
The Meaning of Ordered SOS

MohammadReza Mousavi1,2,?, Iain Phillips3,
Michel A. Reniers1, Irek Ulidowski4

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Reykjav́ık University, Reykjav́ık, Iceland

3 Imperial College, London, United Kingdom
4 University of Leicester, Leicester, United Kingdom

Abstract. Structured Operational Semantics (SOS) is a popular method
for defining semantics by means of deduction rules. An important feature
of deduction rules, or simply SOS rules, are negative premises, which are
crucial in the definitions of such phenomena as priority mechanisms and
time-outs. Orderings on SOS rules were proposed by Phillips and Uli-
dowski as an alternative to negative premises. The meaning of general
types of SOS rules with orderings has not been studied hitherto. This
paper presents satisfactory ways of giving a meaning to general SOS
rules with orderings. We also give semantics-preserving transformations
between the two paradigms, namely, SOS with negative premises and
SOS with orderings.

1 Introduction

It is well-known that negative premises in Structured Operational Semantics
(SOS) are useful and non-trivial additions but at the same time they may lead
to ambiguities and paradoxical phenomena with respect to the semantics of
SOS [4, 5]. As an alternative to negative premises, [9] proposes to furnish SOS
deduction rules with an ordering. But to avoid the same difficulties as those with
negative premises, [9] restricts itself to the positive subset of GSOS [3] which
does not allow for look-ahead or complex terms as sources of the premises.

It is also well-known from the term rewriting literature that the introduction
of orderings (called priorities) to term rewrite systems introduces challenges for
the well-definedness of the semantics of term rewrite systems [2]. SOS specifi-
cations can be seen as conditional term rewrite systems and thus one expects
similar or even more difficult challenges when studying the general semantics of
SOS with ordering.

A fundamental study of the semantics of ordered SOS (in its full generality)
has not been carried out to date and even misconceptions exist. In [8, Theorem 4],
it is mentioned (without formal proof) that they can generalize their particular
rule format for ordered SOS with look-ahead while preserving the congruence
? The work of the first author has been partially supported by the project “The

Equational Logic of Parallel Processes” (nr. 060013021) of The Icelandic Research
Fund.

property. However, as we show in the remainder of this paper, the introduction
of either look-ahead or complex terms as sources of premises to ordered SOS
jeopardizes the well-definedness of the induced transition relation (let alone the
congruence result).

In the remainder of this paper, in Section 2, we define the basic concept of
Ordered Transition System Specification (OTSS) which is a general framework
for ordered SOS. In the same section, we give some examples, both for illustrating
the applications of ordered SOS and for showing that the semantics of OTSS’s
is not always clear. Then, in Section 3, following [5], we define a model-theoretic
and a proof-theoretic view to the meaning of ordered SOS and prove them equal.
Subsequently, in Sections 4 and 5, we give semantics-preserving transformations
from a novel rule format for ordered SOS (called otyft, for order tyft, where
tyft is a coding for the terms admitted in the deduction rules) to a rule format
for SOS with negative premises (called ntyft [6]) and vice versa. In Section 6 we
show that our otyft rule format indeed induces congruence for strong bisimilarity.
Section 7 concludes the paper.

2 (Ordered) Transition System Specification

2.1 Basic Concepts

Definition 1 (Signature, Term and Substitution) Assume a countable set
of variables V (with typical members x, y, x′, y′, xi, yi . . .). A signature Σ is a set
of function symbols (operators, with typical members f , g, . . .) with fixed arities
ar : Σ → IN. Functions with zero arity are called constants and are typically
denoted by a, b, c and d. Terms s, t, ti, . . . ∈ T are constructed inductively using
variables and function symbols. A list of terms is denoted by

−→
t . When we write

f(
−→
t), we assume that

−→
t has the right size, i.e., ar(f). All terms are considered

open terms. Closed terms p, q, . . . ∈ C are terms that do not contain a variable
and are typically denoted by p, q, l, p′, pi, The set of variables appearing in
term t is denoted by vars(t).

Definition 2 (Ordered Transition System Specification (OTSS)) Given
a signature and a set of variables, a Transition System Specification (TSS) is a
set R of deduction rules.

