
Chapter 1

PARS: A Process Algebraic
Approach to Resources and
Schedulers

1.1 Introduction

Scheduling theory has a rich and long history. In addition, process algebras
have been studied as a formal theory of system design and verification since
the early 1980’s. However, these two separate worlds have not been connected
until recent years and still the connection is not yet complete. In other words,
using the models and algorithms of scheduling theory in a process algebraic
design is still involved with many theoretical and practical complications. In
this chapter, building upon previous attempts in this direction, we propose a
process algebra, called PARS for Process Algebra with Resources and Sched-
ulers, for the design of scheduled real-time systems. Previous attempts to
incorporate scheduling algorithms in process algebra either did not have an
explicit notion of schedulers [5, 15, 16] (thus, coding the scheduling policy in
the process specification) or scheduling is treated for restricted cases that only
support single-processor scheduling [6, 12].

Our approach to modeling scheduled systems is depicted in Figure 1.1. In
this approach, process specification (including aspects such as causal rela-
tions of actions, their timing and resource requirements) is separated from
the specification of schedulers. Then one can apply schedulers to processes
to obtain scheduled systems and further compose scheduled systems together.
A distinguishing feature of our process algebra is the possibility of specifying
schedulers as process terms (similar to resource-consuming processes). An-
other advantage of the proposed approach is the separation between process
specification and scheduler specification that provides a separation of con-
cerns, allows for specifying generic scheduling strategies and makes it possible
to apply schedulers to systems at different levels of abstraction. Common
to most process algebraic frameworks for resources, the proposed framework
provides the possibility of extending standard schedulability analysis to the
formal verification process.
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FIGURE 1.1: Schematic view of the PARS approach

Related Work Several theories of process algebra with resources have been
proposed recently. Our approach is mainly based on dense-time ACSR of
[5]. ACSR [16, 15] is a process algebra enriched with possibilities to specify
priorities and resources. Several extensions to ACSR have been proposed over
time for which [16] provides a summary. The main shortcoming of this process
algebra is the absence of an explicit scheduling concept. In this approach,
the scheduling strategy is coded by means of priorities inside the process
specification domain. Due to absence of a resource provision model, some
other restrictions are also imposed on resource demands of processes. For
example, two parallel processes are not allowed to call for the same resource
or they deadlock.

Our work has also been inspired by [6]. In [6], a process algebraic approach
to resource modeling is presented and application of scheduling to process
terms is investigated. This approach has an advantage over that of ACSR in
that scheduling is separated from the process specification domain. However,
firstly, there is no structure or guideline to define schedulers in this language
(as [16] puts it, the approach looks like defining a new language semantics for
each scheduling strategy) and secondly, the scheduling is restricted to a single
resource (single CPU) concept.

Scheduling algebra of [14] defines a process algebra that has processes with
interval timing. In order to have an efficient scheduling, actions are supposed
to be scheduled without delay or only after another action terminates (so-
called anchor points). The semantics of the process algebra takes care of
defining and extending anchor points over process structure. Since scheduling
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algebra abstracts from resources, the notion of scheduling is also very abstract
and comes short of specifying examples of scheduling strategies such as those
that we specify in the remainder of this chapter.

RTSL of [12] defines a discrete-time process algebra for scheduling analysis
of single processor systems. The basic process language allows for specifying
tasks as sequential processes and a system language takes care of composition
of tasks (using parallel composition) and selecting the higher priority active
tasks. Furthermore, the approach studies the issue of exception handling in
case of missed deadlines. Similar to [6], there is no need for an explicit no-
tion of resources in RTSL, since the only shared resource is the single CPU.
The restriction of tasks, in this approach, to sequential processes makes the
language less expressive than ours (for example, in the process language a pe-
riodic task whose execution time is larger than its period cannot be specified).
Also, coding the scheduling policy in terms of a priority function may make
specification of scheduling more cumbersome (similar to [6]).

Asynchrony in timed parallel composition (interleaving of relative timed-
transitions) has received little interest in timed process algebras. Semantics
of parallel composition in ATP [20] and different versions of timed-ACP [2],
timed-CCS [8, 10] and timed-CSP [11] all enforce synchronization of timed
transitions such that both parallel components evolve in time. The cIPA of
[1] is among a few timed process algebras that contain a notion of timed
asynchrony. In this process algebra non-synchronizing actions are forced to
make asynchronous (interleaving) time transitions and synchronizing actions
are specified to perform synchronous (concurrent) time transition. We do
not see this distinction necessary since non-synchronizing actions may find
enough resources to execute in true concurrency and synchronizing actions
may be forced to make interleaving time transitions due to the use of shared
resources (e.g., scheduling two synchronizing actions on a single CPU). In
other words, making the resource model explicit and separating it from process
specification allows us to delay such kinds of design decisions and reflect them
in the scheduling strategy and scheduled systems semantics.

A related (but different) issue in this regard is laziness and eagerness of
actions (see [9] for a detailed account of the issue) that can lead to similar
semantics as what we call an abstract parallel composition, which implements
timed asynchrony. In general, in presence of only lazy actions, the difference
between asynchronous and synchronous time (called abstract and strict, re-
spectively in this paper) parallel compositions vanishes and the two types of
composition behave the same. However, in our case actions are not absolutely
lazy and do not fit in the general framework proposed in [9]. They can only
idle if another process in their abstract parallel context can perform an ac-
tion. We abstract from this implicit idling by allowing time transitions to be
done in an asynchronous (interleaving) as well as synchronous (concurrent)
manner. This abstraction comes handy when taking resource contention into
account (where actions may be prevented from executing concurrently due
to resource contention). Strict, i.e., synchronous time, parallel composition
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is differentiated from abstract, i.e., asynchronous time, parallel composition
in this context by separating the resource concerns of its two arguments and
forcing parallelism between them.

This chapter can be considered as a continuation of our previous work re-
garding separation of concerns in the design of embedded systems (e.g., in
[17, 18]). There, we propose separation of functionality, timing and coordina-
tion aspects which are represented here in the process specification language.
In the PARS approach, we add the aspect of scheduling to the above set by
assuming a (composed) model of timed functionality and coordination under-
neath our theory.

The main ideas of the PARS approach (a separation of processes and sched-
ulers) are used in the CARAT tool for analyzing performance and resource use
of component-based embedded systems [4]. Given a set of component mod-
els, the CARAT tool builds a system model that closely resembles a PARS
model. Subsequently, different analysis techniques can be applied to that sys-
tem model. In order to reduce the analysis time of system models, mostly
scenario-based analyses have been performed to get indications of best case
and worst case behaviors of a system [3].

This chapter is a revised and extended version of the extended abstract that
appeared as [19]. The semantics’ of the process algebraic formalism presented
in this chapter are improved substantially compared to those in [19], by in-
troducing worst-case execution time and deadline predicates. Consequently,
a congruence result for strong bisimilarity is obtained here, which was impos-
sible to obtain in [19]. We also give a number of sound axioms with respect to
strong bisimilarity for our process algebraic formalism and give more elaborate
examples.

