by applying axioms stating that some constant is a left
or right unit for some binary operator. For instance, if ¢; is a left unit for a
binary operator f and cy is a right unit for a binary operator g, then the terms
fler,g(t, e2)) and g(f(c1,t),co) are both unit-context equivalent to ¢ and also
unit-context equivalent to each other.

The following definition formalizes this intuition. (While reading the technical
definition, our readers may find it useful to bear in mind that (f,c) € L means
that ¢ is a left unit for a binary operator f and (f,¢) € R means that c is a right
unit for f.)

Definition 7 (Unit-Context Equivalent Terms) Given sets L, R C X' x X
L,R
of pairs of binary function symbols and constants, = is the smallest equivalence
relation satisfying the following conditions, for each s € T(X):
L,R
1. Veer s = fle,s), and
L.R

~

2. v(g,c)ER s = g(S,C).

L,R
We say that two terms s,t € T(X) are unit-context equivalent, if s = ¢.

L,R
~Y

In what follows, we abbreviate = to 2 since the sets L and R are always clear
from the context.

Lemma 8 For all s,t € T(X), if s =t then vars(s) = vars(t) and o(s) = o(t),
for each substitution o.

We are now ready to define our promised rule format for unit elements.

Definition 9 (Left- and Right-Aligned Pairs) Given a 1TSS, the sets L and
R of pairs of binary function symbols and constants are the largest sets satisfying
the following conditions.

1. For each (f,c) € L, the following conditions hold:
(a) For each action a € L, there exists at least one deduction rule of the
following form:

{zoByilice I} U{zgP |jeJtU{n 52}

)

f(;L‘o,iEl) St

where
i. the variables y;, z1, o and x1 are all pairwise distinct,
it. for each j € J, there is no c-defining axiom with a; as label, and
1. there exists a collection {c%qi | i € I} of c-defining azioms such
that o(t') = z1, where o is the substitution mapping xo to ¢, each y;
to q;, © € I, and is the identity on all the other variables.
(b) Each f-defining deduction rule has the following form:

P

f(to,t1) >t

where a € L and, for each closed substitution o such that o(ty) = ¢,
i. either there exists some t; >t € ® with o(t') = o (t"), or
1. there exists a premuse ¢ € ¢ with ty as its source such that
A. either ¢ is a positive formula and the collection of conclusions of
c-defining deduction rules does not entail o(¢), or

B. ¢ is a negative formula and the collection of conclusions of c-

defining axioms contradicts o(¢).
2. The definition of right-aligned pairs of operators and constant symbols — that

is, those such that (f,c) € R — is symmetric and is not repeated here.

For a function symbol f and a constant c, we call (f,c) left aligned (respec-
tively, right aligned) if (f,c) € L (respectively, (f,c) € R).

Condition la in the above definition ensures that, whenever (f,c¢) is in L,
each transition of the form p - p/, for some closed terms p and p’ and action a,
can be used to infer a transition f(c,p) ¢’ for some ¢’ that is bisimilar to p’.
This means that if (f,¢) is in L then, in the context of the constant ¢, f does
not “prune away” any of the behaviour of its first argument.

Condition 1(b)i, on the other hand, ensures that, whenever (f,c) is in L, each
transition f(c,p) ¢ is due to a transition p-=p’ for some p’ that is bisimilar
to ¢’. Thus, if (f,c) is in L then, in the context of the constant ¢, a term of
the form f(c,p) can only mimic the behaviour of p. As will become clear from
the examples to follow, condition 1(b)ii ensures that the f-defining rule cannot
be used to derive a transition for f(c,p) and hence it is exempted from further
conditions; the presence of this condition enhances the generality of our format
and allows us to handle common examples of unit constants from the literature
(see, e.g., Example 3). A slightly more technical discussion of the conditions is
given in [3].

Remark 1. Note that the requirement that o(¢') = z; in condition la of the
above definition implies that vars(o(t')) = {z1}. Therefore x1, z; and the y;,
1 € I, are the only variables that may possibly occur in ¢'.

Note that, since the sets L and R are defined as the largest sets of pairs satisfying
the conditions from Definition 9, in order to show that (f, ¢) is a left-aligned pair,
say, it suffices only to exhibit two sets L and R satisfying these conditions, such
that (f,c) is contained in L.

The following two examples illustrate that it is in general advantageous to
consider sets of left- and/or right-aligned operators instead of just a single one.