A deduction rule r ∈ R, is defined as a tuple (H, c) where H is a set of
formulae and c is a positive formula. For all t, t′ ∈ T and l ∈ C we define that
φ = t

l→ t′ is a positive formula and φ′ = t
l9 is a negative formula. A formula

is a positive or a negative formula. We denote the set of formulae by Φ and
the set of positive fomulae by Φp. Term t is called the source of both φ and
φ′, denoted by src(φ) and src(φ′), and t′ is called the target of φ. The formula
c is called the conclusion of r , denoted by conc(r), and the formulae in H are
called its premises and denoted by prem(r). A positive deduction rule (TSS) is
a deduction rule of which all the premises (all the deduction rules) are positive.
The notions of source and target generalize to a set of formulae, as expected.

Also, the notion of “variables of” is naturally lifted to sets of terms, formulae,
sets of formulae and deduction rules.

An Ordered Transition System Specification (OTSS) is a pair (R,<) where
R is a positive TSS and < ⊆ R × R is an arbitrary relation on the deduction
rules. For a rule r, higher(r) is defined as {r′ | r′ ∈ R ∧ r′ > r}, i.e., the set of
rules placed above r by the ordering <.

The intuition behind the ordering on rules is that a rule r can only be applied
when all rules r′ ∈ higher(r) are disabled since they do not have a “reason” (or
“proof”) for their premises to hold. As we show in the remainder, this notion of
“reason” or “proof” is not trivial to define and involves the same complications
as those concerning the semantics of TSS’s with negative premises [5].

2.2 Rule Formats

A major line of research in the SOS meta-theory concerns defining syntactic
schema for TSS’s which guarantee certain properties such as congruence of strong
bisimilarity. A distinguished example of such rule formats is the ntyft rule format
due to [6] which has powerful and complicating features such as look-ahead and
negative premises.

Definition 3 ((N)Tyft) A rule is in the ntyft rule format when it is of the form

{ti
li→ yi | i ∈ I} ∪ {tj

lj9 | j ∈ J}
f(−→x) l→ t

where all variables in −→x and yi’s are pairwise

distinct (i.e., for all i, i′ ∈ I and 1 ≤ j < j′ ≤ ar(f), yi 6= xj , xj 6= xj′ and if
i 6= i′ then yi 6= yi′), f is a function symbol from the signature, I and J are
(possibly infinite) sets of indices, t, ti’s and tj ’s are arbitrary terms and l, li’s
and lj ’s are closed terms.

A TSS is in the ntyft rule format when all its rules are. A rule (TSS) is in
the tyft rule format when it is positive and in the ntyft rule format.

Our goal is to show that ordering on rules is at least as expressive (and of
course complicated in nature) as negative premises and thus, we introduce the
following otyft rule format which will be proved equal in expressiveness to the
ntyft rule format (in Sections 4 and 5).

Definition 4 (Otyft) An OTSS (R,<) is in the otyft rule format when (1)
for all rules r ∈ R, either r is in the tyft rule format or conc(r) ∈ prem(r),
(2) for all rules r, r′ ∈ R such that r′ ∈ higher(r) (a) if a premise of r has the
same target as that of a premise of r′, then the two premises are the same (i.e.,
have the same source and label) and (b) vars(src(prem(r′))) ⊆ (vars(prem(r))∪
vars(src(conc(r)))).

The above rule format generalizes the OSOS rule format of [9] by allowing for
look-ahead and arbitrary terms as sources of premises (both conditions 2.a and
2.b are trivially satisfied by OTSS’s in the OSOS rule format). In the forthcoming

extended version of this paper, we prove that removing condition 2.b gives rise to
a more general rule format called universal otyft, while preserving the congruence
result. The expressiveness of this rule format, called universal otyft, goes beyond
that of the ntyft rule format in that all transition relations specifiable by a TSS
in the ntyft rule format can be specified by an OTSS in the universal otyft rule
format but not vice versa.

The non-tyft rules allowed by the otyft rule format are mainly for conve-
nience: our definitions of semantics in Section 3 are insensitive to such rules and
they are useful in the translation between the ntyft and the otyft rule formats
in Section 4.

