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Abstract

We report on our first experience with applying model-based testing techniques to an
operational Electronic Funds Transfer (EFT) switch. The goal is to test the conformance
of the EFT switch to the standard flows described by the ISO 8583 standard. To this end,
we first make a formalization of the transaction flows specified in the ISO 8583 standard in
terms of a Labeled Transition System (LTS). This formalization paves the way for model-
based testing based on the formal notion of Input-Output Conformance (IOCO) testing.
We adopt and augment IOCO testing for our particular application domain. We develop a
prototype implementation and apply our proposed techniques in practice. We discuss the
encouraging obtained results and the observed shortcomings of the present approach. We
outline a roadmap to remedy the shortcomings and enhance the test results.

1 Introduction

Electronic Funds Transfer (EFT) systems provide the infrastructure for online financial transac-
tions such as money transfer between bank accounts, electronic payments, balance enquiries, and
bill payments. A central part of an EFT system is the EFT Switch (also known as Payment

Switch, or simply Switch), which provides a communication mechanism among different com-
ponents of an EFT system such as Automated Teller Machine (ATM) and Point-of-Sale (POS)
terminals, e-Payment applications, and core banking systems.

The EFT system components communicate in the form of transactions consisting of several
messages passed through the switch. For example, during a simple purchase transaction originated
by a POS terminal, the switch forwards the purchase request to the core banking system (to charge
the card holder’s account) and forwards the response back to the POS terminal. In the real setting
however, possible failures in the components and asynchrony in the communication media may
give rise to more complicated transaction flows. For example, if a POS terminal sends a purchase
request and it does not receive the response from the switch in time, it will time-out and send a
reversal message to the switch, requesting to cancel the previous transaction. It is also possible
that when the time-out occurs, the purchase response is on the way back to the POS terminal. In
this case, the POS terminal receives a purchase response after it sends a reversal request (which of
course must be responded too, by the switch). This way, each transaction may comprise a complex
combination of different possible interaction scenarios among the components of the EFT system.

In the presence of such complicated transaction flows, a thorough testing of EFT switches is
essential, as presence of errors may lead to inconsistencies among different accounts (particularly
among accounts at different banks). This calls for a reconciliation process, possibly requiring
manual checks which are very costly for the banks.
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The correct behavior of a typical EFT system is specified in the ISO 8583 standard [2] at a
high level of abstraction. Since the nature of the system is concurrent and distributed, generating
test cases manually with a high coverage is practically impossible, as the number of (combinations
of) transaction flows is very large. To solve this, we use model-based testing [4, 11] as a systematic
method to automatically generate test cases from the specification.

Our testing method is mainly based on a formalization of the ISO 8583 standard in terms of
Labeled Transition Systems (LTSs). Our formal specification captures the behavior of an ISO-
compliant EFT switch as well as its environment, i.e., the terminals and the core banking system.
We have also performed model-checking on our formal model to make sure that our formalization
of the ISO 8583 standard meets the intuitive requirements set forth by the standard as well as by
the switch designers. This formalization paves the way to exploit a formal conformance testing
method called IOCO (for Input Output Conformance) testing [17, 18] to automatically generate
test-cases and perform online conformance testing. We combine IOCO testing with functional
testing techniques, à la category-partition method, to capture the data-related aspects of switch
functionality. Moreover, we interface the test-case generator, with our own test-case analysis and
execution tool to evaluate, store, and prioritize test cases; the test-cases are executed and their
outcomes are also stored by the same tool. Our test selection technique combines the black-
box nature of IOCO (focusing on model-coverage criteria) with white-box coverage metrics in
order to choose an effective test-suite. We developed a prototype tool implementing the above
mentioned functionality. Using our tool, we can generate a prioritized test-suite for off-line and
regression testing, without any need to explore the formal model any more. Furthermore, during
the execution of test cases, our tool also validates various business rules which could not be
captured in the formal model.

We applied our prototype implementation to an operational switch, developed by Fanap Co.,
interacting with POS terminals and a core banking system as its environment. We have covered
a number of major transaction types and related business rules and have detected some defects
in the switch, which are reported in the remainder of this paper. The defects have been reported
to development team and have been fixed subsequently. The initial results obtained from our
prototype, presented in this paper, were very encouraging. Hence, Fanap decided to embark
on the development of a proprietary test-case generation tool which automatically combines the
behavioral and functional models outlined in this paper.

