
Efficient Symmetry Reduction for an
Actor-Based Model

M.M. Jaghoori1, M. Sirjani2, M.R. Mousavi4, and A. Movaghar1,3

1 Sharif University of Technology, Tehran, Iran,
2 University of Tehran and IPM, Tehran, Iran

4 Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract. Symmetry reduction is a promising technique for combat-
ting state space explosion in model checking. The problem of finding the
equivalence classes, i.e., the so-called orbits, of states under symmetry is
a difficult problem known to be as hard as graph isomorphism. In this pa-
per, we show how we can automatically find the orbits in an actor-based
model, called Rebeca, without enforcing any restriction on the modeler.
The proposed algorithm solves the orbit problem for Rebeca models in
polynomial time. As a result, the simple actor-based Rebeca language
can be utilized efficiently for modeling and verification of systems, with-
out involving the modeler with the details of the verification technique
implemented.

1 Introduction

Model checking is the automatic and algorithmic way for the verification of sys-
tem correctness. State space explosion is a major obstacle in exploiting model
checking in practice. The problem arises when we try to explore all the possible
states of a system to see whether a specific property is met or not. To overcome
this problem, numerous methods have been proposed in order to avoid the con-
struction of the complete state graph [6]. Among these methods are symbolic
verification, partial order reduction, modular (parameterized) model checking,
and symmetry reduction [8, 13, 18]. These techniques are sometimes combined
to achieve even more compression in the representation of the system under
analysis [1, 9, 11].

The symmetry technique is based on the fact that many systems are com-
posed of similar and symmetric parts. These symmetric parts yield a similar
behavior and have similar state graphs. The sub-graphs of these parts are usu-
ally interchangeable with respect to some permutation on the states. Therefore,
it is possible to divide the state graph into symmetric graph quotients. One of
these quotient graphs, annotated with the corresponding permutations, is shown
to be enough for checking a general class of properties for the whole system [8].
However, for the technique to be useful, we need to find these permutations
without constructing the total state space.

In concurrent systems, we can make use of the notion of processes running
in parallel. Theoretically, a process is responsible for the behavior of some part

of the system. We can consider the symmetry among processes and look for
the permutations of processes, as suggested in [10]. Compared to permutations
on states, permutations on processes are easier to find and maintain. However,
checking all possible permutations for finding the ones that reveal the symmetries
is not computationally efficient. Therefore, heuristic methods should be utilized
for this purpose.

Alternatively, designer’s insight may be use to reveal symmetry. Some tools,
such as Murphi [13, 14], SMC [17] and SymmSpin [4], use the notion of scalar
sets or a similar concept. Scalar sets are fully symmetric indices that are added
to the model by the modeler to expose the symmetry of the system, so that the
compiler can detect the symmetries automatically. In this paper, an algorithm
is presented for finding the symmetry in Rebeca models automatically, with no
changes to the syntax of Rebeca.

Rebeca [15] is an actor-based language, which can be used at a high level of
abstraction for modeling concurrent systems. Using an object-based approach,
and the asynchronous message-passing paradigm, Rebeca provides a basis that
naturally fits in modular verification methods. Reactive objects are instantiated
from reactive classes as templates. This suggests the idea that there is an inherent
symmetry among the reactive objects of the same type (instantiated from the
same reactive class).

It is preferred that the modeler is only involved in modeling issues, rather
than the details of verification techniques. The interesting characteristic of Re-
beca is that the only communication mechanism among the rebecs is through
asynchronous message passing. This helps us find the symmetric permutations
in polynomial time in the number of processes, without any extra work in mod-
eling. We show that symmetry can be utilized in the presence of dynamic object
creation and a special kind of changing topology.

In the rest of this paper, we first provide an overview of the symmetry reduc-
tion technique in Section 2. In Section 3, we introduce Rebeca and its semantics.
Section 4 shows how symmetry reduction can be applied to Rebeca models and
demonstrates the algorithm proposed for automatically detecting the symmetry
in a Rebeca model. Section 5 extends our approach to the setting with dynamic
creation of rebecs and dynamic topology. In Section 7, we present a brief com-
parison of our approach with related work. The concluding remarks and future
work are presented in Section 8.

2 The Symmetry Reduction Technique

In this section, we explain the symmetry reduction technique [13, 8, 18]. The aim
of this technique is to find the parts of the system that yield similar behavior.
Intuitively, it is enough to run the model checking algorithm on one of these
similar parts.