2.3 Examples

Orderings on positive rules can replace negative premises in rules [9]. In the
remainder, we start with a simple example motivating the use of ordering (as
an alternative to negative premises). Then we show that our new otyft rule
format extends the applicability of the ordered SOS paradigm by specifying an
example involving look-ahead. Finally, we show that this extension comes at a
price, namely, the semantics of general OTSS’s (e.g., those involving look-ahead)
is not always clear and should be studied more thoroughly.

Example 5 (Priority) The priority operator θ [1] may be used to represent
such phenomena as time-outs and interrupts. For a given partial order ≺ on
actions (a set of constants, denoted by a, b, c, . . . ∈ Act), θ(p) is a restriction
on the behavior of p such that action a can happen only if no b with a ≺ b is
possible. If Ba = {b | a ≺ b}, then θ can be defined by this TSS (where the rule
is actually a rule schema which should be repeated for each action a ∈ Act):
x
a→ y {x b9 | b ∈ Ba}

θ(x) a→ θ(y)
.

Alternatively, θ can be defined by positive rules ra, equipped with the order-

ing defined by ra < rb whenever a ≺ b: (ra)
x
a→ ya

θ(x) a→ θ(ya)
where ya are distinct

variables for all a ∈ Act . (Note that the naming of variables in the rules related
by ordering is indeed important; if for two different actions a and b such that
a ≺ b, ya = yb, then the OTSS specified by the above rules is not in the otyft
rule format and as shown in Section 6, it may lack intuitive properties such as
congruence of bisimilarity.)

Example 6 (Timed Parallel Composition) Consider the following TSS defin-
ing the semantics of a subset of Hennessy and Regan’s Process Algebra for Timed
Systems (TPA) [7]. The signature consists of a constant nil , unary operators a.
(action prefixing, for all a ∈ Act), τ. (internal action prefixing) and σ. (time
step prefixing) and a binary operator ‖ (parallel composition). (Constants a, τ
σ are also introduced in the signature to model the labels.)

(a)
a.x

a→x
(τ)

τ.x
τ→x

(σ0)
σ.x

σ→x
(σ1)

a.x
σ→ a.x

(σ2)
nil σ→nil

(‖0)
x0

a→ y0

x0 ‖ x1
a→ y0 ‖ x1

(‖1)
x1

a→ y1

x0 ‖ x1
a→x0 ‖ y1

(τ0)
x0

τ→ y0

x0 ‖ x1
τ→ y0 ‖ x1

(τ1)
x1

τ→ y1

x0 ‖ x1
τ→x0 ‖ y1

(comm)
x0

a→ y0 x1
a→ y1

x0 ‖ x1
τ→ y0 ‖ y1

(time)
x0

σ→ y0 x1
σ→ y1 x0 ‖ x1

τ9
x0 ||x1

σ→ y0 || y1
In the semantics of the parallel composition operator, p ‖ q can pass time

(denoted by label σ) if both p and q can pass time, and if they are stable and
cannot communicate (i.e. p ‖ q τ9).

The above semantics can be specified in ordered SOS by placing a positive
version of the rule (time) below the rules (τ0), (τ1) and (comm) as shown below.
All other rules are copied to the following OTSS and are unrelated (in terms of
ordering) to the rules below.

↓ (τ0)
x0

τ→ y0

x0 ‖ x1
τ→ y0 ‖ x1

(τ1)
x1

τ→ y1

x0 ‖ x1
τ→x0 ‖ y1

(comm)
x0

a→ y0 x1
a→ y1

x0 ‖ x1
τ→ y0 ‖ y1

(time)
x0

σ→ y′0 x1
σ→ y′1

x0 ‖ x1
σ→ y′0 ‖ y′1

We fix the above notation for ordering so that in each column, rules of the
upper row have priority over rules of the lower row, i.e., rules of the lower row
can only be “applied” when no rule in the upper row (of the same column)
can be “applied”. Formally, we have the following orderings: (τ0) > (time),
(τ1) > (time), and (comm) > (time).

In the following example, we address the idea of extending OSOS [9] with
look-ahead as suggested by [8, Theorem 4] and show that it may lead to patho-
logical specifications with an unclear meaning. (The rule format of [8] extends
traditional OTSS with probabilities but the problem we address below is or-
thogonal to the presence or absence of probabilities and hence, we use the plain
OTSS setting as defined before.)