The rest of this paper is organized as follows. Section 2 provides a background on the switch
specification as described in the ISO 8583 standard. Section 3 covers our testing approach in
addition to a quick overview of the IOCO theory. The way we model the system in terms of
Input Output Transition Systems is described in Section 4. Various aspects of our testing method
including test case execution, and generation and prioritization of off-line test suites, as well as
checking business rules are presented in Section 5. The test results and code coverage are given in
Section 6. Discussion of the merits and demerits of the current approach are discussed in Section
7. Section 8 presents a brief overview of related work. Finally, we conclude the paper and present
some directions for future work in Section 9.

2 EFT Switch Functionality

Typical functionality of an EFT Switch include performing a purchase, balance enquiry, with-
drawal, bill payment, refund, and money transfer. All these functions are composed of a few
transaction flows introduced below. Apart from financial functions, there are also features for
switch administration, monitoring and auditing that are out of the scope of this study.

As the components of an EFT system are usually provided by different vendors, the ISO 8583
standard [2] is defined to determine the type and format of the messages exchanged among the
components of an EFT system. The standard also defines message and transaction flows at a high
level of abstraction. For example, Fig. 1 shows the flow of a financial transaction as depicted in
the standard [2]. According to the standard, the acquirer is defined as “the financial institution
(or its agent) which acquires from the card acceptor the data relating to the transaction and
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1210 or 1230

acquirer issuer

1200/1201 financial request/financial request repeat
1210 financial request response

1220/1221 financial advice/financial advice repeat
1230 financial advice response

Figure 1: Message flow for financial transactions [2]

Authorization

Financial

Reversal Chargeback

Start Sequence
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Figure 2: Allowed sequence of business transactions – solid arrows indicate the typical order, while
dashed arrows indicate the possible (exceptional) order of transactions [2, Section 5.3.1].

initiates that data into an interchange system.” The card issuer is “the financial institution (or its
agent) which issues the financial transaction card to the card holder.” According to the described
flow, the acquirer sends a request to the card issuer, followed by zero or more request repeat
messages, until it receives a response from the issuer. The data format of the messages (e.g., 1200
- financial request) has been defined elsewhere in the standard [2, Chapter 4]. Note that each
typical functionality of an EFT switch, e.g., a purchase or a balance enquiry, is composed of a
number of transaction flows, such as the one depicted in Fig. 1. Apart from the flow depicted in
Fig. 1, there are eleven more transaction flows specified in the standard. We refer to [2, Chapter
5] for a detailed presentation of all transaction flows.

In addition to a generic flow for each transaction type, the standard also specifies two other
flows. One that specifies possible sequences of transactions relating to a single instance of business
at a point of service, and another that defines the reconciliation process between the acquirer
and the card issuer. Fig. 2 shows the former, which can be seen as a high level sequence diagram
referencing the individual transaction flows described before. Each box in the figure is a transaction
with its flow specified in the standard, e.g., the financial transaction described before.

3



rcv pos req?

snd core req!

rcv core req!

snd pos resp!

time out?

rcv pos req?

snd core req!

rcv core req!

snd pos resp!

time out?

(a) (b)

rcv_pos_req! snd_core_req?

snd_pos_resp?

rcv_core_resp!

snd_core_req?

snd_pos_resp?

fail

fail

fail

time_out!

fail

rcv_core_req?

pass
rcv_core_req?

snd_core_req?

snd_pos_resp?

pass

fail

fail
rcv_core_req?

(c)

Figure 3: IOCO testing of (b) an implementation against (a) a specification results in (c) a tree
presenting test cases based on transaction flows.

3 Testing Approach

3.1 IOCO Testing

IOCO testing [17, 18] is a formal approach to model-based black-box testing of functional require-
ments. The approach relies on a formal model of system behavior, a specification typically called s,
which captures the observable input and output interactions of the system with its environment in
terms of a Labeled Transition System (LTS). Based on the specification, IOCO testing generates
test-cases in order to establish whether the implementation under test, typically denoted by i,
conforms to its specification, written as i conf s. The basic concepts of IOCO testing is illustrated
next using the specification LTS depicted in Fig. 3. In an LTS specification of (an extremely
simplistic view of) a transaction’s life-cycle in an ideal switch is given. The IOCO testing is aimed
at checking whether a particular implementation, e.g., the one depicted in Fig. 3.(b), conforms to
its specification depicted in Fig. 3.(a). (Note that the LTS of the implementation is not available
to the tester, and the LTS is only used here to illustrate possible patterns of interaction with the
system.) To this end, the IOCO testing technique uses the specification LTS and generates test-
cases, e.g., those depicted in Fig. 3.(c), to test whether the (black-box) implementation conforms
to the specification. In this figure, input and output actions are affixed with a question and an
exclamation mark, respectively. In Fig. 3.(a), each path of the depicted tree presents a pattern
of interaction (i.e., providing input- and observing output messages) eventually leading to a pass
or a fail verdict. In particular, executing the test-case corresponding to the path rcv pos req! .
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Figure 4: An overview of the test infrastructure

snd core req? . time out! . rcv pos req! . snr cor req? reveals a bug in the implementation.
(Note that inputs in the model become outputs of the test-case and outputs of the model become
inputs of the test-case.)