Consider a system M , consisting of n concurrently executing processes that
communicate through shared variables.1 Let I be the set [1..n] of natural num-
bers. We assume that each process is identified by a unique index from I. The
variables in M are also subscripted by an index set, which denotes the processes
that access the variable, e.g. the variable v1,3 is accessed by processes 1 and 3,
and the variable w2 is a local variable of process 2. Each process is defined as a
set of actions, where each action is a conditional assignment of values to some of
the variables. A specific action is said to be enabled at some state, if the respec-
tive condition evaluates to true. The whole system, called an indexed transition
system or briefly a program, is viewed as the interleaving of the processes. In
other words, each process may have zero or more actions enabled at each par-
ticular state, and which move the system to (probably) another state. Figure
1.(a) (taken from [8] with minor changes) shows a simple system composed of n
identical processes that start in a non-critical state and try to enter their critical
section (by executing action ai), and then leave the critical section (by executing
action bi). There is a variable associated to each process, which shows whether
it is in its critical section or not.

The formal definition of an indexed transition system M is given as a 4-tuple
〈S, A, T, s0〉. S denotes the set of global states, where a global state is a valuation
of all the variables; and s0 is the initial state. The transition relation is defined
as T ⊆ S ×A× S, where A denotes the set of the actions of different processes.
The transitions in T represent the behavior of the system; i.e. (s, ai, t) ∈ T when
the action a from process i is enabled in state s and its execution leads to state
t. We may write s

ai→ t for (s, ai, t).
A permutation π : I → I is a bijection on the index set I. Recall that

I is the set [1..n]. We write a permutation as π = (i1, . . . , in), which means
∀1≤x≤nπ(x) = ix. The set of all permutations on I is denoted by SymI.

The application of a permutation π on a global state s should result in the
global state π(s), which is defined as follows. For every variable vi1,...,ik

, its
value in the state s is given to the variable vπ(i1),...,π(ik), in the state π(s). If
vπ(i1),...,π(ik) does not exist, then π(s) is undefined and π is said to be inconsis-
tent. In addition, the application of π on an action ai is the action aπ(i), which
must be a valid action in the system; otherwise, π is inconsistent. We say that a
consistent permutation π is an automorphism of the indexed transition system
M , when π(s0) = s0, and π preserves the transition relation, i.e., s

ai→ t ∈ T when

π(s)
π(ai)→ π(t) ∈ T .

The set of automorphisms of M is denoted by AutM and is a subgroup of
SymI [8]. Given any subgroup G ∈ AutM , we can define an equivalence rela-
tion on S. The states s and s′ are equivalent with respect to G when there is
a π ∈ G such that π(s) = s′. Each equivalence class is called an orbit. Intu-
itively, for model checking M , it is sufficient to construct the state space for the
representatives of each orbit.

1 In later sections, we will use a restricted form of shared variables to represent asyn-
chronous message passing in Rebeca.

(a) Selecting a Representative From Each Orbit (b) Annotated Quotient Structure

Fig. 1.

The system shown in Figure 1.(a) is an example of a symmetric state graph.
Representatives of the two orbits of this system are distinguished by an ellipse
around them; for example, the states (C1, N2, . . . , Nn)2 and (N1, C2, . . . , Nn)
are equivalent, because applying the automorphism (2, 3, . . . , n, 1) on the former
produces the latter.

The annotated quotient structure (AQS) for M is M = 〈S, T , s0〉, where S is
the set of the representative states (which contains exactly one state from each
orbit) and T

.= {s ai,π→ t | π ∈ G, s ∈ S ∧ t ∈ S ∧ s
ai→π(t) ∈ T}. Figure 1.(b)

shows the annotated quotient structure of the previous example. Note that in
this graph, there is only one edge with action b. Each pi shows the permutation
(i, i + 1, . . . , n, 1, 2, . . . , i− 1), which maps the i’th process to the first one (this
notation for permutations is explained earlier in this section).

Emerson, et.al, in [8], show that M can be used in the automata theoretic
approach to model check M against formulas that respect the symmetry of the
system. This approach is extended in [10] for efficient model checking under
fairness conditions. Bosnacki in [3] shows how symmetry reduction can be com-
bined with the nested depth-first search algorithm. In these methods, it is always
assumed that the orbit relation is previously known. However, the problem of
finding the equivalence relations (orbits), known as the orbit problem, is in its
general form shown to be as hard as graph-isomorphism [8, 5]. In the following
sections, we introduce Rebeca as an actor based language and explain how we
can automatically compute the equivalence relation without engaging the mod-
eler in the details of the verification method used. The algorithm proposed in
the later sections solves the orbit relation for a Rebeca model in polynomial time
(with respect to the number of the processes in the system).