Example 7 (OSOS with Look-Ahead) Consider the OTSS with the follow-
ing rules. Note that according to the notation fixed before, in the following

OTSS, it holds that x
b→ y y

d→ z

f(x)
d→ d

> x
b→ y

f(x)
c→ c

and x
a→ y y

c→ z

g(x)
c→ c

> x
a→ y

g(x)
d→ d

but it

does not hold that
a

a→ f(a)
> x

b→ y

f(x)
c→ c

.

↓
x

b→ y y
d→ z

f(x) d→ d

x
a→ y y

c→ z

g(x) c→ c a
a→ f(a) a

b→ g(a)
x

b→ y

f(x) c→ c

x
a→ y

g(x) d→ d

At first sight, it is not intuitively clear which of the following three transition
relations should be considered as the meaning of the above OTSS.

1. {a a→ f(a), a b→ g(a), f(a) c→ c, g(a) c→ c} or
2. {a a→ f(a), a b→ g(a), f(a) d→ d, g(a) d→ d} or
3. {a a→ f(a), a b→ g(a)}.

So, a convincing semantics for OTSS’s should either be neutral about different
possibly derivable transitions (in items 1 and 2) or reject the above OTSS al-
together due to its ambiguous nature. We present solutions that cater for both
possibilities in the remainder of this paper.

The situation with the following OTSS is even worse.

↓
x
a→ y y

b→ z

f(x) b→ a a
a→ f(a)

x
a→ y

f(x) b→ b

If one initially assumes that from rules in the first row one cannot derive any
transition with f(a) as its source (which is a legitimate assumption), then the
rule below allows for deriving f(a) b→ b. This transition, in turn, enables the
premises of the rule above it (leading to the conclusion that f(a) b→ a should be
derivable) and thus the very same rule below must have been disabled and the
chain of contradictory conclusions goes forever. Again, any convincing semantics
for OTSS’s should either find a way to deal with the contradicting conclusions
(e.g., by considering all of them uncertain, yet possibly, derivable transitions) or
reject the above OTSS altogether due to its paradoxical nature. The notions of
semantics presented in the remainder allow for both interpretations.

The above examples make the case for a more profound study of the meaning
of ordered SOS which is the subject of the following section.

3 Semantics of OTSS

An OTSS is supposed to induce a unique transition relation on closed terms
but as Example 7 already suggested, for some OTSS’s the way to assign such

a transition relation may not be straightforward. This phenomenon has been
known in several areas such as logic programming and term rewriting and even
inside the SOS meta-theory as the result of introducing negative premises to SOS
rules. For TSS’s with negative premises, several notions of semantics have been
defined and used of which [5] provides an overview and a comparison. In this
paper, due to lack of space, we only present two very general model-theoretic and
proof-theoretic approaches to giving semantics to OTSS’s. To avoid repeating
the phrase “an instance of rule r under a closing substitution σ”, in this section,
we assume that the OTSS’s only contain closed terms. To define the semantics
of an arbitrary OTSS, one may instantiate the rules and the ordering relation
under all closing substitutions and then use the notions of the semantics in the
remainder of this section.

We start with the following notion of provability which is the usual way of
giving semantics to ordinary positive TSS’s (i.e., without ordering or negative
premises).

Definition 8 (Proof) Given an OTSS (R,<), a proof p for a formula φ is a
well-founded upwardly branching tree of which

1. the nodes are formulae,
2. the root is φ, and
3. if a node is labelled φ′ and the nodes above it form the set K; then there is

a rule r = K
φ′ ∈ R.

An r-proof for φ is a proof in which the last step is due to rule r. We write `p φ
when p is a proof in (R,<) for φ. We denote the set of rules used in a proof p
by rules(p).

3.1 Model-Theoretic Solution

For OTSS’s the above notion of provability is too lax because it neglects the
ordering among rules. Hence, we have to provide an addendum to the above
concept which makes sure that the rules placed above those used in the proof
are disabled. The first way to specify this addendum is the following (model-
theoretic) notion of correctness.