Structure of the chapter The chapter is organized as follows. We define
the syntax and semantics of PARS in three parts. In Section 1.2, we build
a process algebra with asynchronous relative dense time (i.e., with the pos-
sibility of interleaving timing transition) for process specifications that have
a notion of resource consumption. As explained before, we consider time
asynchrony relevant and helpful in this context, since it models possible de-
lays due to resource contentions (such as implementation of multiple parallel
compositions on a single or a few CPUs). Then, in Section 1.3, a similar
process algebraic theory is developed for schedulers as resource providers.
Subsequently, in Section 1.4, application of a scheduler to a process and com-
position of scheduled systems is defined. To illustrate the usage of our method,
we give some examples from the literature in each section. Finally, Section
1.5 concludes the results and presents future research directions.
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1.2 Process Specification in PARS

A specification in PARS consists of three parts: a process specification
which represents the usual process algebraic design of the system together
with resource requirements of its basic actions, a scheduler specification which
specifies availability of resources and policies for providing different resources,
and system specification which applies schedulers to processes and composes
scheduled systems.

In our framework, resources are represented by a set R. The amount of re-
sources required by a basic action is modeled by a function ρ : R → IR≥0. The
resource requirement is assumed to be constant at any point of time during the
action execution. However, extending this to a function of time, i.e., action
duration, is a straightforward extension of our theory. The resources provided
by schedulers are modeled using a function ρ : R → IR≤0. Active tasks that
require or provide resources are represented by multisets of such tasks in the
semantics. We assume that scheduling strategies can address process identi-
fiers, the execution time of processes, and their deadlines as typical and most
common parameters for scheduling. Nevertheless, the extension of our theory
with other parameters is orthogonal to our theory.

As a notational convention, we refer to the set of all multisets as IM (we
assume that the type of elements in the multiset is clear from the context).
To represent a multiset extensionally (using its elements) we use the notation
[a, b, c, . . .]. The empty multiset is denoted by ∅ and + and − are overloaded
to represent addition and subtraction of multisets, respectively.

The syntax of process specification in PARS is presented in Figure 1.2.
It resembles a relative dense-time process algebra (such as relative dense-
time ACP of [2]) with empty process (ε(0)) and deadlock (δ). The main
difference with such a theory is the attachment of resource requirements to
basic actions (most process algebras abstract from resource requirements by
assuming abundant availability of shared resources).

P ::= δ | p(t) | P ; P | P || P | P ||| P | P + P |

σt(P ) | µX.P (X) |
∫

x∈T
P (x) | ∂Act(P ) | id : P

p ∈ (A× ρ) ∪ {ε}, t ∈ IR≥0, X is a recursive variable,
Act ⊆ A, x ∈ Vt, T ⊆ IR≥0, id ∈ IN

FIGURE 1.2: Syntax of PARS, Part 1: Process Specification
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Basic action ε(t) represents a non-action or idling lasting for t time which
does not require any resource. Other basic actions (a, ρ)(t) are pairs of actions
from the set A together with the respective resource requirement function ρ
and the timing t during which the required resources should be available for
the action.

Example 1.1 Portable tasks
Suppose that the task a can be run on different platforms, either a RISC
processor on which it will take 2 units of time and 100 units of memory
(during those 2 time units) or on a CISC processor for which it will require 4
units of time and 70 units of memory (over the 4 time units). This gives rise
to using the basic actions

(a, {RISC 7→ 1,Mem 7→ 100})(2)

and

(a, {CISC 7→ 1,Mem 7→ 70})(4) .

Terms P ; P , P || P , P ||| P , P + P represent sequential composition,
abstract parallel composition, strict parallel composition, and nondetermin-
istic choice, respectively. Abstract parallel composition refers to cases where
the ordering (and possible preemption) of actions has to be decided by a
scheduling strategy. In practice, it is used when two processes have no causal
dependency and thus can run in parallel but they do not necessarily have
to. Particularly, when not enough resources are provided, two components
that are composed using the abstract parallel composition may be scheduled
sequentially. Strict parallel composition is similar to standard parallel com-
position in timed process algebra in that it forces concurrent execution of
the two operands. Resource-consuming processes composed by this operator
should be provided with enough resources to run concurrently or they will
all deadlock. Both strict and abstract parallel composition allow for synchro-
nization of actions using the synchronization function γ, i.e., when γ(a, b) is
defined, actions a and b may synchronize resulting in γ(a, b).

Example 1.2 Portable tasks
The following is a description of the two possibilities of executing task a from
the previous example.

P
.= (a, {RISC 7→ 1,Mem 7→ 100})(2) + (a, {CISC 7→ 1,Mem 7→ 70})(4)
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Example 1.3 (Abstract and strict parallel composition)
Consider the following two tasks a and b which can be run independently from
each other.

P
.= (a, {CPU 7→ 1})(2) || (b, {CPU 7→ 1})(3)

If there is only one CPU available, then the two tasks must be scheduled
sequentially and thus take 5 time units to run. If two CPU’s are available,
then process may complete in 3 time units.

Consider now the following task, which comprises two concurrent sub-tasks
a and b that respectively need a CPU and a co-processor to run. The taks
cannot commence (or continue) if not both resources are provided to the task.

P
.= (a, {CPU 7→ 1})(2) ||| (b, {COPROC 7→ 1})(1)

Deadline operator σt(P ) specifies that process P should terminate within t
units of time or it will deadlock. Recursion is specified explicitly using the ex-
pression µX.P (X) where free variable X may occur in process P and is bound
by µX. The term

∫
x∈T

P (x) specifies continuous choice of timing variable x
over set T . Similar to recursion, variable x is bound in term P by operator∫

x∈T
. To prevent process P from performing particular actions in set Act (in

particular, to force communication among two parallel parties), encapsulation
term ∂Act(P ) is used. Process terms are decorated with identifiers (natural
numbers, following the idea of [6]) using the id : P construct. Identifiers serve
to group processes for scheduling purposes. Note that an atomic action is
neither required to have an identifier, nor need its identifier be unique. In
other words, there is a (possibly empty) set of identifiers attached to each
process term and thus related to its comprising actions.

Precedence of binding among binary composition operators is ordered as ;,
|||, ||, + where ; binds the strongest and + the weakest. Unary operators are
followed by a pair of parentheses or they bind to the largest possible term. In
this paper, we are only concerned with closed terms (processes that do not
have free recursion or timing variables).

To show how the process specification language is to be used, we specify a
few common patterns in scheduling literature [7].

Example 1.4 Periodic tasks
First, we specify a periodic task, consisting of an action a with resource re-
quirements ρ, execution time t, and period t′.

P1
.= µX.(a, ρ)(t) ||| ε(t′) ; X

Note that strict parallel composition is used here to denote that the arrival of a
new task happens concurrently with the execution of an already arrived task.
The ε(t′) operator in combination with strict parallel composition enforce the
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duration of the period to exactly t′. The use of parallel composition allows
an execution time t greater than the period t′.

Suppose that the exact execution time of a is not known, but that the
execution time is within an interval I, then this is specified as follows.

P2
.= µX.

(∫
x∈I

(a, ρ)(x)
)
||| ε(t′) ; X

The same technique can be applied to give the scheduling of a new task a
variable arrival phase within an interval. Throughout the rest of the paper,
for intervals I, we use the syntactic shorthand p(I) instead of

∫
x∈I

p(x).
Note that in the above examples, the newly arrived task is set in strict

parallel composition with the old tasks, which means that simultaneously
enabled tasks should be executed concurrently. If this is not desirable, one can
use a synchronization scheme, such as the one used in the following process P ,
to signal the arrival of the task and further put the arrived tasks in abstract
parallel composition. This yields a system in which the task arrivals are
strictly periodic while tasks execution is subject to resource availability.