3.2 The Testing Infrastructure

An overview of our test infrastructure is given in Fig. 4. We implemented this infrastructure in
three phases, explained below.

In the first phase, we made an LTS model of the EFT switch system and a POS terminal
as its environment. Details of this explanation are described in Section 4. Then, we run the
generated test cases on a switch system connected to an operational core banking system. For
this experiment, we used the timed-automata language of Uppaal [3] as our modeling language
and Uppaal Tron [10] as our test-case generation tool. (Uppaal Tron implements a variant
of IOCO, called RTIOCO; see [16] for a formal comparison of the notions.) For the commercial
use, we plan to implement the test-case generation algorithm in our in-house tool and integrate
it with our test infrastructure described below. In addition to that, we developed an adaptor to
translate and augment abstract interactions of the model to concrete network messages sent to
the switch, on one side, and strip down network messages from EFT to model interactions, on the
other side. After running each test-campaign and receiving a verdict from the IOCO testing, we
made a manual inspection of the log files. In the initial stages of testing, this resulted in one of
the following conclusions:

1. a false negative: the IOCO testing has reported a failure while the system behavior is as
expected; in our experience, such false negatives mostly stem from an incomplete treatment
of asynchronous messages in our specification. By making the specification complete, we
gradually got fewer and fewer false negatives.

2. a false positive: the IOCO testing has passed the success verdict while the actual behavior
of the system is not as expected (e.g., the current state of the core banking system does not
show the expected result of the transaction). This has been mainly due to failures in other
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components of the EFT system, which fall outside our test-plan. We partially solved this
problem in our second phase of modeling (see below).

3. a true negative: the IOCO testing has found a bug. For example, we have found a bug which
was known by the development team but was deemed non-reproducible before. Again,
the main cause of difficult reproduction of such bugs is the asynchronous nature of the
system which allows for a huge space of interleaving among different phases of concurrent
transactions. However, with a precise specification of the interleaving at hand, we could easily
reproduce the bug and in debugging, it was traced back to a null pointer dereferencing.

In the second phase, we built a model of ideal POS and core banking systems and further
implemented the model of the ideal banking system as a separate parallel component. This step
is motivated by two facts: firstly, the core banking system is a separate component and usually
operates in a different environment. Core may have its own bugs that should not affect switch
testing process. Hence, using the models for our environment components, we could test a stand
alone EFT switch. This helped us focus the process on our test plan, eliminate false positives and
isolate the bugs in the debugging procedure. Secondly, we faced severe performance problems when
we tried to generate massively parallel executions of transaction flows. After trying several options,
the main cause is traced back to the huge state-space of the model resulting from the combination
of the core banking system model on one hand and the EFT switch and POS models on the other
hand. Hence, we separated the model of the ideal core banking system and implemented it as a
separate component, running in parallel and acting as the environment for the test-case generator
(more details to be found in Section 4).

Finally, in the third phase, we built our tools for storing test-cases and their outcomes, priori-
tizing them and executing off-line test-suites and placed it around the test infrastructure. For the
test prioritization and selection, we implemented our heuristics and combined them with the code
coverage metrics from Cobertura [1]. This allows us to re-use the information resulting from an
online test campaign in future tests and also use the generated test-suite for regression testing.

4 Modeling the EFT Switch

4.1 A Cook’s Tour of Uppaal Timed Automata

Our LTS formalization of the ISO 8583 standard is specified in terms of the the input language of
Uppaal in order to benefit from several modeling, simulation, verification and test-case generation
tools available in its tool-set. A model in Uppaal is in the form of a network of timed automata.
A timed automaton is a finite-state machine (FSM), i.e., a set of locations which are connected via
edges, extended with (constraints on and assignments to) clock variables [3]. An edge in anUppaal

timed-automata can be annotated by four types of labels: selections, guards, synchronizations and
updates.