Definition 9 (Correct) Given an OTSS (R,<) and a transition relation T , we
say that a rule r = H

φ ∈ R is correct w.r.t. T when for all r′ = H′

ψ ∈ higher(r),
H ′ * T .

Our first solution is based on the following notion of three-valued stable
model. Such three-valued solutions assign three transition relations to each
OTSS, namely the set of transitions that are certainly derivable denoted by
C, transitions that are possibly derivable denoted by P (thus C ⊆ P) and the
set of transitions that are impossible denoted by I. Three-valued solutions may
be written as pairs of these sets, i.e., (C,P) or (C, I), with the third component

being easily constructed given the other two. Later in this section, we discuss
how to adopt the three-valued stable model to define a single transition relation
for an OTSS.

Definition 10 (Three-Valued Stable Model) Given an OTSS (R,<), a pair
of transition relations (C,P) is a three-valued stable model when C ⊆ P and

1. φ ∈ C ⇔ `p φ for some proof p such that ∀r∈rules(p) r is correct w.r.t. P and
2. φ ∈ P ⇔ `p φ for some proof p such that ∀r∈rules(p) r is correct w.r.t. C.

The third value of the stable model I, for impossible, is the set of transitions
that are not included in P . Of particular interest, among three-valued stable
models, is the least one with respect to the information ordering, i.e., (C,P) <
(C ′, P ′) when C ⊆ C ′ and P ′ ⊆ P .

The following reduction technique [4] is a method to calculate the least three-
valued stable model (thus such a least model indeed exists).

Definition 11 (Reduction Technique) For an ordinal α, define:

C0
.= ∅

U0
.= Φp

Cα
.= {φ | `p φ ∧ ∃β<α∀r∈rules(p)r is correct w.r.t. Cβ ∪ Uβ}

Uα
.= {φ | `p φ ∧ ∀β<α∀r∈rules(p)r is correct w.r.t. Cβ}

Lemma 12 Given an OTSS (R,<), for all ordinals α and β such that α < β,
the following statements hold:

1. Cα ⊆ Cβ ;
2. Uβ ⊆ Uα;
3. Cβ ⊆ Cα ∪ Uα;
4. Cβ ∪ Uβ ⊆ Cα ∪ Uα.

From items 1 and 2 of the above lemma (and Tarski’s fixpoint theorem), it
follows that both Cα and Uα will reach fixpoints, which we denote by C and U ,
respectively. From item 1-4 and Definition 11, it follows that (C,C ∪ U) is the
least three-valued stable model of the OTSS under consideration.

Example 13 Consider the first OTSS of Example 7. Its three-valued stable
model consists of a certain component C = {a a→ f(a), a b→ g(a)} and a possible
component P = {a a→ f(a), a b→ g(a), f(a) c→ c, g(a) c→ c, f(a) d→ d, g(a) d→ d}.

Similarly, for the second OTSS of Example 7, the certain component of the
least three-valued stable model only contains a a→ f(a) and the possible compo-
nent contains a a→ f(a) as well as both f(a) b→ a and f(a) b→ b.

Now the question is how to reduce the three-valued model to a two-valued
one, i.e., to associate a unique transition relation to a (meaningful) OTSS. The
following notions provide two plausible answers to this question.

Semantics 1 (Complete) An OTSS is meaningful when for its least three-
valued stable model (C,P) it holds that C = P (such an OTSS is called complete)
and its meaning is the least three-valued stable model.

In order to obtain useful meta-results, e.g., the congruence meta-result (dis-
cussed in Section 6), one has to restrict attention to complete OTSS’s and
for practical applications the OTSS under consideration should be complete
or should be rejected. However, one might want to generalize Semantics 1 to
the following notion of irrefutability which assigns a transition relation to all
OTSS’s.

Semantics 2 (Irrefutable) All OTSS are meaningful and their meaning is the
P component of their least three-valued stable model.

3.2 Proof-Theoretic Solution

An alternative way of giving semantics to OTSS’s is by means of a well-supported
proof. In a well-supported proof, in addition to constructing a traditional proof,
we provide a “proof” for inapplicability of the higher rules; such a “proof” is
called a well-supported denial. A well-supported denial makes sure that a formula
is not derivable since all proofs leading to the formula contain a rule that is
provably disabled (i.e., there is a higher rule that has a well-supported proof for
all of its premises).