P
.= ∂{sSignal,rSignal}X ||| Y

X
.= (ε(t′) ; (sSignal, ∅)(0)) ; X

Y
.= (rSignal, ∅)(0) ; ((a, ρ)(t) || Y )

γ(rSignal, sSignal) .= γ(sSignal, rSignal) .= signal

Example 1.5 Aperiodic tasks
Specification of aperiodic tasks follows a pattern similar to the specification

of periodic tasks with the difference that, their period of arrival is not known:

S
.= µX.(b, ρ′)(t) ||| ε([0,∞)) ; X

If the process specification of the system consists of periodic user level tasks
and aperiodic system level tasks (e.g., system interrupts) that are to be sched-
uled with different policies, the specification goes as follows:

SysProc
.= System : (S) || User : (P1)

where System and User are distinct identifiers for these two types of tasks,
and where P1 is as specified in Example 1.4. To prevent the system from
deadlocking when the resources are not available, we can compose the system
with an idling process as follows:

Idle .= µX.ε([0,∞)) ; X
SysProcId

.= Idle || SysProc
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Semantics of process specification is given in Figures 1.3, 1.4, 1.5 and 1.6 in
the style of Structural Operational Semantics of [22]. In this semantics, states
are process terms from the syntax (together with an auxiliary operator defined
next). Corresponding to the possible events of spending time on actions and
committing them, there are two types of transitions in the semantics. First,
time passage (by spending time on resources or idling)

M,t→ (t ∈ IR>0), where
M is the multiset that represents actions participating in the transition and
the amount of resources required by each. Elements of M are of the form
(ids, ρ), where ids is a set of identifiers related to the action having resource
requirements ρ. Each ĩd ∈ ids is of the form (id, t1, t

′
1) where id is the syntac-

tic identifiers of the process and t1 and t′1 are, respectively, the last deadline
and the worst case execution of the corresponding process as specified later in
Figures 1.5 and 1.6. The second type of transitions are action transitions a→
(a ∈ A) that happen when an action has spent enough time on its required
resources such that the remaining time for the action is zero (e.g., rule (A1)

in Figure 1.3). We decided not to combine resource requirements of different
actions and keep them separate in a multiset since they may be provided (ac-
cording to their respective process identifiers) by different scheduling policies.
We use

χ→ as an acronym for either of the two transitions. Without making
it explicit in the semantics, we assume maximal progress of actions in that the
system can only progress in time whenever no action transition is possible.
This assumption can be made explicit by an extra condition, namely absence
of action transition, in the premises of all timed-transitions. However, we do
not reflect this idea in the formal semantics for sake of readability. Predi-
cate P

√
refers to possibility of successful termination of P . The semantics of

process specification is the smallest transition relation (union of the time and
action transition relations) satisfying the rules of Figures 1.3, 1.4, 1.5 and 1.6.

In Figure 1.3, rules (I0) and (I1) specify termination and a time transi-
tion, respectively. In rule (I1), 0 is an acronym for the function mapping all
resources to zero. Rules (A0) and (A1) specify how an atomic action can
spend its time on resources and after that commit its action, respectively.
Rules (S0)-(S2) present the semantics of sequential composition. Rules (C0)-
(C1) provide a semantics for nondeterministic choice. Our choice operator
does not have the property of time-determinism (i.e., passage of time cannot
determine choices). The reason is that in PARS, spending time on resources
can reveal the decision taken for the non-deterministic choice. Semantics of
the deadline operator is defined by (D0)-(D2). Note that there is no rule
for the case σ0(P ) where process P can only do a time step. Absence of a
semantic rule for such a case means that this process deadlocks (i.e., missing a
deadline will result in a deadlock). Semantics of the encapsulation operator is
defined in rules (E0)-(E2). These rules state that the encapsulation operator
prevents process P from performing actions in Act . This can be quite useful
in forcing parallel processes to synchronize on certain actions (see e.g., [2]).
Rules (R0)-(R1) and (CC0)-(CC1) specify the semantics of recursion and
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(I0)
ε(0)

√ (I1)
t′ ≤ t

ε(t)
[(∅,0)],t′→ ε(t− t′)

(A0)
t′ ≤ t

(a, ρ)(t)
[(∅,ρ)],t′→ (a, ρ)(t− t′)

(A1)
(a, ρ)(0) a→ ε(0)

(S0)
P

χ→P ′

P ; Q
χ→P ′ ; Q

(S1)
P
√

Q
χ→Q′

P ; Q
χ→Q′ (S2)

P
√

Q
√

P ; Q
√

(C0)
P

χ→P ′

P + Q
χ→P ′

Q + P
χ→P ′

(C1)
P
√

P + Q
√

Q + P
√

(D0)
P

M,t→ P ′ t ≤ t0

σt0(P )
M,t→ σt0−t(P ′)

(D1)
P

a→P ′

σt0(P ) a→σt0(P
′)

(D2)
P
√

σt0(P )
√

(E0)
P

a→P ′ a /∈ Act
∂Act(P ) a→ ∂Act(P ′)

(E1)
P

M,t→ P ′

∂Act(P )
M,t→ ∂Act(P ′)

(E2)
P
√

∂Act(P )
√

(R0)
P (µX.P (X))

χ→P ′

µX.P (X)
χ→P ′ (R1)

P (µX.P (X))
√

µX.P (X)
√

(CC0)
yt ∈ T P (yt)

χ→P ′∫
x∈T

P (x)
χ→P ′ (CC1)

yt ∈ T P (yt)
√∫

x∈T
P (x)

√

(Id0)
P †t1 ft′1

(P ) P
M,t→ P ′

id : P
M⊕(id,t1,t′1),t→ id : P ′

(Id1)
P

a→P ′

id : P
a→ id : P ′ (Id2)

P
√

id : P
√

a ∈ A, t, t′ ∈ IR>0, t0 ∈ IR≥0, t1, t
′
1 ∈ IR≥0 ∪ {∞}, χ ∈ (IM× IR>0) ∪A

FIGURE 1.3: Semantics of PARS, Part 1(a): Process Specification, Se-
quential Subset
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continuous choice, respectively. A recursive process can perform a transition,
if the unfolded processes can do so. Note that in the continuous choice, the
choice is made as soon as the bound term makes a transition. Rules (Id0)-
(Id2) specify the semantics of id by adding ĩd to the multiset in the transition,
where ĩd is the tuple (id, t1, t

′
1) consisting of the syntactic id, deadline, and

worst case execution time of the process (see Figures 1.5 and 1.6 for the defin-
itions of deadline and worst case execution time, respectively). The operator
⊕ : IM × Type(ĩd) → IM, used in the semantic rule (Id0), intuitively merges
the new identifier ĩd with the existing identifiers (associated to a particular
resource requirement information) and is formally defined as follows.