3 Rebeca: An-Actor Based Model

The actor model was originally introduced by Hewitt [12] as an agent-based
language. It was later developed by Agha [2] into a concurrent object-based
model. Rebeca (Reactive objects language) [15] is based on the actor model
with an operational semantics.
2 Assume that each process i has a variable vi that can be either C or N ; then, by Ci

or Ni we mean that vi has the value C or N , respectively.

3.1 Basic Definitions

A Rebeca model is constructed by the parallel composition of a set of rebecs,
written as R = ||i∈I ri, where I is the index set that is used to identify each
rebec. For the sake of simplicity, we ignore the dynamic features of Rebeca in
this section, and hence, assume that I is a fixed set for a given model. We
relax this assumption in Section 5, where dynamic behavior in Rebeca models
is addressed.

The concurrent execution of rebecs is modeled by interleaving, i.e., rebecs are
given turns for execution. For model checking a Rebeca model, all fair sequences
of execution are considered. An infinite sequence is considered fair when all the
rebecs are infinitely often executed or disabled.

The rebecs communicate by sending asynchronous messages. The messages
that can be serviced by the rebec ri are denoted by the set Mi. There is a message
server corresponding to each element of Mi. Each rebec has an unbounded queue
for storing its incoming messages. In each state, the message at the head of the
queue of a rebec specifies which one of its message servers is enabled. Each
rebec, in its turn, removes one message from the top of its queue and atomically
executes the corresponding message server.

The local state of a rebec ri is distinguished by the valuation of its local
variables and its queue. The global state of the model is obtained by the combi-
nation of the local states of all rebecs. For each rebec ri, an ordered list of known
rebecs is introduced, whose indices are collected in Ki. The rebec ri can only
send messages to its known rebecs. Since a rebec can also send messages to itself,
we always have j ∈ Kj . The known rebecs of all rebecs are specified statically.
As a result, we can derive the communications graph of a Rebeca model, from
the known rebecs lists. In this directed graph, nodes are rebecs, and there is an
edge from ri to rj when j ∈ Ki.

The behavior of a Rebeca model is defined as the interleaving of the enabled
rebecs in each state. A rebec is enabled, if its message queue is not empty.
There is at least a message server ’initial’ in each rebec, which is responsible
for the initialization tasks, and the corresponding message is assumed to be in
the queues of all rebecs in the initial state. The execution of a message server
is defined as the atomic sequential execution of its statements. Statements may
be either ‘(nondeterministic) assignments’ or ‘send’ operations. An assignment
changes the values of the local state variables. In the case of a nondeterministic
assignment, a set of values is used to specify the next value of the variable. A
rebec can send messages to its known rebecs. The messages may be accompanied
by parameters. The sent messages, together with their parameters are placed
(immediately) in (the tail of) the queue of the receiving rebec. The execution
of statements may be restricted by some conditions (on the values of the local
variables, the sender or the parameters of the message).

3.2 The Formal Semantics of Rebeca

The semantics of a Rebeca model is expressed with an indexed transition system
〈S, A, T, s0〉 (introduced in Section 2). Each state in the system is identified by

the values assigned to the local variables of the rebecs, together with the messages
(and their parameters and sender) in the queues of the rebecs. Without loss of
generality, we assume that all local variables take values from the domain set D.
This domain set includes the undefined value represented by ⊥.

It is also necessary to distinguish between the message, sender and parameter
queues. Suppose that the message servers of rj accept at most hj number of
parameters. Therefore, rj has one message queue, one sender queue, and hj

parameter queues. To make queues easier to represent, we regard each queue
as an array of variables. We assume an upper bound xj on the number of the
queue variables of rj (all queues of rj have the same upper bound). The domain
of the message queue variables is Mj ∪ ⊥, where ⊥ is re-used to represent an
empty queue element. The domain of the sender queue variables is I ∪⊥, where
I is the set of the indices (identifiers) of rebecs. The domain of parameter queue
variables is also D. We write the i’th local, message queue and sender queue
variable of rebec rj as rj .vi, rj .mi and rj .si, respectively. The i’th element of
the k’th parameter queue is written as rj .pki.