When taking a transition specified by an edge, an automaton may send or receive a signal in
the synchronization part. Synchronization in Uppaal can be either a handshaking or a broadcast
synchronization. Common to our previous examples, a send signal in Uppaal is annotated by an
exclamation mark and its receive counterpart is annotated by a question mark.

In order to specify concepts such as guards, parameterized synchronization and updates, one
can define variables of given finite types in Uppaal. A variable may be global (visible to all
automata), local (visible only locally) or bound (visible only during a transition and assigned a
non-deterministic value from a specified range). Uppaal also provides variable and signal arrays.
Signal arrays can be used in order to pass data with signals. One may further define user-defined
functions to manipulate and calculate data values in a C-like syntax.

When a transition corresponding to an edge is taken, the update label will be executed and
the corresponding variables are thus updated. It is possible to assign an arbitrary value from an
integer interval or a scalar set to a bound variable. This is achieved by specifying a select label
for the variable.
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4.2 Organizing Models

The behavior of an EFT switch and its environment is specified in terms of a number of transaction
flows. Combining all of these flows into a single model (a timed-automaton) would compromise
readability and maintainability; it is also very difficult, if not impossible, to check whether the
specified automaton is a correct formalization of the flow specified by the ISO standard. Hence, we
break the specification into several timed automaton, each modeling the behavior of EFT system
components in a specific transaction flow (see Fig. 5).

To show how we model a transaction flow, consider a simplified model of the switch in Reversal
transaction (Fig. 5.(b)). The starting state is s1, where we send a rev ready signal indicating we
are ready to start a Reversal. Then, we wait for receiving a signal from a POS terminal to start the
transaction. The signal is accepted from the channel rev req[j]. The parameter j, determined by
the environment, indicates the value of the current transaction ID and is assigned to the variable
curTrx for future use. Specified as a requirement, the response of a reversal request should be
immediately sent back to the POS terminal. Then, the reversal request is sent to the core banking
system for processing. So, from state s3, we make a transition to s4, sending reversal responses
to POS (rev pos rs). It is possible that the response is lost on the way back to the POS. So, an
unlabeled transition to s4 is also possible. The choice between the two cases is non-deterministic.
Making a transition from s4 to s5, the switch sends a reversal request to the core banking system
(rev core rq). Note that the two last signals are sent with the same transaction ID (since the switch
does not change the transaction ID). However, it is possible to receive a reversal response from
the core banking system (rev core rs) with an arbitrary transaction ID. So a separate variable is
used as the channel parameter (receiveID). In case the received transaction ID is different form the
expected value (curTrx), we go back to s5 and wait for the signal with expected ID. Otherwise, we
complete the transaction by sending a rev done signal. The FSM in Fig. 5 (c) shows the behavior
of POS in the same transaction flow. The POS instance sends a reversal request via the channel
rev req to the switch instance and receives the reversal response via the channel rev pos rs.

It is possible to have multiple instances of the same transaction flow executing concurrently.
So, we need to have multiple instances of the corresponding FSMs in our model. This is possible
in Uppaal, since we can declare multiple instances of the same FSM “template”. In fact, the
number of declared instances of an FSM determines the maximum number of concurrent instances
of the corresponding transaction type. To generate various combination of transaction flows, we
use a coordinator automaton. The coordinator non-deterministically selects the next flow to start
and sends it the start signal and repeats this continuously as long as a parallel instance is ready to
receive the start signal. For example, when the switch is ready to accept another Reversal request,
it sends a rev ready signal to the coordinator. Then, the coordinator sends a rev start to the POS
FSM to start the Reversal (Fig. 5).

During development of the model, human mistakes may introduce errors in the model. To
discover such errors, we take a model-checking approach to verify the model against correctness
properties before the testing process. We first formalized a few intuitive correctness based on the
ISO standard and the intuition of the designer in the temporal-logic-based verification language
provided by Uppaal Tron (for some properties, we had to augment the model with observer
automata in order to compensate for the limited expressiveness of the logic). For example, the
following formula is used to verify that every transaction started must eventually be finished.

A[] forall (i : int[0, MAX_TX])

TransFlow[i].start->TransFlow[i].finish

Subsequently, we use Uppaal verifier to model check the formalized correctness properties.
Due to the combinatorial explosion of the state space, the performance of the Uppaal Tron

test-case generator was extremely low, when it tried to generate test-cases for the whole EFT
system. To alleviate the state-space explosion problem, we implemented the abstract model of the
core-banking system as a separate Java program and ran it in parallel with Uppaal Tron and its
adaptor. With this simple improvement, we were able to increase the performance of the test-case
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Figure 5: Each FSM in the model specifies the behavior of a component in a transaction flow (a).
Simplified models of the behavior of Switch (b) and POS (c) in Reversal transaction flow.
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generation by a factor of 10. This way, we could generate test-cases for hundreds of concurrent
transaction flows for each instance of Uppaal Tron.