Definition 14 (Well-Supported Proof) Given an OTSS (R,<) and a rule
r ∈ R, a well-supported r-proof (or just a well-supported proof) for φ is a well-
founded upwardly branching tree of which

1. the nodes are formulae,
2. the root is φ,
3. if a node is labelled φ′ and the nodes above it form the set K, then there is

a rule r′ = K′

φ′ ∈ R such that K ′ ⊆ K (for the root node, r′ = r) and for all

r′′ = H′

ψ ∈ higher(r′), there exists a set Dψ′ ⊆ K denying some ψ′ ∈ H ′ by
a well-supported proof.

A set Dφ denies a formula φ when for all proofs p such that `p φ (in the sense of
Definition 8), there exists a rule r ∈ rules(p) and there exists a rule r′ = H′

φ′ ∈
higher(r) such that H ′ ⊆ Dφ. The structure providing a well-supported proof
for all ψ ∈ Dφ is called a well-supported denial for φ.

We write `ws φ (`ws ¬φ) when there is a well-supported proof (denial) for
φ.

The following theorem states that the model-theoretic and the proof-theoretic
views of the least well-supported semantics indeed match.

Theorem 15 Given an OTSS (R,<), let C ′ be the set of all formulae that
have a well-supported proof and I ′ the set of all formulae that have a well-
supported denial. Let (C,P) be the least three-valued stable model of (R,<).
Then, (C ′, (Φp \ I ′)) = (C,P).

4 From Ntyft to Otyft

We assume in the remainder that the TSS’s in the ntyft rule format are pure,
i.e., only contain variables among the source of the conclusion and targets of
the premises. Impure TSS’s can be transformed to pure ones (while keeping the
TSS in ntyft rule format and preserving the semantics) by making many copies
of rules each instantiating the other variables by a closed term [6]. (Hence, there
is no expressiveness gap between the ntyft rule format and its pure subset, i.e.,
all transition relations that can be specified by the ntyft rule format can also be
specified by the pure ntyft rule format and vice versa.) Our translation is correct
for impure rules, as well but the outcome will not be in the otyft rule format.

Definition 16 (Pure Ntyft to Otyft: Translation Scheme) Given a TSS
R in the pure ntyft rule format, its translation to otyft, denoted by otyft(R),
is an OTSS (R′, <) where R′ .= {r+, sr,j | r ∈ R, j ∈ Jr}, <

.= {(r+, sr,j) | r ∈

R, j ∈ Jr} and for each r ∈ R of the form {ti
li→ yi|i∈Ir}∪{tj

lj9 |j∈Jr}
f(−→x)

l→ t
, r+ and sr,j

(for each j ∈ Jr) are defined as follows.

(r+)
{ti

li→ yi|i ∈ Ir}

f(−→x) l→ t
(sr,j)

{tj
lj→ yj}

tj
lj→ yj

In rule sr,j , yj is a fresh variable not appearing in r.

The following theorem states that the diagram depicted in Figure 1.(a) com-
mutes.

R (pure ntyft) otyft(R)

3-Valued Stable Model

[4] Definition 10

Definition 16
(R,<) (otyft) ntyft(R,<)

3-Valued Stable Model

Definition 10 [4]

Definition 18

(a) (b)

Fig. 1. Correctness of translations: (a) from ntyft to otyft and (b) from otyft to ntyft

Theorem 17 (Pure Ntyft to Otyft: Correctness) The translation from pure
ntyft to otyft preserves its three-valued stable model.

5 From Otyft to NTyft

Definition 18 (Otyft to Ntyft: Translation Scheme) Given an OTSS
(R,<) in the otyft rule format, partial function Sr : R ⇀ I, where I .=⋃
i∈Ir

Ir, is a selection function for r ∈ R when for all s ∈ higher(r) of the form
{ti

li→ yi|i∈Is}
t

l→ t′
, it holds that Sr(s) ∈ Is. (Thus, if Is = ∅ for some s ∈ higher(r),

then the set of selection functions for r is empty.)
Given an OTSS (R,<) in the otyft rule format, its translation to ntyft,

denoted by ntyft(R,<), is defined as {rS | r ∈ tyft(R), S is a selection function
for r} where tyft(R) is the subset of R that conforms to the tyft rule format and

for each r ∈ tyft(R) of the form {ti
li→ yi|i∈Ir}
f(−→x)

l→ t
, rS is defined as follows.