∅ ⊕ ĩd .= ∅
([(ids, ρ)] + M)⊕ ĩd .= [(ids ∪ {ĩd}, ρ)] + (M ⊕ ĩd)

In Figure 1.4, abstract parallel composition is specified by rules (P0)-(P4)

and strict parallel composition is defined by rules (SP0)-(SP3). In rule (P0),
t � Q is an auxiliary operator (called deadline shift) that is used to specify
that Q is getting t units of time closer to its deadline. The semantics of
this operator is formally defined by means of the rules (DS0)-(DS2). The
semantics for deadline shift takes into account only the deadline of active
actions. Active actions are actions that can introduce a task at the moment
or already have introduced one. This is in line with the intuition that in
scheduling theory only ready actions can take part in scheduling and other
actions have to wait for their causal predecessors to commit. Function γ(a, b)
in rules (P3) and (SP2) specifies the result of a synchronized communication
between a and b.

The semantics of abstract parallel composition deviates from standard se-
mantics of parallelism in timed process algebras in that it allows for asyn-
chronous passage of time by the two parties (rule (P0)). This reflects the fact
that depending on availability of resources and due to scheduling, concurrent
execution of tasks can be preempted and serialized at any moment of time.

The latest deadline predicate P †t is defined by the deduction rules in Fig-
ure 1.5. The latest deadline is supposed to indicate the longest period, during
which the process requirements should be met or the process will certainly
miss a deadline (specified by some σt operator) and thus, will turn into a dead-
locking situation. Deduction rules defining the concept of the latest deadline
for δ, ε(t) and (a, ρ)(t) are self-explanatory; they are all defined to be infin-
ity because they do not contain any deadline operator. In case of sequential
composition, we make a case distinction between the case where the first ar-
gument does not terminate and where it does. In the former case, the latest
deadline of the process is due to its first argument. In the latter case, both
arguments may have deadlines and both may continue their execution; thus,
the argument which has a later deadline determines the latest possible dead-
line. The deadline of a process of the form P + Q is determined by the later
deadline between that of P and of Q. The deadline of σt(P ) is determined
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(P0)
P

M,t→ P ′

P || Q M,t→ P ′ || t � Q

Q || P M,t→ t � Q || P ′

(P1)
P

a→P ′

P || Q a→P ′ || Q
Q || P a→Q || P ′

(P2)
P

M,t→ P ′ Q
M ′,t→ Q′

P || Q M+M ′,t→ P ′ || Q′
(P3)

P
a→P ′ Q

b→Q′ γ(a, b) = c

P || Q c→P ′ || Q′

(SP0)
P

M,t→ P ′ Q
M ′,t→ Q′

P ||| Q M+M ′,t→ P ′ ||| Q′
(SP1)

P
a→P ′

P ||| Q a→P ′ ||| Q
Q ||| P a→Q ||| P ′

(SP2)
P

a→P ′ Q
b→Q′ γ(a, b) = c

P ||| Q c→P ′ ||| Q′

(DS0)
P

a→P ′ P †t0 t ≤ t0

t � P
a→P ′ (DS1)

P
M,t′→ P ′ P †t0 t′ ≤ t0 − t

t � P
M,t′→ t � P ′

(DS2)
P
√

t � P
√

(P4)
P
√

Q
√

P || Q
√ (SP3)

P
√

Q
√

P ||| Q
√

a ∈ A, t, t′ ∈ IR>0, t0 ∈ IR≥0, χ ∈ (IM× IR>0) ∪A

FIGURE 1.4: Semantics of PARS, Part 1(b): Process Specification, Par-
allel operators
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by the minimum of t and the latest deadline of P (since P can wait no more
than both t and its latest deadline). Process t′ � P has already spent t′ of
its time, so its latest deadline is shifted by t′. Missing a deadline in either of
the parallel components results in a missed deadline in the composite process;
thus, deadline of both P || Q and P ||| Q is defined as the minimum of the
deadlines of their arguments. The latest deadline of a recursive process is
determined by unfolding its definition. For a continuous choice, the deadline
of the process is defined as the supremum, i.e., the least upper bound of the
set of deadlines of the alternative choices. Note that the maximum of such
deadlines may not exist, e.g., if the deadlines form an open interval. Neither
encapsulation, nor adding an identifer, influence our estimation of the latest
deadline.

δ†∞ ε(t)†∞ (a, ρ)(t)†∞

¬P
√

P †t
P ; Q†t

P
√

P †t Q†t′
P ; Q†max(t,t′)

P †t Q†t′
P + Q†max(t,t′)

P †t
σt′(P )†min(t,t′)

P †t
t′ � P †t−t′

P †t Q†t′
P || Q†min(t,t′)

P †t Q†t′
P ||| Q†min(t,t′)

P (µX.P (X))†t
µX.P (X)†t

∫
x∈T

P (x)†Sup{ty|P (y)†ty∧y∈T}

P †t
∂Act(P )†t

P †t
id : P †t

FIGURE 1.5: Semantics of PARS, Part 1(c): Process Specification, Dead-
lines (t, t′ ∈ IR≥0 ∪ {∞})

The Worst Case Execution Time (WCET) predicate ft(P ) is defined by the
deduction rules in Figure 1.6. As the names suggest the intuition behind worst
case execution time is to be an upper bound estimation of the longest com-
putation time of a process. Most of the deduction rules are self-explanatory;
WCET is generally defined by taking the minimum of the deadline of the
process and its maximal execution time. The following lemma shows that
WCET of each process is less than or equal to its latest deadline.

LEMMA 1.1

For each process P and t ∈ IR≥0 ∪ {∞}, if ft(P ) holds, then there exists
t′ ∈ IR≥0 ∪ {∞} such that P †t′ and t ≤ t′.



14 PARS: A Process Algebraic Approach to Resources and Schedulers

PROOF By a case distinction on the last deduction rule in the structure
of the proof for ft(P ). The lemma holds vacuously for δ, ε(t) and (a, ρ)(t)
since for all of them, the latest deadline is ∞. For other deduction rules,
there exists a premise of the form †t′P and t is of the form min(t′, e), for some
expression e. Thus, it holds that t ≤ t′.

f0(δ) ft(ε(t)) ft((a, ρ)(t))
ft(P ) ft′(Q) (P ; Q)†t′′

fmin(t′′,t+t′)(P ; Q)

ft(P ) ft′(Q) (P + Q)†t′′
fmin(t′′,max(t,t′))(P + Q)

ft(P ) σt′(P )†t′′
fmin(t′′,t)(σt′(P ))

ft(P ) t′ � P †t′′
fmin(t′′,t)(t′ � P )

ft(P ) ft′(Q) (P || Q)†t′′
fmin(t′′,t+t′)(P || Q)

ft(P ) ft′(Q) (P ||| Q)†t′′
fmin(t′′,t+t′)(P ||| Q)

ft(P (µX.P (X))) (µX.P (X))†t′
fmin(t′,t)(µX.P (X))

{fty (P (y)) | y ∈ T} (
∫

x∈T
P (x))†t′

fmin(t′,Supy∈T (ty))(
∫

x∈T
P (x))

ft(P )
ft(∂Act(P ))

ft(P )
ft(id : P )

FIGURE 1.6: Semantics of PARS, Part 1(d): Process Specification, Worst
Case Execution Times (t, t′, ty ∈ IR≥0 ∪ {∞})

The deadline and WCET are just meant to be estimations of process mea-
sures, and any other well-defined performance measure on processes can re-
place or extend the semantics.