Ezxample 1. Assume that a is the only action and consider the binary operators
fi, © >0, with rules

a
1 — Y1

fi($0ax1)i’fi+l(z03yl)

Let 0 be a constant with no rules. Then each of the pairs (f;,0) is left aligned
because the sets L = {(f;,0) | « > 0} and R = 0 meet the conditions from
Definition 9. In particular, note that f;1(xo,y1)[zo — 0] = fix1(0,y1) = y1, for
each i > 0. Note that, for each ¢ > 0, the equations f;(0,z) = z hold modulo
bisimilarity. This fact can be checked directly by showing that the symmetric
closure of the relation R = {(f;(0,p),p) | p a closed term} is a bisimulation, and
is also a consequence of Theorem 10 to follow, which states the correctness of
the rule format we described in Definition 9.

Ezample 2. Consider the following TSS, which is defined for a signature with 0
and a as constants and f and g as binary function symbols.

a ./

y—y xS

a0 flzy) SS9,z glzy) = fly. o)

The TSS fits our rule format with L = {(f,0)} and R = {(g,0)}. Note that it
is essential for the above example to consider both L and R simultaneously.

Theorem 10 Let 7 be a complete TSS in which each rule is f-defining for some
function symbol f. Assume that L and R are the sets of left- and right-aligned
function symbols according to Definition 9. For each (f,c¢) € L, it holds that
fle,x) & x. Symmetrically, for each (f,c) € R, it holds that f(x,c) < .

Note that Theorem 10 trivially extends to any notion of behavioural equivalence
weaker than bisimilarity.

4 Applications and extensions

Apart from its correctness, the acid test for the usefulness of a rule format is
that it be expressive enough to cover examples from the literature that afford
the property they were designed to ensure. Our order of business in this section
will be to offer examples of applications of the format for unit elements we
introduced in Definition 9 and to show how the format can be extended to deal
with operators whose semantic definition involves the use of predicates.

4.1 Applications of the basic rule format

We start by presenting examples of applications of the format for unit elements
we introduced in Definition 9.

Ezample 3 (Nondeterministic Choice). Consider the nondeterministic choice op-
erator from Milner’s CCS [10] specified by the rules below, where a € L.

a
r— T y—y

r+ysa r+ySy

The sets R = L = {(+,0)} meet the conditions in Definition 9. Indeed, condi-
tion la and its symmetric version are trivially satisfied by the right-hand and
the left-hand rule schemas, respectively. (Note that the substitution o associated
with the empty collection of axioms in condition 1(a)iii is the identity function
over the set of variables.) To see that condition 1b is also met, let o be a closed
substitution such that o(z) = 0. Observe that

— each instance of the right-hand rule schema meets condition 1(b)i and

— each instance of the left-hand rule schema meets condition 1(b)iiA because
the set of rules for 0 is empty and therefore does not entail o(z) = 0% o(z').

The reasoning for condition 2 is symmetric. Therefore, Theorem 10 yields the
soundness of the well known equations [8]: 0 +x = x = x + 0.

Ezample J (Synchronous Parallel Composition). Assume, for the sake of simplic-
ity, that a is the only action. Consider a constant RUN, and the synchronous
parallel composition from CSP [9]® specified by the rules

RUN, %RUN, zay>2 o ¢

Take L = R = {(]|la; RUN,)}. These sets L and R meet the conditions in Defi-
nition 9. To see that condition la and its symmetric version are satisfied by the
above rule for |4, observe that the substitution o associated with the singleton
set containing the only axiom for RUN,, in condition 1(a)iii maps both the vari-
ables z and 2’ to RUN, and is the identity function over the other variables. For
such a o, o(z' || ') =RUN, o v = ¢

To see that condition 1b is also met, let o be a closed substitution mapping
x to RUN,, and assume that RUN, % RUN, entails RUN, % o(z'). It follows
that o(2') = RUN,. Therefore,

(2" [la y') = RUNq [la o(y") = o(y)

and condition 1(b)i is met. Theorem 10 thus yields the soundness of the well
known equations RUN,, ||, = ¢ = z || RUN,. These are just equation L3B
from [9, page 69] and its symmetric counterpart.

Ezample 5 (Left Merge and Interleaving Parallel Composition). The following
rules describe the operational semantics of the classic left merge and interleaving
parallel composition operators [5, 10].

a a / a g
T T—T y—y
clySa |y zlly>2ly x|y

Take L = {(]|,0)} and R = {(||,0),(|,0)}. It is easy to see that these sets L
and R meet the condition in Definition 9. Therefore, Theorem 10 yields the well
known equalities O || z =z, z || 0 = z, and x| 0 = x.

Note that the pair (||, 0) cannot be added to L while preserving condition la
in Definition 9. Indeed, 0 is not a left unit for the left merge operator | .

Ezample 6 (Disrupt). Consider the following disrupt operator » [4] with rules

a a
r—T y—y

zeySa ey e ySy

3 In [9], Hoare uses the symbol || to denote the synchronous parallel composition
operator. Here we will use that symbol for parallel composition.