5 Testing the EFT Switch

5.1 Interfacing Switch and TRON

Uppaal Tron continuously interacts with the system under test while exploring the LTS model.
In other words, on-the-fly test-case generation is combined with online testing, so that the next
step in the test-case generation can be determined by the response from the system under test [13].
Hence, to interface Uppaal Tron with the system under test, an adaptor has to be implemented,
which in its simplest form, communicates the messages between Uppaal Tron and the system
under test (possibly after converting them to the right format for each side). We implemented
such an adaptor which translates the rather plain signals of Uppaal Tron to (from) the elaborate
format of financial messages specified by the ISO 8583 standard. In order to perform the translation
to the ISO 8583 messages several details (concerning financial data of a transaction) have to be
added to the message, which are selected from representative data stored in our sample database
(more explanation about this to follow). Besides the format conversion and the addition/removal
of financial data, we developed several other components in the adaptor which store and prioritize
the test-cases in order to re-use them in regression testing. This way, a prioritized test suite
is obtained, which can be run efficiently, without the overhead of exploring the formal model.
Finally, there are some types of business rules that are hard to capture in Uppaal Tron models
and hence, are applied and verified by a separate component in the adaptor. Next, we explain the
functionality of our extended adaptor in some more details.

As mentioned before, Tron performs online testing by interacting with the switch during test-
case generation and execution. SinceTron is a general purpose tool, there must be an adaptor
to realize the communication protocol between Tron and the implementation under test. To
this end, Tron provides a standard interface that should be implemented by the adaptor. The
adaptor is used to translate Tron signals and data to the implementation host language (Java in
our case).

The conversion of messages from Tron to switch requires augmenting them with several data-
fields specifying the details of a certain transaction flow. The simplest example of such fields are
the transaction type and the unique transaction identifier. The identifier ID has to be included
as part of each message sent to or received from the switch, to differentiate between instances of
the transaction type. Due to limited support of data types in Uppaal, the format of transaction
identifiers is different in the model and the switch implementation. A function of the adaptor is
to translate the ID values when passing messages. Moreover, there are many data items which are
abstracted in the transaction flow specification (both in the standard and in our Uppaal model
and thus, are to be provided by the adaptor.

Apart from the issue of generating data items, also some practical difficulties arise when con-
necting Tron to the adaptor. For example, Tron doesn’t support arrays of boundary signals
which is a useful feature provided by Uppaal. Solving this requires adding extra states to the
model (to store parameters in local variables and synchronize them with the implementation un-
der test). This increases the chance of human errors in modeling. It also makes the model rather
large and increases the size of the state space, which in turn negatively influences the possibility
of model checking them. To handle this, we first made a compact Uppaal model with parameter-
ized synchronization (i.e., using signal arrays, which is used for model checking purposes) and once
proven correct, we derive from that a second model (by replacing parameters with local variables
and adding intermediate states and transitions for storing and synchronizing them), which is used
during test execution by Tron.

Tron continuously generates the test-cases online using our Uppaal model. It communicates
with our developed adaptor in order to send the output signals to the switch and receives the
(abstracted) signal from the switch via the adaptor. Based on the received signal it gives a
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pass or a fail verdict. This process can generate several combinations of transaction flows with a
considerable level of concurrency. However, to generate off-line test-suites, we need to specify extra
parameters (such as the type and the length of each test-case) to break this continuous flow into
discrete pieces and compare them. We have annotated the models in the later developments such
that while interacting with Tron, the adaptor can partition the test-campaign into individual
test-cases using the provided parameters. While executing each test-case, the adaptor checks
gathers coverage metrics from the switch and uses this information together with the heuristics
provided by a test engineer to select and prioritize test-cases. The prioritized test suite can later
be used off-line, as well as for regression testing.

In addition to valid message flows, the ISO standard also specifies a number of business rules.
For example, “the transaction ID of a reversal message shall be the same as the transaction ID
of the original financial transaction”, or “a reversal shall not be reversed”. Some business rules
are difficult (or sometimes impossible) to capture in Uppaal models. To handle the cases in the
example just mentioned, we keep in the adaptor, a list of transaction IDs sent from Tron and
keep track of the last operation performed on each ID. This way, if we receive a reversal message
on a transaction ID that is already reversed, we consider this case as an error.