In order to compare processes, e.g., to compare a specification with its
implementation, it is customary to define a notion of equivalence or pre-order
among processes. In this chapter, we adapt the notion of strong bisimilarity
to our setting which provides an appropriate theoretical starting point. Other
weaker notions of equality and pre-order can be analogously adopted to our
settings.

DEFINITION 1.1 (Strong Bisimulation) A symmetric relation R on
process terms is a strong bisimulation for resource requiring processes if and
only if for all pairs (P,Q) ∈ R:
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1. P
χ→P ′ ⇒ ∃Q′Q

χ→Q′ ∧ (P ′, Q′) ∈ R

2. P
√
⇒ Q

√

3. P †t ⇒ Q†t

4. ft(P ) ⇒ ft(Q)

Two processes P and Q are called strongly bisimilar, denoted by P ↔ Q if
and only if there exists a strong bisimulation relation R such that (P,Q) ∈ R.

THEOREM 1.1 Congruence of strong bisimilarity for the process
language

Strong bisimilarity, as defined in Definition 1.1, is a congruence with respect
to all operators in our process specification language.

PROOF The deduction rules are in the PANTH format of [23]. Further-
more, by counting the number of symbols in each predicate / left-hand-side of
each transition, we can define a stratification measure which does not increase
from the conclusion to the positive premises and decreases from conclusion to
negative premises. Thus, the set of SOS rules for our process language speci-
fication are complete, i.e., they univocally define a transition relation. Hence,
it follows from the meta-theorem of [23] that our notion of strong bisimilarity
is a congruence [23].

Below we present some properties of the operators introduced in this section.
The notation FV (P ) denotes the free variables of process P . The proofs are
tedious but straightforward and therefore omitted.
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THEOREM 1.2 Properties of processes
For arbitrary processes P , Q, and R

P + P ↔ P
P + Q ↔ Q + P
(P + Q) + R ↔ P + (Q + R)
P + σ0(δ) ↔ P

(P + Q) ; R ↔ (P ; R) + (Q ; R)

σt(σt′(P )) ↔ σmin(t,t′)(P )
σt(P + Q) ↔ σt(P ) + σt(Q)
σt(P ; Q) ↔ σt(σt(P ) ; σt(Q))
σ0(ε(0)) ; P ↔ P

µX.P (X) ↔ P (µX.P (X))∫
x∈∅ P (x) ↔ σ0(δ)∫
x∈T

P (x) ↔ P (t) +
∫

x∈T
P (x) (t ∈ T )∫

x∈T
P (x) ↔ P (x) (x 6∈ FV (P (x)))∫

x∈T
(P (x) + Q(x)) ↔

∫
x∈T

P (x) +
∫

x∈T
Q(x)

P || Q ↔ Q || P
(P || Q) || R ↔ P || (Q || R)
P || ε(0) ↔ P

P ||| Q ↔ Q ||| P
(P ||| Q) ||| R ↔ P ||| (Q ||| R)

t � t′ � P ↔ (t + t′) � P

Due to the fact that the definitions of the deadline predicate and the worst
case execution time are just approximations many of the properties that are
quite standard for the operators in standard process algebra are not valid in
this setting. An example is the associativity of sequential composition.

1.3 Scheduler Specification

The syntax of scheduler specification (Sc) is similar to process specifica-
tion and is specified in Figure 1.7. Basic actions of schedulers are predicates
(Pred) mentioning appropriate processes to be provided with resources and
the amount of resources (ρ : R → IR≤0) provided during the specified time.
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Note that resource provisions are denoted by functions from resources to non-
positive integers so that they can cancel the resource requirements when con-
fronted with them in the next section. The predicate can refer to the syntactic
identifiers, deadline or worst-case execution time for processes. In the syntax
of Pred , Id is a variable from set Vi (with a distinguished member Id and
typical members Id0, Id1, etc.). Id and Idi refer to the semantic identifier
of the particular process receiving the specified resource and its environment
processes, respectively. Following the structure of a semantic identifier, Id is
a tuple containing syntactic identifier (Id.id), deadline (Id.Dl) and execution
time (Id.WCET ). As in the process language, the language for predicates
can be extended to other metrics of processes. Since we aimed at separating
the process specification aspects from scheduling aspects, we did not include
constructs such as resource consuming actions and identifiers in our schedulers
language.

A couple of new operators are added to the ones in the process specifica-
tion language. The preemptive precedence operator B gives precedence to
the right-hand-side term (with the possibility of the right-hand side taking
over the execution of left-hand side at any point) and continuous preemptive
precedence |〉t∈T which gives precedence to the choice of least possible t. Note
that this need not be the least element of T (which may not even exist) but
rather it is the predicate with the least possible t that can match a resource
requirement. (If no such least possible t exists the result of application of
the scheduler to the process should be a deadlock.) The following examples
illustrate the use of these operators.

Example 1.6 Precedence operator
Consider the process specification of Example 1.5, where the system consists
of two types of processes: User processes and system processes. Suppose
that system processes always have a priority over user processes in using a
single CPU. The following scheduler specifies a general scheduling policy that
observes the above priorities:

PrSch
.= (Id .id = User , CPU 7→ −1)([0,∞)) B

(Id .id = System, CPU 7→ −1)([0,∞))

Example 1.7 Continuous precedence operator
Assume that our scheduling strategy assigns the only available CPU to the

process with shortest deadline for the worst case execution time of the process.
The following specification provides us with such a scheduler:

CntPrSch
.= |〉t∈IR≥0(Id .Dl = t ∧ Id .WCET = t′, {CPU 7→ −1})(t′)
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In the above scheduler the continuous preemptive precedence operator |〉t∈IR≥0

in combination with Id .Dl = t enforces the process with earliest deadline to
be chosen.

The non-preemptive counter-parts of the above operators Bn and |〉nt∈T have
the same intuition but they do not allow taking over of one side if the other
side has already decided to start. The timing variables bound by continu-
ous choice or generalized precedence operators can be used in predicates (as
timing constants) as well as in process timings. For simplicity, we only al-
low comparison to time points and single identifier in the predicate part and
we only introduce continuous precedence operators with precedence for lower
time points. Enriching the first-order language of predicates and introducing
continuous precedence operators for higher time values are possible extensions
of the language.

Sc ::= δ | s(t) | Sc ; Sc | Sc || Sc | Sc ||| Sc | Sc + Sc |∫
x∈T

P (x) | Sc B Sc | Sc Bn Sc | |〉t∈T Sc(t) | |〉nt∈T Sc(t) | µX.Sc(X)

Pred ::= Id .id Op Num | Id .Dl Op time | Id .WCET Op time |

Pred ∧ Pred | Pred ∨ Pred | true

Op ::=< | = | >

s ∈ Pred× ρ, t ∈ IR≥0
∞ , x ∈ Vt, time ∈ Vt ∪ IR≥0, Id ∈ Vi, Num ∈ IN

FIGURE 1.7: Syntax of PARS, Part 2: Scheduler Specification

The semantic rules for our scheduler specification language are given in Fig-
ure 1.8. We omitted the semantic rules for operators in common with process
specification since they are very similar to those specified in process specifica-
tion semantics. Rules for the operators common to the process specification
language given in Figures 1.3 and 1.4 should be copied here with the follow-
ing two provisos. Firstly, abstract parallel composition in schedulers has a
simpler semantics, since schedulers do not have a deadline operator. Namely,
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rule (P’0) should be replaced with the following rule.