Note that the equation 0 » z = z holds modulo bisimilarity. We now argue
that its soundness is a consequence of Theorem 10. Indeed, take L = {(»,0)}
and R = 0. It is easy to see that these sets L and R meet the conditions in
Definition 9. In particular, to see that condition 1b is met by the first rule,
observe that the set of rules for 0 is empty and therefore does not entail 0 p
for any closed term p. A symmetric reasoning shows that the valid equation
x » 0 =z is also a consequence of Theorem 10.

Ezample 7 (Timed Nondeterministic Choice). Consider nondeterministic choice
in a timed setting. It is defined by means of the deduction rules from Example
3 and additionally the deduction rules

1, 1, 1, 1 1 1,
r—x y—y r—a y-» T+ Yy—y
r+y—a+y Tt+y—al T+y—y

The equations 0 + x = x and « + 0 = x hold modulo bisimilarity. This is a
consequence of Theorem 10 by taking L = R = {(+,0)}. For label 1, condi-
tion la is met by the third deduction rule. The first deduction rule satisfies
condition 1(b)iiA, the second deduction rule satisfies condition 1(b)iiB, and the
third deduction rule satisfies condition 1(b)i trivially.

4.2 Predicates

In the literature concerning the theory of rule formats for SOS (especially, the
work devoted to congruence formats for various notions of bisimilarity), most of
the time predicates are neglected at first and are only added to the considerations
at a later stage. The reason is that one can encode predicates quite easily by
means of transition relations. One can find a number of such encodings in the
literature — see, for instance, [6,15]. In each of these encodings, a predicate P is

represented as a transition relation Ll (assuming that P is a fresh label) with
some fixed target. However, choosing the “right” target term to cope with the
examples in the literature (and the new ones appearing in the future) within
our format is extremely intricate, if not impossible. That is why we introduce an
extension of our rule format that handles predicates as first-class objects, rather
than coding them as transitions with dummy targets. To this end, we extend
the basic notions presented in Section 2 to a setting with predicates.

Definition 11 (Predicates) Given a set P of predicate symbols, Pt is a posi-
tive predicate formula and =Pt is a negative predicate formula, for each P € P
and t € T(X). We call t the source of both predicate formulae. In the extended
setting, a (positive, negative) formula is either a (positive, negative) transition
formula or (positive, negative) predicate formula. The notions of deduction rule,
TSS, provable transition rules and three-valued stable models are then naturally
extended by adopting the more general notion of formulae. The label of a deduc-
tion rule is either the label of the transition formula or of the predicate formula
in its conclusion.

Next, we define the extension of our rule format to cater for predicates. As we
did in the earlier developments, in this section we assume that, for each constant
¢, each c-defining deduction rule for predicates is an axiom of the form P c.

Definition 12 (Extended Left- and Right-Aligned Pairs) Given a TSS,
the sets L and R of pairs of binary function symbols and constants are the
largest sets satisfying the following conditions.

1. For each (f,c) € L, the following conditions hold:
(a) For each action a € L, there exists a deduction rule of the following
form:

{zo By i€ IYU{Py o | ke KYU {zog % or =Pj xo | j€ JyU{z1 52}

f($07$1) St

where
i. the variables y;, z1, o and x1 are all pairwise distinct,

it. for each j € J, there is no c-defining deduction rule with a; or P; as
label (depending on whether the formula with index j is a transition
or a predicate formula),

iii. there exists a collection {Py c | k € K} of c-defining axioms, and

w. there exists a collection {cgqi | i € I} of c-defining axioms such
that o(t') & z1, where o is the substitution mapping xo to c, each y;
to qi, 1 € I, and is the identity on all the other variables.

(b) For each predicate P € P, there exists a deduction rule, of the following
form:
{Pl $0|iEI}U{ﬁPj Zo |]EJ}U{PI1}

Pf(x()a:rl)

where
i. for each j € J, there is no c-defining aziom with P; as label, and
it. there exists a collection {P; c|i € I} of c-defining azioms.
(¢) Fach f-defining deduction rule has one of the following forms:

P o
or

flto,t1) =t P f(to,t1)

where a € L, P € P and for each closed substitution o with o(ty) = ¢,

i. either there exists some t; >t" € & with o(t') = o(t") (if the con-
clusion is a transition formula), or Pty € @ (if the conclusion is a
predicate formula), or

1. there exists a premise ¢ € ¢ with ty as its source such that
A. either ¢ is a positive formula and the collection of conclusions of

c-defining deduction rules does not entail o(¢), or
B. ¢ is a negative formula and the collection of conclusions of c-
defining axioms contradicts o(¢).

10

2. The definition of right-aligned pairs of operators and constant symbols — that
is, those such that (f,c) € R — is symmetric and is not repeated here.