Assuming that there are wj local variables in rj , a local state of rj can
be represented formally as sj = (rj .v1, . . . , rj .vwj

, rj .m1, . . . , rj .mxj
, rj .s1, . . . ,

rj .sxj
, rj .p11, . . . , rj .phjxj

), where hj ≥ 0, xj ≥ 1 and wj ≥ 0. A global state
of the system is defined as the combination of the local states of all rebecs:
s =

∏
i∈I si. The set S denotes the set of all the global states. In the initial

state s0, ri.m1 =′ initial′ for all rebecs ri. If the initial message server of ri

accepts ij parameters, the variables rj .p11, rj .p12, . . . , rj .pij1 are also initialized
as specified in the model. All other (local and queue) variables are assigned the
value ⊥.

Since message servers are executed atomically, each message server is equiv-
alent to an action, unless there are nondeterministic assignments, in which case,
one action is defined per each nondeterministic choice. The set A denotes the
set of all actions resulting from the message servers. Therefore, the transition
relation T ⊆ S × A × S is defined as follows. There is a transition s

aj→ t in the
system, if the value of rj .m1 in the state s is equal to the message corresponding
to the action a, and the execution of a results in the state t.

In the following, we define different possible types of sub-actions that a tran-
sition s

ai→ t may contain. In the formulas below, the variables on the left hand
side of← refer to variables in t and the ones on the right hand side refer to their
values in s.

1. Message removal: This sub-action includes the removal of the first element
of message, sender and parameter queues. By removing the first element,
we mean shifting other elements of the queue toward the queue head. This
sub-action exists in all actions. It can be written as:
∀0<i<xj

rj .mi ← rj .mi+1, and rj .mxj
← ⊥, and

∀0<i<xj
rj .si ← rj .si+1, and rj .sxj

← ⊥, and
∀0<i<xj ,0<k≤hj

rj .pki ← rj .pk(i+1), and rj .pk(xj) ← ⊥.
2. Assignment: An assignment can be a statement like ‘w ← d’, where w is

the i’th local variable in rj and d ∈ D \ ⊥. This statement simply means:

rj .vi ← d. The right hand side of an assignment may also be a more complex
expression based on the local variables of rj . In such cases, the expression
can be evaluated with the values of the local variables in state s, and finally
a value like d is obtained. Therefore, for the sake of simplicity, we can assume
that the right hand side of an assignment is always an explicit value.

3. Send: The rebec rj may send a message m to rk, where m ∈Mk and k ∈ Kj .
As stated earlier, by Kj , we mean the ordered list of (the indices of) the
known rebecs of rj . The message m is assumed to have hk parameters, say
n1, . . . , nhk

, where ni ∈ D, 1 ≤ i ≤ hk. Like an assignment, a parameter
may also be represented by an expression, which finally resolves into an
explicit value from D. Recall that rebec rk has hk parameter queues. Note
that ni may be ⊥; and for i < hk, if ni is ⊥, then ni+1 must also be ⊥. In
addition, the number parameters that are not ⊥ must agree with the number
of arguments that the message server corresponding to m accepts. The result
of this sub-action is:
If ∃0<y≤xk

(rk.my = ⊥ ∧ ∀0<z<yrk.mz 6= ⊥), then
rk.my ← m, rk.sy ← j, ∀1≤i≤hk

rk.piy ← ni

Otherwise, xk must be increased and the transition system of the Rebeca
model cannot be constructed.

4 Symmetry in Rebeca

To exploit symmetry in an indexed transition system associated to a Rebeca
model, we need to find a permutation group acting on the index set [1..n] of the
rebecs. With the permutation group, the state space is partitioned into orbits
(equivalence classes). Since the rebecs of the same type (i.e. they are instances
of the same reactive-class) exhibit similar behavior, it is reasonable to limit the
permutations to those that preserve rebecs types. Theorem 1 helps to derive
the symmetry in Rebeca models in a straightforward way. It simplifies the orbit
problem by helping to obtain possible permutations prior to the real construction
of the state space.

From now on, consider a system R = 〈S, A, T, s0〉 = ||i∈I ri of a Rebeca
model. Here, we redefine the application of a permutation on a global state.
Definition 2 is repeated for easier reference.

Definition 1. The application of a permutation π on a global state s, denoted
by π(s), is defined as follows:
1- Variables that are not of ‘rebec index’ type (i.e., don’t get their value from
the set I), like rj .vi, rj .mi and rj .pki: Their values in state s, is assigned to the
local or queue variables rπ(j).vi, rπ(j).mi and rπ(j).pki in state π(s), respectively.
2- Variables that are of ‘rebec index’ type, like rj .vi and rj .si (sender queue):
Suppose their value is state s is x. In state π(s), the value π(x) is assigned to
variables rπ(j).vi and rπ(j).si, respectively.