(P’0)
P

M,t→ P ′

P || Q M,t→ P ′ || Q
Q || P M,t→ Q || P ′

Note that, due to this change, the auxiliary operator t � P does not appear
in the semantics of schedulers. Secondly, for simplicity, we did not include
action prefixing in the syntax of the language for schedulers. Consequently,
rules concerning action transitions need not be copied to the semantics of
schedulers. Actions transitions can indeed be useful in modelling interactions
within schedulers and among schedulers and processes but we omitted both
for the sake of simpler presentation and keeping the orthogonality between the
process and the scheduler language. Note that breaking the orthogonality and
merging the two languages opens up the possibility of modeling more complex
schedulers which need to communicate with each other and with processes or
need to receive a resource and then distribute it afterwards, e.g., servers in a
deferable server scheme [7].

The transition relation in the semantics is of the form
M,t→ , where M is

a multiset containing predicates about processes that can receive a certain
amount of resources during time t. Elements of multiset M are of the form
(pred ,npred , ρ) where pred is the positive predicate that the process receiv-
ing resources should satisfy, npred is the negative predicate that the process
should falsify and ρ is the function representing the amount of different re-
sources offered to such a process. In this level, we assume no information
about the resource requiring process that the scheduler is to be confronted
with. Thus, the resource grant predicates specify the criteria that processes
receiving resources should satisfy (being able to match the predicate) and
the criteria they should falsify (not being able to perform higher precedence
transitions). For example, the positive predicate Id .Id = User specifies that
the process receiving the resource should have User as its syntactic identifier
and the predicate Id .Dl = t specifies that the latest deadline of the receiving
process should be t. Once the same predicates appear in the negative side,
they mean that no process with identifier User or no process with deadline t
is currently able to receive the resource.

Rules (ScA0) and (ScA1) specify semantics of atomic scheduler actions.
Rules (Pr0)-(Pr2) specify the semantics for precedence operator. In these
rules, M ∨neg pred stands for disjunction of negative predicates in all elements
of M with predicate pred:

[(pred0, npred0, ρ)] ∨neg pred .= [(pred0, npred0 ∨ pred , ρ)]
(M + [(pred0, npred0, ρ)]) ∨neg pred .= (M ∨neg pred)+

[(pred0, npred0 ∨ pred , ρ)]
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(ScA0)
(p, ρ)(0)

√ (ScA1)
t′ ≤ t

(p, ρ)(t)
[(p,false,ρ)],t′→ (p, ρ)(t− t′)

(Pr0)
P

M,t→ P ′

P B Q
M∨negenabled(Q),t→ P ′ . Q

(Pr1)
Q

M,t→ Q′

P B Q
M,t→ P B Q′

(Pr2)
P
√

Q
√

P B Q
√

(NPr0)
P

M,t→ P ′

P Bn Q
M∨negenabled(Q),t→ P ′

(NPr1)
Q

M,t→ Q′

P Bn Q
M,t→ Q′

(NPr2)
P
√

Q
√

P Bn Q
√

(CPr0)
P (t′′)

M,t′→ P ′(t′′) t′′ ∈ T

|〉t∈T P (t)
M∨neg∃tt∈bTct′′∧enabled(P (t)),t′→ |〉t∈T P ′(t)

(CPr1)
t′ ∈ T P (t′)

√

|〉t∈T P (t)
√

(NCPr0)
P (t′)

M,t→ P ′ t′ ∈ T

|〉nt∈T P
M∨neg∃tt∈bTct′∧enabled(P (t)),t→ P ′

(NCPr1)
t′ ∈ T P (t′)

√

|〉nt∈T P (t)
√

FIGURE 1.8: Semantics of PARS, Part 2: Scheduler Specification
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In the same semantic rules, enabled-ness of a process term is used as a nega-
tive predicate to assure that a lower priority process cannot make a transition
when a higher priority one is able to do so. This notion is formally defined as
follows:

enabled(δ) .= false
enabled(((pred , ρ), t)) .= pred

enabled(P ; Q) .=

 enabled(P ) ∨ enabled(Q) if P
√
∧ P →

enabled(P ) if ¬(P
√

)
enabled(Q) if P

√
∧ P 9

enabled(P || Q) .= enabled(P ||| Q) .= enabled(P + Q) .=
enabled(P B Q) .= enabled(P Bn Q) .= enabled(P ) ∨ enabled(Q)
enabled(

∫
x∈T

P (x)) .=
enabled(|〉x∈T P (x)) .= enabled(|〉nx∈T P (x)) .= ∃x∈T enabled(P (x))
enabled(µX.P (X)) .= enabled(P (µX.P (X)))

In the above definition P → stands for the possibility of performing a tran-
sition P →P ′ for some P ′ and P 9 is the negation of it. Note that using
P 9 and ¬(P

√
) in this definition introduces negative premises to our se-

mantics indirectly. But this is harmless to well-definedness of our semantics
since a standard stratification can be found for it. To illustrate the semantics
of precedence operator, we give the following example:

Example 1.8

Consider the scheduler specification of Example 1.6. This specification gener-
ates a transition system that allows an arbitrary time transition with positive
predicate Id .id = System. However, according to the rule (Pr0), for transi-
tions with positive predicate Id .id = User , the predicate of t ∈ [0,∞)∧Id .id =
System is added as a negative predicate, as well. Intuitively, this should mean
that CPU is provided to a user process if no system process is able to take
that transition. Of course, part of this intuition remains to be formalized by
the semantics of applying schedulers to processes.

Rules (NPr0)-(NPr2) specify the semantics for the non-preemptive prece-
dence operator. The only difference between these rules and their preemptive
counterparts, i.e., (Pr0)-(Pr2) is that after making a transition by one of
the two arguments, the other argument disappears and thus the argument
making the transition can no more be preempted. Rules (CPr0)-(CPr1)

and (NCPr0)-(NCPr1) present the semantic rules for preemptive and non-
preemptive continuous precedence operators, respectively.

In rules (CPr0) and (NCPr0) operator bT ct is defined as follows:

bT ct
.= {t′|t′ ∈ T ∧ t′ < t}
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Example 1.9 Specifying scheduling strategies
We specify a few generic scheduling strategies for a single processor to show
the usage of the scheduler specification language:

• Non-preemptive Round-Robin scheduling: Consider a scheduling strat-
egy where a single processor is going to be granted to processes non-
preemptively in the increasing order of their identifiers (from 0 to n).
The following scheduler specifies this scheduling strategy:

SchNP−RR
.= (Id = 0, {CPU 7→ −1})[0,∞) ;

(Id = 1, {CPU 7→ −1})[0,∞) ;
. . . ; (Id = n, {CPU 7→ −1})[0,∞)

• Rate Monotonic (RM) scheduling: Consider the following process speci-
fication SysProc of several periodic processes composed by the abstract
parallel composition operator:

SysProc
.=||ni=0 Pi

Pi
.= µX.(2i + 1) :(Q) ||| ((2i) : (ε(t′)) ; X)

In the above specification, even identifiers refer to the period of the tasks
and odd identifiers refer to the tasks themselves. The following sched-
uler, specifies the preemptive rate monotonic strategy, where processes
with shortest period (higher rate), have a priority in receiving CPU
time:

RMSch(k, t) .= (Id .id = 2k + 1 ∧ Id0 = 2k ∧ Id0.WCET = t,
{CPU 7→ −1})([0,∞))

RMSch
.= |〉t∈IR≥0RMSch(0, t) + . . . + RMSch(n, t)

Identifier Id refers to the process receiving the resource (i.e., a task de-
fined by the process Q). Identifier Id0 is an arbitrary identifier referring
to the corresponding period of the task. Hence, Id0.WCET refers to
the period of the task denoted by Id .