The definition of bisimulation is extended to a setting with predicates in the
standard fashion. In particular, bisimilar terms must satisfy the same predicates.

We are now ready to state the counterpart of Theorem 10 in a setting with
predicates.

Theorem 13 Let 7 be a complete TSS in which each rule is f-defining for some
function symbol f. Assume that L and R are the sets of extended left- and right-
aligned function symbols according to Definition 12. For each (f,c) € L, it holds
that f(c,x) < x. Symmetrically, for each (f,c) € R, it holds that f(z,c) < x.

We now provide an example of the application of the rule format. In [3], we
give two additional examples involving the use of predicates.

Ezample 8 (Sequential Composition). A standard operator whose operational
semantics can be given using predicates is that of sequential composition. Con-
sider the following deduction rules, where p | means that “p can terminate
successfully.” (As usual in the literature, we write the termination predicate |
in postfix notation.)

/

x| oyl Y x| ySy

/

1] Tyl zySal-y zy>y

Take L = R = {(,1)}. The TSS conforms to our extended rule format. The
second deduction rule matches criteria 1b and 1c of Definition 12 (and the sym-
metric ones omitted for the right-aligned operators). The third deduction rule
satisfies criterion 1(c)iiA of Definition 12 (and the omitted 2(a) and 2(c) condi-
tions). The rightmost deduction rule satisfies conditions la and 1(c)i of Definition
12, as well as the omitted condition 2(c)iiA because 1 has no transitions.

5 Conclusions

In this paper, we proposed a rule format for Structural Operational Semantics,
guaranteeing constants to be left- or right-unit elements of certain operators.
The rule format encompasses advanced features such as negative premises and
complex terms appearing nearly anywhere in the deduction rules. We further
extended the proposed format to accommodate predicates, which are among the
common ingredients in the SOS of many contemporary process description lan-
guages. The rule format is applied to a number of examples from the literature,
motivating its applicability.

A straightforward extension of our rule format allows one to deal with unit el-
ements that are complex closed terms (instead of constants). We are not aware of
many practical examples in which such unit elements are present. Another alge-
braic property, which can be captured using the same technique, is the existence

11

of a (left or right) zero element, i.e., a constant 0 such that f(0,z) = f(z,0) = 0.
Mechanizing the existing rule formats for algebraic properties in a tool-set is an-
other direction for future work.

For many contemporary process algebras the SOS framework as used in this

paper is still too restricted. Indeed, the SOS semantics of those languages involves
more advanced features such as configurations that consist of more than only
a process term, i.e., SOS with data, or the presence of structural congruences
as an addendum to the SOS. Future work will show whether our format can be
generalized to deal with such additions.

References

1.

12.

13.

14.

15.

L. Aceto, A. Birgisson, A. Ingolfsdottir, M.R. Mousavi, and M. A. Reniers. Rule
formats for determinism and idempotence. In Proc. of FSEN’09, Springer, 2009.
To appear.

L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In
Handbook of Process Algebra, Chapter 8, pages 197-292. Elsevier, 2001.

L. Aceto, A. Ingolfsdottir, M.R. Mousavi, and M. A. Reniers. A rule format for
unit elements. Tech. Rep. CSR-0913, Eindhoven University of Technology, 2009.
J. C. M. Baeten and J. Bergstra. Mode transfer in process algebra. Tech. Rep.
CSR-0001, Eindhoven University of Technology, 2000.

J. A. Bergstra and J. W. Klop. Fixedpoint semantics in process algebra. Tech.
Rep. IW 206/82, Center for Mathematics, Amsterdam, 1982.

S. Cranen, M. R. Mousavi, and M. A. Reniers. A rule format for associativity. In
vol. 5201 of LNCS, pages 447-461, Springer, 2008.

R. J. van Glabbeek. The linear time - branching time spectrum 1. In Handbook of
Process Algebra, Chapter 1, pages 3—100. Elsevier, 2001.

M. Hennessy and R. Milner. Algebraic laws for non-determinism and concurrency.
J. ACM, 32(1):137-161, 1985.

. C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
10.
11.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

M. R. Mousavi, M. A. Reniers, and J. F. Groote. A syntactic commutativity format
for SOS. IPL, 93:217-223, Mar. 2005.

M. R. Mousavi, M. A. Reniers, and J. F. Groote. SOS formats and meta-theory:
20 years after. T'CS, 373(3):238-272, 2007.

G. D. Plotkin. A structural approach to operational semantics. JLAP, 60-61:17-
140, 2004.

G. D. Plotkin. A powerdomain for countable non-determinism (extended abstract).
In vol. 140 of LNCS, pages 418-428. Springer, 1982.

C. Verhoef. A congruence theorem for structured operational semantics with pred-
icates and negative premises. Nordic Journal of Computing, 2(2):274-302, 1995.

12

