
Decompositional Reasoning about the History of
Parallel Processes?

Luca Aceto1, Arnar Birgisson2,
Anna Ingolfsdottir1, and MohammadReza Mousavi3

1 School of Computer Science, Reykjavik University, Iceland
2 Department of Computer Science and Engineering,

Chalmers University of Technology, Sweden
3 Department of Computer Science, TU/Eindhoven, The Netherlands

Abstract. This paper presents a decomposition technique for Hennessy-
Milner logic with past and its extension with recursively defined formu-
lae. In order to highlight the main ideas and technical tools, processes
are described using a subset of CCS with parallel composition, nonde-
terministic choice, action prefixing and the inaction constant. The study
focuses on developing decompositional reasoning techniques for parallel
contexts in that language.

1 Introduction

State-space explosion is a major obstacle in model checking logical properties.
One approach to combat this problem is compositional reasoning, where proper-
ties of a system as a whole are deduced in a principled fashion from properties of
its components. The study of compositional proof systems for various temporal
and modal logics has attracted considerable attention in the concurrency-theory
literature and several compositional proof systems have been proposed for such
logics over (fragments of) process calculi. (See, e.g., [6, 36, 37, 41].) A related
line of research is the one devoted to (de)compositional model checking [5, 19,
25, 31, 42]. Decompositional reasoning aims at automatically decomposing the
global property to be model checked into local properties of (possibly unknown)
components—a technique that is often called quotienting. In the context of pro-
cess algebras, as the language for describing reactive systems, and (extensions of)
Hennessy-Milner logic (HML), as the logical specification formalism for describ-
ing their properties, decompositional reasoning techniques date back to the sem-
inal work of Larsen and Liu in the 1980’s and early 1990’s [29, 31], which is fur-
ther developed in, e.g., [7, 9, 10, 12, 18, 23, 25, 26, 35]. However, we are not aware

? The work of Aceto, Birgisson and Ingolfsdottir has been partially supported by the
projects “New Developments in Operational Semantics” (nr. 080039021) and “Meta-
theory of Algebraic Process Theories” (nr. 100014021) of the Icelandic Research
Fund. Birgisson has been further supported by research-student grant nr. 080890008
of the Icelandic Research Fund and by grants from the Swedish research agencies
SSF and VR.

of any such decomposition technique that applies to reasoning about the “past”.
This is particularly interesting in the light of recent developments concerning
reversible processes [13, 34] and knowledge representation (epistemic aspects)
inside process algebra [14, 20], all of which involve some notion of specification
and reasoning about the past. Moreover, a significant body of evidence indicates
that being able to reason about the past is useful in program verification [22, 28,
32].

In this paper, we address the problem of developing a decomposition tech-
nique for Hennessy-Milner logic with past [16, 17, 27] and for its extension with
recursively defined formulae. This way, we obtain a decomposition technique for
the modal µ-calculus with past [21, 33]. Apart from its intrinsic interest, the
decompositionality results we present in this paper also shed light on the ex-
pressiveness of the logics we consider. For example, as shown in, e.g., [2, 3], the
closure of a logic with respect to quotienting is closely tied to its ability to express
properties that can be tested by performing reachability analysis of processes in
the context of so-called test automata. As the language for describing processes,
in order to highlight the main ideas and technical tools in our approach, we
use a subset of CCS with parallel composition, nondeterministic choice, action
prefixing and the inaction constant. Our results, however, extend naturally to
other classic parallel composition operators from the realm of process algebra,
such as the general one considered in the literature on ACP [8], and to a setting
where (possibly infinite) synchronization trees [40] are used as a model of process
behaviour.

As the work presented in this paper shows, the development of a theory of
decompositional reasoning in a setting with past modalities involves subtleties
and design decisions that do not arise in previous work on HML and Kozen’s
µ-calculus [24]. For instance, the decompositionality result for HML with past
and its extension with recursively defined formulae rests on a decomposition of
computations of parallel processes into sets of pairs of computations of their com-
ponents, whose concurrent execution might have produced the original parallel
computations. Moreover, as explained in detail in the main body of the paper,
the presence of past modalities leads us to consider computations of the com-
ponents of a parallel process that may explicitly include stuttering steps—that
is, steps where the component under consideration is idle, while a computation
step takes place elsewhere in the parallel system. The main results of the paper
(Theorems 1 and 2) roughly state that if a computation π of a parallel process
p ‖ q satisfies a formula ϕ in one of the logics we study then, no matter what
decomposition of π we pick, the contribution of p to the computation π will sat-
isfy the “quotient of ϕ with respect to the contribution of q to π.” Conversely, if
there is some way of decomposing π, in such a way that the contribution of p to
the computation π satisfies the “quotient of ϕ with respect to the contribution
of q to π”, then the computation π of the parallel process p ‖ q is guaranteed to
satisfy ϕ.

The rest of this paper is structured as follows. Section 2 introduces prelimi-
nary definitions and the extension of Hennessy-Milner logic with past. Section 3

2

discusses how parallel computations are decomposed into their components. Sec-
tion 4 presents the decompositional reasoning technique and the first main the-
orem of the paper. Section 5 extends the theory to recursively defined formulae,
and Section 6 discusses related work and possible extensions of our results. Due
to space limitation, the proofs of the results are included in the extended version
of this paper [1].