• Earliest Deadline First (EDF) scheduling: Consider the previous pattern
of processes, then the following expression specifies preemptive earliest
deadline first scheduling:

EDFSch(k, t) .= (Id .id = 2k + 1 ∧ Id0 = 2k ∧ Id0.Dl = t,
{CPU 7→ −1})([0,∞))

EDFSch
.= |〉t∈IR≥0EDFSch(0, t) + . . . + EDFSch(n, t)

Common to the formalism for process specification, one can use the notion of
strong bisimilarity to relate schedulers. The definition of strong bisimulation
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/ bisimilarity for schedulers remains the same as Definition 1.1; only items
3 and 4 in this definition should be dropped since schedulers do not have a
notion of deadline and WCET.

THEOREM 1.3 Congruence of strong bisimilarity for the scheduler
language

Strong bisimilarity, is a congruence with respect to all operators in our sched-
uler specification language.

PROOF Again, all our deduction rules for schedulers (including the sim-
plified rule (P’0) and those borrowed from Figures 1.3 and 1.4) are in the
PANTH format of [23]. The rules specified for the scheduler are also stratified
by the same stratification measure used in the proof of Theorem 1.1. Thus,
the set of deduction rules is complete and our notion of strong bisimilarity is
a congruence following the meta-theorem of [23].

Since many of the operators for specifying schedulers are similar to those
used for describing processes, they enjoy similar properties. Since schedulers
do not have deadline and worst case execution time predicates associated with
them, there are additional properties.



24 PARS: A Process Algebraic Approach to Resources and Schedulers

THEOREM 1.4 Properties of schedulers

For arbitrary schedulers P , Q, and R

P + P ↔ P
P + Q ↔ Q + P
(P + Q) + R ↔ P + (Q + R)
P + δ ↔ P

δ ; P ↔ δ
ε(0) ; P ↔ P
(P + Q) ; R ↔ (P ; R) + (Q ; R)
(P ; Q) ; R ↔ P ; (Q ; R)

µX.Sc(X) ↔ Sc(µX.Sc(X))∫
x∈∅ P (x) ↔ δ∫
x∈T

P (x) ↔ P (t) +
∫

x∈T
P (x) (t ∈ T )∫

x∈T
P (x) ↔ P (x) (x 6∈ FV (P (x)))∫

x∈T
(P (x) + Q(x)) ↔

∫
x∈T

P (x) +
∫

x∈T
Q(x)(∫

x∈T
P (x)

)
; Q ↔

∫
x∈T

(P (x) ; Q) (x 6∈ FV (Q))

P || Q ↔ Q || P
(P || Q) || R ↔ P || (Q || R)
P || ε(0) ↔ P
P || δ ↔ P ; δ

P ||| Q ↔ Q ||| P
(P ||| Q) ||| R ↔ P ||| (Q ||| R)

1.4 Applying Schedulers to Processes

Scheduled systems are processes resulting from applying a number of sched-
ulers to processes. The syntax of scheduled systems is presented in Figure 1.9.
In this syntax, P and Sc refer to the syntactic class of processes and sched-
ulers presented in the previous sections, respectively. Term 〈〈Sys〉〉Sc denotes
applying scheduler Sc to the system Sys and ∂R(Sys) is used to close a system
specification and prevent it from acquiring resources in R.

The semantics of new operators for scheduled systems is defined in Figure
1.10. In this semantics, the transition relation is the same as the transition
relation in the process specification semantics of Section 1.2. Since a process
is a system by definition, all semantic rules of that section carry over to the
semantics of systems. Moreover, as in schedule specification phase, we re-use
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Sys ::= P | 〈〈Sys〉〉Sc | Sys ; Sys | Sys || Sys | Sys ||| Sys | Sys + Sys |

∂R(Sys) | σt(Sys) | µX.Sys(X) | id : Sys | t � Sys

FIGURE 1.9: Syntax of PARS, Part 3: Syntax of Scheduled Systems

the rules of Section 1.2 in a more general sense in order to cover the seman-
tics of sequential, abstract and strict parallel composition, non-deterministic
choice of systems, and deadline shift operator.

(Sys0)
P

M,t→ P ′ Sch
M ′,t→ Sch′

〈〈P 〉〉Sch

applyP (M,M ′),t→ 〈〈P ′〉〉Sch′

(Sys1)
P

a→P ′

〈〈P 〉〉Sch
a→〈〈P ′〉〉Sch

(Sys2)
P
√

〈〈P 〉〉Sch

√

(ER0)
Sys

M,t→ Sys′ ∀(ids,ρ)∈M,r∈Rρ(r) = 0

∂R(Sys)
M,t→ ∂R(Sys′)

(ER1)
Sys

a→Sys′

∂R(Sys) a→ ∂R(Sys′)
(ER2)

Sys
√

∂R(Sys)
√

FIGURE 1.10: Semantics of PARS, Part 3(a): Scheduled System Specifi-
cation

To extend the semantics of process specification to the system specification,
we need to define deadline and worst case execution time predicates on the
newly defined operators. These operator and functions are defined in Figure
1.11.

The application operator 〈〈P 〉〉Sch is defined by semantic rules (Sys0)-(Sys2)

in Figure 1.11. Rules (ER0)-(ER2) represent encapsulation of resource usage.
In semantic rule (Sys0), the application operator applyP : IM × IM → IM is
meant to apply a multiset of resource providing predicates (second parameter)
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P †t
〈〈P 〉〉Sch†t

P †t
∂R(P )†t

ft(P ) 〈〈P 〉〉Sch†t′
fmin(t,t′)(〈〈P 〉〉Sch)

ft(P ) ∂R(P )†t′
fmin(t,t′)(∂R(P ))

FIGURE 1.11: Semantics of PARS, Part 3(b): Scheduled System Specifi-
cation, Deadlines and Worst Case Execution Times

to a multiset of resource requiring tasks (first parameter).

applyP (M, [(pred ,npred , ρ)] + M ′) .=

applyP (applyTaskP (M, [(pred ,npred , ρ)], ∅),M ′)

applyTaskP (∅, [(pred ,npred , ρ)],M) .= ∅

applyTaskP ([(ids, ρ)], ∅,M) .= [(ids, ρ)]

applyTaskP ([(ids, ρ)] + M, [(pred ,npred , ρ)],M ′) .=

[(ids,max(0, ρ + ρ)]+ if pred(ids,M + M ′)∧
applyTaskP (M, [pred ,npred ,min(0, ρ + ρ)], ¬npred(ids,M + M ′))∧

M ′ + [(ids, ρ)] ¬engage(P,M,M ′ + [(ids, ρ)],
(pred ,npred , ρ))

[ids, ρ] + applyTaskP (M, [pred ,npred , ρ− ρ], otherwise
M ′ + [(ids, ρ)])