For static Rebeca models, the latter case shrinks only to the case of sender
queue variables. However, the more general case applies to dynamic Rebeca
models, which is discussed in the next section.

Definition 2. A permutation π, defined in I, is said to preserve the transition
relation when [s ai→ t ∈ T]→ [π(s)

aπ(i)→ π(t) ∈ T].
Such a permutation is called an automorphism of R, if π(s0) = s0.

Definition 3. A permutation π is said to preserve rebec types, if for all i,j such
that π(i) = j, the rebecs ri and rj are instances of the same reactive-class.

Definition 4. If Ki = (t1, t2, . . . , tPi
) denotes the ordered list of the indices of

the known-rebecs of ri, where i ∈ I, a permutation π is said to preserve the
known-rebec relation iff: ∀i∈IKπ(i) = (π(t1), π(t2), . . . , π(tPi)).

Theorem 1. If a permutation π preserves both rebec types and the known-rebec
relation, and π(s0) = s0, then π is an automorphism of R.

Given an automorphism of a Rebeca model, we can partition the rebecs into
equivalence classes. To examine whether π(s0) = s0, the initialization of the
system must be checked to ensure that the parameters sent with the initial
message do not break the symmetry; i.e. equivalent rebecs receive similar values
for the normal parameters to initial , and symmetric values for rebec parameters.

The obtained equivalence relation on rebecs can be used to derive a symmetry
group on the states of the underlying structure. It shows how the simple natural
object-based syntax of Rebeca helps us find the symmetry automatically. Next
section presents an efficient algorithm that finds the symmetry groups of a given
Rebeca model, if there is any.

4.1 Implementation

In this section, we present an algorithm for detecting symmetry in Rebeca models
based on Theorem 1 of the previous section. In the following, we demonstrate
how symmetry can be detected from normal Rebeca models, i.e., with no change
in the syntax of Rebeca.

Theorem 1, implies that checking for equivalence of two rebecs, is reduced
to finding a permutation that maps one to the other and preserves the known-
rebec relation. The ordering among the known rebecs of each rebec helps us
implement a polynomial time algorithm for this purpose. First, we show that
checking whether two given rebecs belong to the same equivalence class can be
done in linear time. It is performed in the check algorithm given below.

check (i, j) : boolean;

if (i.type != j.type) return false;

define pi as an empty array of size n; // pi[i] = permutation acting on i

Let pi[i] := j; // suppose permutation of i is j

Let p1 := K(i); // the ordered known rebecs of i

Let p2 := K(j); // the ordered known rebecs of j

while p1 not empty do

x := removeFirstElementOf (p1);

y := removeFirstElementOf (p2);

if (pi[x] is undefined)

Let pi[i] := j;

p1 += K(x); // add to the end of the list

p2 += K(y); // add to the end of the list

else if(pi[x] != y) // knownrebec relation is not preserved

return false;

od

return true;

end

The inputs to check, i and j, are the indices of two rebecs. In this algo-
rithm, we try to find a permutation π that maps i to j, and also respects the
known-rebec relation. For this purpose, we take a constructive approach. The
permutation is represented by an array of size n. The i’th element of this array
shows the result of the permutation for rebec i. The algorithm starts with defin-
ing π(i) = j. Then it tries to find the other elements of the permutation. It is
expected that i and j are rebecs of the same type. Therefore, they have equal
number of known rebecs, which are also of similar types. Since the permutation
must respect the known-rebec relation, it must also map the known rebecs of
i to the known rebecs of j. It is assumed that K(i) returns the ordered list of
the indices of the known rebecs of rebec i. In the algorithm, p1 and p2 are the
lists of rebec indices that must be checked for equivalency. Therefore, K(i) and
K(j) are added to p1 and p2. Then at each step, one element from p1 and p2
are removed and checked against previous values of π. If π has another value
then the algorithm returns false and terminates. If a new pair has been added
to π, the indices of their known rebecs are added to p1 and p2. The algorithm
continues until a contradiction is encountered, or there are no other rebecs to be
checked. The return value shows whether they belong to the same equivalence
class. As we explained in section 3, we can construct a communication graph
of a Rebeca model. If this graph is not connected, the permutation of rebecs
not connected to i and j, are not important to the equivalence of i and j. This
algorithm in the worst case (i and j are equivalent), gives the answer in time
linear in the number of rebecs in the system.