(rS)
{ti

li→ yi|i ∈ Ir} ∪ {tS(s)

lS(s)9 |s ∈ higher(r)}

f(−→x) l→ t

The idea of the above translation is that for each rule r in R, for all rules
s placed above r, an arbitrary premise S(s) is negated and included in the
premises of rS . This way, we make sure that rS is applicable if and only if r is
applicable and all rules above it are disabled. We can safely exclude rules that
do not conform to the tyft rule format in our translation since their conclusion is
among their premises and thus, they do not contribute to the least three-valued
well-supported model.

The following theorem states that the diagram depicted in Figure 1.(b) com-
mutes.

Theorem 19 (Otyft to Ntyft: Correctness) The translation from otyft to
ntyft preserves its three-valued stable model.

6 Congruence Meta-Theorem

As it is shown in [4], for a complete TSS in the ntyft rule format, strong bisimi-
larity is a congruence. Since our translation (in Section 5) provably preserves the
three-valued stable model, we can recast this result to the setting with ordered
SOS, as follows.

Theorem 20 (Congruence for Otyft) For a complete OTSS in the otyft rule
format, bisimilarity is a congruence.

Note that our only essential addition to the constraints of tyft rule format
is the constraint 2.a of Definition 4 (as mentioned before, constraint 2.b can be
removed and is only needed to obtain compatibility with the ntyft rule format).
The following counter-example shows that constraint 2.a is indeed useful for the
purpose of congruence and cannot be dropped.

Example 21

↓
b
a→ y

b
a→ y a

a→ b b
a→ a

x
a→ y

f(x) a→ a

The above OTSS is complete and it meets all the constraints of Definition
4 except for the constraint 2.a. The C (P) component of the least three-valued
stable model of the above OTSS is {a a→ b, b

a→ a, f(a) a→ a} but f(b) a→ a is not
included in it. Hence, for the above OTSS a and b are bisimilar while f(a) and
f(b) are not.

7 Conclusions

In this paper, we presented ways of giving a meaning to ordered SOS specifica-
tions. Furthermore, we gave semantics-preserving translations (w.r.t. our chosen
notion of semantics) between general ordered SOS and SOS rule formats, namely
otyft and ntyft, respectively. Finally, thanks to our semantics-preserving trans-
lation, we obtained a congruence meta-result for complete OTSS’s in the otyft
rule format.

References

1. J. C. M. Baeten, J. A. Bergstra, J.W. Klop. Syntax and defining equations for an
interrupt mechanism in process algebra. Fundamenta Informaticae, XI(2):127–168,
1986.

2. J. C. M. Baeten, J. A. Bergstra, J.W. Klop, and W. P. Weijland. Term-rewriting
systems with rule priorities. TCS, 67(2&3):283–301, 1989.

3. B. Bloom, S. Istrail and A.R. Meyer. Bisimulation Can’t Be Traced. JACM,
42(1):232–268, 1995.

4. R. Bol and J.F. Groote. The meaning of negative premises in transition system
specifications. JACM, 43(5):863–914, 1996.

5. R.J. van Glabbeek. The meaning of negative premises in transition system speci-
fications II. JLAP, 60-61:229–258, 2004.

6. J.F. Groote. Transition system specifications with negative premises. TCS,
118(2):263–299, 1993.

7. M. Hennessy and T. Regan. A process algebra for timed systems. I&C, 117(2):221–
239, 1995.

8. R. Lanotte and S. Tini. Probabilistic congruence for semistochastic generative
processes. In Proceedings of FOSSACS’05, volume 3441 of LNCS, pages 63–78.
Springer, 2005.

9. I. Ulidowski and I.C.C. Phillips. Ordered SOS Rules and Process Languages for
Branching and Eager Bisimulations. I&C, 178(1):180–213, 2002.