The intuition behind this definition is to apply the provided resources to
the requirements while satisfying positive predicates and falsifying negative
predicates. This is done by taking an arbitrary resource providing predicate,
applying it to the resource requiring multisets (by checking its applicability to
each task, i.e., pair of identifiers and resource requirements) and proceeding
with the rest. In the above definition, pred(ids,M + M ′) means that there
exists a mapping from identifiers of the predicate (containing particularly a
mapping from Id to a member of ids) that satisfies predicate pred . Expressions
min(0, ρ) and max(0, ρ) are taking point-wise minimum and maximum of ρ(r)
and ρ(r) with 0, respectively. The predicate engage is meant to check that
there is no transition from P that can potentially engage with the resources
provided by ρ and satisfy the negative predicates in the current context. This
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predicate is defined formally as follows:

engage(P,M,M ′, (pred ,npred , ρ)) .=

∃
M ′′,P ′,ids′, eid

′
,ρ′

P
M ′′,t→ P ′ ∧M ′ ⊆ M ′′∧

(ids′, ρ′) ∈ M ′′ −M ′ ∧ ρ′ ./ ρ ∧ ĩd
′
∈ ids′ ∧ npred(ĩd

′
)

ρ′ ./ ρ
.= ∃rρ

′(r) > 0 ∧ ρ(r) < 0

Note that generally applyP is not a function and its resulting multiset may
depend on the ordering of selecting and applying predicates and tasks. By
definition, for all such outcomes, there exists a corresponding transition in the
semantics.

THEOREM 1.5 Congruence of strong bisimilarity for the system
language
Strong bisimilarity is a congruence with respect to all operators of our sched-
uled systems language.

PROOF The deduction rules are in the PANTH format and are stratifi-
able. Therefore, congruence of strong bisimilarity follows [23].

To better illustrate the semantics, we give a few examples of system schedul-
ing in the remainder.

Example 1.10 EDF scheduling
Consider the following process specification and three different schedulers:

SysProcId
.= 1 : (σ1([(CPU 7→ 1), (Mem 7→ 50)](1))) ||
2 : (σ2((CPU 7→ 1)(Mem 7→ 50)(2)))

NP − EDF
.= µX.|〉nt∈IR≥0(Id .Dl = t)([(CPU 7→ −2), (Mem 7→ −100)])(2)

EDF1
.= µX.|〉t∈IR≥0(Id .Dl = t)[(CPU 7→ −2), (Mem 7→ −100)](2)

EDF2
.= µX.|〉t∈IR≥0 ((Id .Dl = t)[(CPU 7→ −1), (Mem 7→ −50)](2)) |||

|〉t∈IR≥0((Id .Dl = t)[(CPU 7→ −1), (Mem 7→ −50)](2))

It is interesting to observe that according to the semantics of Figure 1.10,
in the system ∂Mem(〈〈SysProcId〉〉NP−EDF ) the only possible run follows the
following scenario: The scheduler grants both available processors and the
whole 100 units of memory for 3 units of time to process with identifier 1
since this is the active process with the least deadline. However, this causes
the deadline of the tasks 2 to be shifted for 2 units of time (according to
the semantics of parallel composition in Figure 1.4) and thus, process 2 will
deadlock, after commitment of process 1.

For the system ∂Mem(〈〈SysProcId〉〉EDF1
), however, the scenario is differ-

ent. The scheduler can start providing all available resources to task 1 for one
unit of time but after that (since the choice of least deadline remains there)
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available resources will not be wasted anymore and will be given to process
2. However, the process misses its deadline anyway, since it needs 2 units of
time and has a deadline of 1.

In contrary, the system ∂Mem(〈〈SysProcId〉〉EDF2
) allows for a successful

run. In this case at the first time unit each of the two processes can receive a
CPU and 50 units of memory. This is due to the fact that after providing the
required resources of process 1 by one of the schedulers, the other scheduler
may assign its resources to process 2 (see definition of operator applyP and
in particular definition of engage). It follows from the semantics that after
applying one resource offer to process 1 the whole process cannot engage in
a resource interaction with a deadline of less than 2 and thus process 2 can
receive its required resource.

The above behavior is in-line with the intuition of scheduler specification,
as well. Scheduler NP −EDF specifies a non-preemptive scheduler and thus
cannot change its resource grant behavior after making the initial decision.
Scheduler EDF1 suggests that both processes and 100 units of memory should
be granted to the process(es) that have the least deadline and thus, disallows
other processes with higher deadlines from exploiting the remaining resources.
Finally, scheduler EDF2 specifies that two processes with the two least dead-
lines may benefit from the provided processor.

1.5 Conclusions

In this paper, we proposed a process algebra with support for specification
of resources requirements and provisions. Our contribution to the current real-
time and/or resource-based process algebraic formalisms can be summarized
as follows:

1. Defining a dense and asynchronous timed process algebra with resource
consuming processes

2. Providing a (similar) process algebraic language with basic constructs
for defining resource providing processes (schedulers with multiple re-
sources)

3. Defining hierarchical application of schedulers to processes and compos-
ing scheduled systems

The theory presented in this paper can be completed/extended in several
ways. Among those, axiomatizing PARS is one of the most important ones in
our list. We have presented some sound axioms for the process and scheduler
specification part of PARS (which are considerably different from axioms of
similar process algebras due to its special properties and constructs such as
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presence of the abstract parallel composition operator). However, a full ax-
iomatization remains a challenge. As it can be seen in this chapter, the three
phases of specifications share a major part of the semantics, thus, bringing the
three levels of specification closer (for example, allowing for interaction among
processes and schedulers or allowing for resource consuming schedulers) can
be beneficial. Such a combination leads to more expressiveness (in that com-
plicated interactions of scheduler and processes can be captured concisely),
but is against our design decision to separate the world of schedulers from the
world of processes. Furthermore, applying the proposed theory in practice
calls for simplification, optimization for implementation and tooling in the
future.

Another interesting extension of our work may be the integration with the
algebraic framework for the compositional computation of trade-offs as devel-
oped in [13], which uses the same concepts of requested and granted resources.
Such an extension may allow for trade-off analysis in the current algebraic set-
ting.

Acknowledgments. Reinder Brill provided helpful insights on scheduling
theory. Useful comments of the anonymous reviewers and the editors are also
gratefully acknowledged.
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Portugal. IEEE Computer Society Press, Los Alamitos, CA, USA, 2003.

[19] M.R. Mousavi, M. A. Reniers, T. Basten, and M. R. V. Chaudron. Pars:
A process algebra with resources and schedulers. In K. G. Larsen and
P. Niebert, editors, Formal Modeling and Analysis of Timed Systems:
First International Workshop, FORMATS 2003, Marseille, France, Sep-
tember 6-7, 2003. Revised Papers, volume 2791 of Lecture Notes in Com-
puter Science, pages 134–150. Springer, 2003.

[20] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: theory
and application. Information and Computation, 114(1):131–178, Oct.
1994.



References 33

[21] G. D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus Univer-
sity, Aarhus, Denmark, Sept. 1981.

[22] G. D. Plotkin. A structural approach to operational semantics. Jour-
nal of Logic and Algebraic Progamming (JLAP), 60:17–139, 2004. This
article first appeared as [21].

[23] C. Verhoef. A congruence theorem for structured operational semantics
with predicates and negative premises. Nordic Journal of Computing,
2(2):274–302, 1995.