For finding the biggest equivalence classes of rebecs, which yields the most
reduction in the state space, we first assume that each rebec by itself constitutes
an equivalence class. Then at each step, we take representatives of two different
equivalence classes, and check their equivalence. If they are equivalent, their
corresponding equivalence classes can be combined. In the worst case (which is
the case of an asymmetric system), every pair of rebecs of the same type are
checked for equivalence. It means O(n2) times calling of check, which is in turn
linear; and in total find is O(n3) in the number of rebecs in the system.

find ()

classes := empty list;

for every rebec r in the system add {r} to classes;

for each m,n classes such that m != n do

if check (m.rep, n.rep) // check representatives of m and n

replace m and n by the union of (m, n);

od

end

The find algorithm computes the equivalence classes of rebecs in a Rebeca
model. With these equivalence classes, the algorithms introduced in [17] or [3]
can be used to model check Rebeca models while exploiting the symmetry of the
models.

5 Dynamic features in Rebeca

In this section, we deal with the dynamic features of a Rebeca model. Then
we show that Theorem 1 applies to dynamic models, too. In a dynamic Rebeca
model, rebecs may be created dynamically, i.e., during the execution of other re-
becs. We allow the definition of variables of rebec type, which can hold references
to rebecs (i.e., the index of the rebec). Due to dynamic creation, I is no longer
fixed and (only) changes upon creation of new rebecs. We use I(s) to denote the
set of (indices of) rebecs in state s. In addition, rebec references can be passed as
parameters to messages. Therefore, the set of rebecs that receive messages from
a given rebec includes its known rebecs, plus the rebecs dynamically assigned
to the rebec variables. Remember that the known rebec list of a rebec must be
determined upon creation, and may not change during the execution.

5.1 Formal Semantics

The behavior of a dynamic Rebeca model R = ||i∈I ri, where I is the (dynamic)
set of rebec indices, is defined as an indexed transition system 〈S, A, T, s0〉. The
set of states S contains all the global states and s0 is the initial state. The set
of actions, which are indexed by indices from I, is denoted A, and is the set
of all transitions. We use the notion I(s) to mean the index set in state s. We
may drop the s argument and just write I when s is irrelevant or clear from the
context. By a (rebec) reference, we mean an index from the set I. The domain
of rebec variables is I ∪ ⊥. Furthermore, like local variables, parameter queue
variables can also be divided into two groups of normal parameters, and rebec
parameters. The domain of normal parameters is D, and the domain of rebec
parameters is I.

The apparent difference here is the introduction of some new sub-actions.
Consider a transition s

aj→ t in a dynamic Rebeca model. In the following, the
new sub-actions of aj are introduced. In addition, the changes to some of the
sub-actions with respect to Section 3 are also explained.

1. Assignment: Assignment to local variables of rebec index type is only
possible in the form of w ← z where w is a local variable and z is either a local
variable or an argument of the containing message server. Both w and z take
values from I, the set of rebec indices. As a result of this assignment, the value
of z in state s is assigned to w in state t. Assignment to normal variables does
not change compared to static models.

2. Rebec creation: A statement of the form ‘new rc(kr1, kr2, . . . , krm) :
(p1, . . . , pd)’ , where rc is the name of a reactive-class, and kru represents an
index from the current set I, and shows that u’th known rebec of the newly

created rebec must be bound to rkru
, and pu shows the u’th parameter to the

initial message. The execution of this sub-action in aj , results in a new index v
being added to I. This index is assigned to the newly created rebec. The effect
of this new index is that the global state t, which is defined as

∏
i∈I ti, will

also include the local state tv. The local state tv of rebec rv is defined in the
same way as other rebecs, i.e. based on the variables and (message, sender and
parameter) queues of the reactive-class rc. The valuation of the local variables
of rv in t is defined as follows. The message initial is placed in rv.m1, and the
parameters p1, p2, . . . , pd are placed in rv.p11, rv.p21, . . . , rv.pd1, respectively,
and rv.s1 is assigned the value j (the index of its creator or parent). All other
(local and queue) variables of rv are undefined (⊥).

3. Send: In dynamic Rebeca models, messages can be sent both to known
rebecs, and to local variables of rebec type. Like the case of a static model,
the rebec rj may send a message m to rk with the parameters n1, . . . , nhk

,
where m ∈ Mk, and either k belongs to Kj or rj .vg is a rebec variable and
holds the value k. In addition, ni may be a normal parameter (ni ∈ D) or a
rebec parameter (ni ∈ I). In the case of a normal parameter, ni can also be an
expression that evaluates to some value from D \ ⊥. However, in the case of a
rebec parameter, ni must be a local variable or an argument of the containing
message server, and must be of rebec index type. This send operation, results in
the message m being placed in the first empty slot of the queue of the receiving
rebec. The result of sending m(n1, . . . , nhk

) is: (recall that hk is the number of
parameter queues of rk and for i < hk, if ni is ⊥ , then ni+1 must also be ⊥):

If ∃0<y≤xk
(rk.my = ⊥ ∧ ∀0<z<yrk.mz 6= ⊥) then rk.my ← m, rk.sy ← j,

∀1≤i≤hk
rk.piy ← ni

Otherwise, xk must be increased and the transition system of the Rebeca
model cannot be constructed.