5.2 Classifying and Covering Data Domains

Common to many reactive systems in the financial domain, the EFT switch exhibits complex
reactive behavior while also having a data-dependent nature. An effective test method must
address and integrate both of these facets. Theoretically, the test cases generated by IOCO cover
all behavioral scenarios of interaction between the switch and its environment. However, since the
model is based on labeled transition systems, it is hard to express data constraints on complex
message structure and contents. So, we must set the fields of the messages generated by Tron

to different combination of values. This results in multiple sequences of messages made from the
single sequence of messages generated by Tron.

To manage the complexity of the data domain, we have used the classification tree method [9]
(as an extension of the original category-partition method) to organize the test-case generation
process. According to the method, we should select an aspect relevant to the test and partition
the input domain into disjoint subsets called classes. The resulting classes will be subsequently
classified according to some other aspect recursively, resulting in a tree of classifications and
classes. This way, we specify representative elements for the content of date elements present in
the structure of financial messages.

Moreover, to evaluate the quality of our test-case, we divide the ongoing pattern of interaction
into discrete pieces; in the remainder of this paper, we define each of these pieces (with some
re-use of terminology) as a test-case. Hence, a test-case is a combination of transaction flows
(possibly of different types) with specified values for the data items in the messages passed during
each transaction. For example, a test case may comprise a purchase transaction succeeded by a
reversal. To specify discrete test-cases, in addition to the content of the financial messages, we
should also specify the type of transaction flow and the size of transactions (repetition of messages
and flows). We re-use the same concept of classification-tree to classify and specify representative
values for these aspects, as well.

In our prototype implementation, we used the domain and the implementation knowledge of
the EFT switch to classify the following set of data domains:

• Transaction flow types,

• PIN validity,

• Transaction amount, and

• Test-case size.

For each aspect, we select a suitable set of discriminating values by using the domain knowledge.
For Transaction type we consider five different classes: Purchase only (P), Balance Inquiry only (B),
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Figure 6: A part of test-case classification tree

Purchase and Balance Inquiry (PB), Purchase with Reversal (PR), and Purchase with Reversal and
Balance Inquiry (PRB). The PIN validity classification shows whether the transaction is authorized
to be executed according to the PIN number input parameter. The domain of Transaction amount

is the set of positive integers. The negative and zero cases are also included to test invalid cases.
Finally, the Test-Case size parameter is the number of transactions in the test case that determines
the size of each transaction.A part of the resulting classification tree is shown in Fig. 6. Note
that the classification tree is not supposed to be a balanced tree and hence, some parameters may
not apply to all cases. For example, a Balance Inquiry transaction does not have a transaction
amount as an input parameter.

The transaction type parameter is applied to the coordinator FSM (see Sec. 4) which affects
the sequence of transactions generated by Tron. The other parameter values are set by the
adaptor. The data selection tree is currently hard-coded in the adaptor, but we plan to make this
generic and include it in the test specification model (see Section 7).

6 Test Results

Apart from online testing, which has been very helpful in revealing defects in the product, defining
suitable test-cases enabled us to measure test coverage for each test-case and prioritize the test-
cases according to our test plan (in this case: full statement coverage of functional components,
i.e., components involved in the realization of functionality in the main transaction flows). This
prioritized set is used for off-line and regression testing, particularly when running the whole test-
infrastructure is not feasible and the testers have to choose some of test-cases to get the most
coverage. In this work, our test plan is to cover different flows as much as we can, instead of
trying to cover all features of the switch.

We have selected the test cases using based on our category-partitioning analysis. Due to some
obstacles in the implementation, in this work we have just used positive values for the Amount

parameter. Though, other parameters are tested as described in the resulted classification tree
(Fig. 6). We have measured the statement coverage using Cobertura [1]. To reduce measurement
errors, each test case has been repeated four times (with the same configuration) and the average
coverage is reported in percents in Table 1.