Passing a rebec reference as a parameter is treated the same as passing normal
variables. Note again that the known rebecs of a rebec must be determined upon
creation of that rebec.

5.2 Symmetry in dynamic Rebeca models

Detecting symmetry in the dynamic Rebeca models is possible in a similar way
as in the static ones. Theorem 1 applies to dynamic Rebeca models without any
changes. Note that Theorem 1 takes into consideration only the rebecs that are
created in the initial state (and the known rebec relation among them). Theorem
2 carries over without any change to the extended setting.

Theorem 2. If a permutation π preserves both rebec types and the known-rebec
relation, and π(s0) = s0, then π is an automorphism of R.

The interesting point is that since we made no changes to the theorem, the
same algorithm is sufficient for detecting the symmetry in dynamic models.

6 Case Study

In this section, we give an example to show how our algorithm works. We use the
’load balancer’ example from [7] with some changes. In this example, there are
six identical clients that need some service, which is provided by three identical
servers. Instead of communicating directly with the servers, the clients send
their requests to load-balancers. The responsibility of the load-balancers is to
distribute the load evenly among the servers. In our example, the round robin
policy is used for load balancing, i.e., each load balancer sends the incoming
requests to the servers in a round-robin manner. The servers, however, reply
directly to the clients. In a static structure, the servers know all the clients
beforehand; but in a dynamic model, the reference of the requesting client is
passed to the server. The server uses that reference for sending its reply.

Fig. 2. The Load-Balancer

We first model it using only static features. In this case, the clients must
be assigned a distinguishing identifier. This identifier is passed to their initial
message server. Furthermore, all the clients are introduced to servers as known
rebecs. The clients pass their identifier together with their request message,
which is passed on by the load balancer. Thus the server knows to whom it
should direct the answer.

The initialization of this system is shown below:

main {
Client c1(lb1):(1),c2(lb1):(2),c3(lb1):(3),c4(lb2):(4),c5(lb2):(5),c6(lb2):(6);
LoadBalancer lb1(s1,s2,s3):(), lb2(s1,s2,s3):();
Server s1(c1,c2,c3,c4,c5,c6):(), s2(c1,c2,c3,c4,c5,c6):(),s3(c1,c2,c3,c4,c5,c6):();

}

In this model, the load-balancers and servers constitute two orbits. However,
clients are not symmetric (each client adds up to one orbit). That is because of
the symmetry-breaking identifiers passed to their initial message server. Using
dynamic features of Rebeca, we can change the model, so that each load-balancer
sends the reference of the sender of a request message to the servers. Therefore,
the servers do not need to know the clients in advance. They just forward the
reply to the rebec, whose reference is sent by the request.

The initialization of this system is shown below:

main {
Client c1(lb1):(),c2(lb1):(),c3(lb1):(),c4(lb2):(),c5(lb2):(),c6(lb2):();
LoadBalancer lb1(s1,s2,s3):(), lb2(s1,s2,s3):();
Server s1():(), s2():(), s3():();

}

In the dynamic model, the clients also form one orbit. This shows that using
dynamic features, we could model this example more naturally, which helps us
find bigger orbits. This encourages the use of this technique in model check-
ing symmetric Rebeca models. Figure 2 shows the static communication graph
(defined in Section 3) of the dynamic load-balancer example.

7 Related Work

Symmetry reduction technique has been implemented in many model checking
tools such as Murphi [13, 14] and SMC [17] and SPIN [4, 7]. Murphi is the first
language (and tool) that provided support for symmetry reduction. If the mod-
eled system is symmetric, the modeler must be aware of it, and use scalar sets
properly to expose the symmetry of the system. SMC was developed by Sistla
et.al., as a symmetry based model checker for verification of safety and liveness
properties. SMC uses a notion of ’modules’, which play the same role as scalar
sets of Murphi. Other tools, like UPPAAL, SMV and SPIN, use the approach of
Murphi for handling symmetry; namely, adding scalar sets to expose the sym-
metry of the system by the modeler. Using scalar-sets (or modules in SMC) is
error prone and sometimes makes modeling a symmetric system more difficult.
In our approach, no change to the syntax of Rebeca is made, and therefore the
modeler does not need to know about the symmetry of the system. Instead, the
symmetry in a Rebeca model is automatically detected, if there is any.

The work of [7] is similar to ours, in the sense that static graphs of channels
are used to detect the symmetry automatically from (dynamic) Promela mod-
els. The dynamicity in their models is caused by sending the channels around.
They do not consider the dynamic creation of processes. In our approach, rebec
references (which can be interpreted as their inbox address) can be sent around,
and rebecs can also be created dynamically.

8 Conclusions

Rebeca is an object based language for modeling and verification of reactive
systems. Since rebecs of the same type show similar behavior, it is easy to find
symmetry in Rebeca models. We showed in this paper that if the static com-
munication graph of a Rebeca model is symmetric, then the whole model is
symmetric. Furthermore, an algorithm is presented for solving the orbit prob-
lem for Rebeca models in polynomial time. The algorithm finds the orbits of
rebecs by examining the known-rebec relation that defines the composition of
the system. In contrast to most other symmetry-related tools, no new construct
needs to be added to the syntax of Rebeca to be used by this algorithm. The

same algorithm still works when dynamic features, such as ‘the dynamic creation
of rebecs’ and ‘the dynamic changing of topology’, are added to the models. As
a result, the symmetry reduction technique can be efficiently implemented in
current Rebeca model checkers [16], or in the direct model checking of Rebeca.

References

1. P. A. Abdulla, B. Jonsson, M. Kindahl, and D. Peled. A general approach to
partial order reductions in symbolic verification. In Proceedings of CAV’98, pages
379–390, 1998.

2. G. Agha. The structure and semantics of actor languages. In Proceedings of the
REX Workshop, pages 1–59, 1990.

3. D. Bosnacki. A light-weight algorithm for model checking with symmetry reduction
and weak fairness. In Proceedings of the SPIN Workshop, pages 89–103, 2003.

4. D. Bosnacki, D. Dams, and L. Holenderski. Symmetric spin. Software Tools for
Technology Transfer, 4(1):92–106, 2002.

5. E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla. Symmetry reductions in
model checking. In Proceedings of CAV’98, pages 147–158, 1998.

6. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
7. A. Donaldson, A. Miller, and M. Calder. Finding symmetry in models of concurrent

systems by static channel diagram analysis. In Proceedings of AVOCS’04, pages
161–177, 2005.

8. E. Emerson and A. Sistla. Symmetry and model checking. Formal Methods in
System Design, 9(1–2):105–131, 1996.

9. E. A. Emerson, S. Jha, and D. Peled. Combining partial order and symmetry
reductions. In Proceedings of TACAS ’97, pages 19–34, 1997.

10. E. A. Emerson and A. P. Sistla. Utilizing symmetry when model checking under
fairness assumptions: An automata-theoretic approach. In Proceedings of CAV’95,
pages 309–324, 1995.

11. E. A. Emerson and T. Wahl. On combining symmetry reduction and symbolic
representation for efficient model checking. In Proceedings of CHARME’03, pages
216–230, 2003.

12. C. Hewitt. Procedural embedding of knowledge in planner. In Proceedings of
IJCAI’71, pages 167–184, 1971.

13. C. Ip and D. Dill. Better verification through symmetry. Formal methods in system
design, 9(1-2):41–75, 1996.

14. C. N. Ip and D. L. Dill. Verifying systems with replicated components in Murphi.
In Proceedings of CAV’96, pages 147–158, 1996.

15. M. Sirjani, A. Movaghar, A. Shali, and F. S. de Boer. Modeling and verification of
reactive systems using Rebeca. Fundamamenta Informaticae, 63(4):385–410, 2004.

16. M. Sirjani, A. Shali, M. M. Jaghoori, H. Iravanchi, and A. Movaghar. A front-end
tool for automated abstraction and modular verification of actor-based models. In
Proceedings of ACSD’04, pages 145–150, 2004.

17. A. P. Sistla, V. Gyuris, and E. A. Emerson. SMC: a symmetry-based model checker
for verification of safety and liveness properties. ACM Transactions on Software
Engineering Methodology, 9(2):133–166, 2000.

18. A. P. Sistla. Employing symmetry reductions in model checking. Computer Lan-
guages, Systems & Structures 30(3-4):99–137, 2004.