Early analysis showed that there is a considerable amount of common code between the pur-
chase and balance enquiry implementation because of inherent common logic. This hypothesis
can also be proven by measuring the relative coverage of adding a test-case of former type to a
test-case of the latter type (or vice versa); namely, the addition of each type of test-case to the
other does not significantly increase the statement coverage measure. Hence, combining these two
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Trx No.
5 15 40

B 0.614 0.622 0.620
B(Invalid PIN) 0.487 0.487 0.487
P 0.589 0.589 0.594
P(Invalid PIN) 0.487 0.487 0.487
PB 0.596 0.596 0.592
PB(Invalid PIN) 0.487 0.487 0.487
PR 0.630 0.671 0.671
PRB(Invalid PIN) 0.529 0.529 0.529
PRB 0.712 0.710 0.712
PRB(Invalid PIN) 0.529 0.529 0.529

Table 1: Statement coverage results in percent

tests (i.e., the PB row in Table 1) did not result in any considerable improvement in coverage.
Further analysis shows that a significant amount of code for processing a transaction is devoted

to common tasks such as authorization and packet routing. This justifies why there is not much
difference between the coverage results of the cases.

Note that the increase in the size of transactions beyond 15 messages did not increase the
coverage considerably, since apparently this does not lead to any new behavior in the EFT switch
and the same logic is executed repeatedly. However, in our experience, having a large number of
parallel transaction instances does increase the chance of catching errors caused by concurrency
issues or (thread-pool) overflow problems.

Another point is that test-cases with exceptions have lower coverage among other combinations,
yet they are deemed very important by domain experts. This is true because the switch drops
unauthorized messages in early stages, so a big part of the code will never run. This is justified by
developers’ insight that the code for handling exceptional cases has little overlap with the code for
the normal transaction flows. Hence, despite their individual low coverage, these test-cases should
be appeared with high priority in the final priority list.

7 Discussion

Our system under test is inherently a mixture of reactive and functional behavior: it implements
a high-level protocol for exchanging messages for a financial transaction, while its detailed imple-
mentation is very much dependent on the functional and data-related aspects. This mixture, if
not structured properly, makes the generated models overly cluttered and complicated and un-
fortunately, most of the existing IOCO-based tools, including Uppaal Tron and TorX [19] do
not provide proper facilities for orthogonalizing, structuring and relating reactive and functional
behavior. Hence, we plan to make a high-level specification language (inspired by prior effort in
UML Testing Profile [14], TTCN3 [22]) as a front-end for our proprietary IOCO-based engine in
order to solve the following issues:

1. Specification of abstract data types and their partitions: a specification language is needed
to specify the data types used in the functional domain, different partitioning and the rep-
resentative elements of partitions.

2. Full support of data parameters in the behavioral model: the support for data parameter
in Uppaal Tron is limited; it is not possible to define the representative data values of
each data type attached to messages of the behavioral model. Being able to attach different
data types and their different partitionings is an essential ingredient for improving our test
results.

12



3. Support for asynchronous message passing: Thus far, we have experimented with different
additions to our model in order to cater for the asynchronous nature of communication in
our domain. We first tried adding input/output queues was one option which immediately
led to drastic performance drawbacks. Then, we have experimented with abstracting from
the asynchronous delays in our protocols, which does lead to better performance. However,
such an abstraction results in fictitious sequences of messages that are not expected by the
SUT. To overcome this, we had to add several guards to guarantee that the model will
only be triggered with appropriate signals. This last modification has led to a complicated
specification. An inherent support for asynchronous message passing may be considered as
an option, along the lines of the initial proposal in [21].

4. Specifying a more dynamic notion of test goal and model coverage: Uppaal Tron does not
allow for specifying a notion of test goal. Apart from traditional notions of test goal, e.g.,
hitting certain states in the model, we need to specify test goals that refer to the coverage of
the functional model. For example, it is essential to cover all (combinations of) representative
elements of a certain partitioning of data types, a la the equivalence-class testing method.

Despite the above-mentioned shortcomings, Uppaal Tron can still be considered for proto-
typing a test-bed for similar systems, however, our experience shows that the following issues need
to be considered:

1. Performance issues: Due to the very complex and mixed nature of the system, we soon
reached the boundaries of possibilities with Uppaal Tron. To overcome this problem we
had to distribute our test-case generation among a number of parallel instances of Uppaal

Tron. A challenge imposed by this solution is how to pass the received messages to the
right instance of Uppaal Tron. This problem is intensified by the lack of appropriate
support of data-type-handling. To solve the latter problem, we annotated the messages in
the underlying model of each Uppaal Tron instance with a unique identifier which can be
recognized and distinguished by our adapter.

2. Data-related behavior: Uppaal natively supports data types and variables in the definition
of its machines. Despite its limited flexibility (e.g., in defining customized data types),
the specification language can still be used to implement basic data-dependent behaviors.
The problem is, the Uppaal engine generates a state-space which is suitable for model-
checking purposes (i.e., the whole state-space). Uppaal Tron uses this state-space to
infer applicable test-cases, while a non-exhaustive state-space exploration algorithm could
be sufficient to generate test-cases. Some of the above-mentioned performance issues, are
also rooted in this problem. Additionally, not all Uppaal data structures are also supported
in Tron. For instance, passing data arrays from the the test engine to the SUT (or more
precisely the adapter) or vice versa is not possible. It turns out that the performance
deteriorates drastically when the specification makes use of Uppaal variables, in comparison
to hardcoded values in signal names (i.e., completely unfolding the model). Due to this, we
decided to implement a specification generator, i.e., a script which creates multiple copies of
the system behavior with all data fields embedded in signal names. These complex signals
must be decoded by the adapter to get access to the actual values. A similar operation
should be done with the SUT outgoing signals (i.e., the adapter should encode the data
values appropriately in the signal name and pass it to the tester). Although we succeeded
to reach an acceptable performance using this method, we soon reached the limit of defining
automata in Uppaal.

We have so far experimented with few types of transactions. We plan to include other types of
transaction (such as special POS services) and other EFT devices (e.g., Automatic Teller Machines
– ATMs) in our future test infrastructure.

Our test-case prioritization policy is now based on absolute statement coverage of test-cases.
This can be extended in two ways: first, other coverage measure. particularly coverage metrics
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on the model should be taken into account and second, more complex and mature prioritization
techniques can be exploited (e.g., incremental analysis of test-case coverage and assigning weights
to the covered scenarios or components [6]).

Our approach to check the validity of performed transactions inside our test service layer may
extend in the future to incorporate checking more business rules. However, in order to keep our
adaptor still manageable we would like to add another layer of abstraction for specifying models of
such business rules and an independent component which can perform the necessary checks based
on the rules.

8 Related Work

Gast [12] implements an FSM-based conformance testing algorithm close to IOCO. The FSM
model in Gast is specified in the functional programming language Clean. One can define abstract
data types and use the generic function definition in Clean to use them in generating test-cases.
In [20], Gast is used to test Java Card applet implementing an electronic purse application. The
applicability of their test-technique is then demonstrated by manually injecting a number of bugs
(creating mutations) and applying the automated test technique to find them. The work reported
in [20] is essentially based on the same principles as our work (modulo some technical, e.g., the
differences in the definition of conformance relation). We improve upon the trajectory proposed
in [20] by integrating domain knowledge and code coverage metric in prioritizing test-cases.

The model-based testing environment of Microsoft called Spec Explorer to design and run
automatic tests [23]. Their modeling language combines scenario-based modeling with state-based
modeling [7, 8]. This prevents complicated conversion from the developed code (which are scenario-
based) to an FSM model (which is state-based) by test designers. This can make the learning
curve for model-based testing less steep. For our application domain, however, a more elaborate
model of both behavior and data domain seems indefensible and hence, we believe that it pays off
to spend an extra effort to build a separate model for testing purposes. The ISO 8583 standard as
a reference model facilitates making this model and keeps it relatively orthogonal to the changes
in implementation.

Our prioritization method is based on the work of Elbaum et al. [6, 5] in which they have
analyzed and compared different test-case prioritizing techniques which helps test designers to
select appropriate techniques according to their needs. We used category-partitioning in order to
organize our test-case generation process. The technique was originally introduced by Ostrand
and Balcer [15]. In particular, this method is more effective when enormous variety of test-cases
can be generated but only some of them have real testing value.

9 Conclusions and Future Work

In this work, we developed a formal model of a high-risk financial system, called an Electronic
Fund Transfer (EFT) switch, in terms if Labeled Transition Systems (LTSs). The formal model is
then exploited to apply model based testing techniques in order to test such a system automatically
and systematically. We used an existing test-case generator, called Uppaal Tron, and extend it
with several components, to augment the test-cases with financial data and to store, evaluate and
prioritize the generated test-cases. Also, to enhance the performance and to prevent state-space
explosion in our testing infrastructure, we implemented the formal model of some components in
the environment as a separate Java component running in parallel with our test infrastructure.

Hitherto, we have only covered few transaction types (e.g., purchase, reversal and balance
enquiry) and only used POS terminals to send messages to the EFT switch. Despite this limited
scope of our current implementation, the test results both in terms of coverage and detected bugs
are encouraging. However, we need to overcome the limitations in the present approach in order
to replace the current manual testing techniques with the model-based approach presented in this
paper. Hence, we would like to extend the approach along the lines presented in Section 7 and
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build an in-house tool to support it.
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