2 Preliminaries

A labelled transition system (LTS) is a triple 〈P,A, −→ 〉 where

– P is a set of process names,
– A is a finite set of action names, not including a silent action τ (we write
Aτ for A ∪ {τ}), and

– −→ ⊆ P ×Aτ ×P is the transition relation; we call its elements transitions
and usually write p α−→ p′ to mean that (p, α, p′) ∈−→.

We let p, q, . . . range over P , a, b, . . . over A and α, β, . . . over Aτ .
For any set S, we let S∗ be the set of finite sequences of elements from S.

Concatenation of sequences is represented by juxtaposition. λ denotes the empty
sequence and |w| stands for the length of a sequence w.

Given an LTS T = 〈P,A, −→ 〉, we define a path from p0 to be a sequence
of transitions p0

α0−→ p1, p1
α1−→ p2, . . . , pn−1

αn−1−→ pn and usually write this as
p0

α0−→ p1
α1−→ p2

α2−→ · · · αn−1−→ pn.
We use π, µ, ... to range over paths. A computation from p is a pair (p, π),

where π is a path from p, and we use ρ, ρ′, . . . to range over computations.
CT (p), or simply C(p) when the LTS T is clear from the context, is the set of
computations from p and CT is the set of all computations in T .

For a computation ρ = (p0, π), where π = p0
α0−→ p1

α1−→ p2
α2−→ · · · αn−1−→ pn,

we define first(ρ) = first(π) = p0, last(ρ) = last(π) = pn, and |ρ| = |π| = n.
Concatenation of computations ρ and ρ′ is denoted by their juxtaposition

ρρ′ and is defined iff last(ρ) = first(ρ′). When last(ρ) = p we write ρ(p α−→ q) as
a shorthand for the slightly longer ρ(p, p α−→ q). We also use ρ α−→ ρ′ to denote
that there exists a computation ρ′′ = (p, p α−→ p′), for some processes p and p′,
such that ρ′ = ρρ′′.

Definition 1 (Hennessy-Milner logic with past). Let T = 〈P,A,→〉 be an
LTS. The set HML�(A), or simply HML�, of Hennessy-Milner logic formulae
with past is defined by the following grammar, where α ∈ Aτ .

ϕ,ψ ::= > | ϕ ∧ ψ | ¬ϕ | 〈α〉ϕ | 〈←α〉ϕ.

We define the satisfaction relation �⊆ CT × HML� as the least relation that
satisfies the following clauses:

– ρ � > for all ρ ∈ CT ,

3

– ρ � ϕ ∧ ψ iff ρ � ϕ and ρ � ψ,
– ρ � ¬ϕ iff not ρ � ϕ,
– ρ � 〈α〉ϕ iff ρ

α−→ ρ′ and ρ′ � ϕ for some ρ′ ∈ CT , and
– ρ � 〈←α〉ϕ iff ρ′

α−→ ρ and ρ′ � ϕ for some ρ′ ∈ CT .

For a process p ∈ P , we take p � ϕ to mean (p, λ) � ϕ.

We make use of some standard short-hands for Hennessy-Milner-type logics, such
as ⊥ = ¬>, ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), [α]ϕ = ¬〈α〉(¬ϕ) and [←α]ϕ = ¬〈←α〉(¬ϕ).
For a finite set of actions B, we also use the following notations.

〈←B〉ϕ =
∨
α∈B
〈←α〉ϕ [←B]ϕ =

∧
α∈B

[←α]ϕ

It is worth mentioning that the operators 〈·〉 and 〈←·〉 are not entirely symmet-
ric. The future is nondeterministic; the past is, however, always deterministic.
This is by design, and we could have chosen to model the past as nondeterminis-
tic as well, i.e., to take a possibilistic view where we would consider all possible
histories. Overall, the deterministic view is more appropriate for our purposes.
See, e.g., [28] for a clear discussion of possible approaches in modelling the past
and further references.

3 Decomposing Computations

In this section, following [5, 25, 31], we aim at defining a notion of “formula
quotient with respect to a process in a parallel composition” for formulae in
HML�. In our setting, this goal translates into a theorem of the form ρ � ϕ iff
ρ1 � ϕ/ρ2, where ρ, ρ1, ρ2 are computations such that ρ is a computation of a
“parallel process” that is, in some sense, the “parallel composition” of ρ1 and
ρ2.

In the standard setting, definitions of “formula quotients” are based on local
information that can be gleaned from the operational semantics of the chosen
notion of parallel composition operator. In the case of computations, however,
such local information does not suffice. A computation arising from the evolution
of two processes run in parallel has the form (p ‖ q, π), where p ‖ q is a syntac-
tic representation of the initial state and π is the path leading to the current
state. The path π, however, may involve contributions from both of the parallel
components. Separating the contributions of the components for the purposes of
decompositional model checking requires us to unzip these paths into separate
paths that might have been observed by considering only one argument of the
composition. This means that we have to find two paths πp and πq such that
(p, πp) and (q, πq) are, in some sense, independent computations that run in
parallel will yield (p ‖ q, π).

CCS Computations and Their Decomposition For this study, in order to highlight
the main ideas and technical tools in our approach, we restrict ourselves to a

4

subset of CCS, namely CCS without renaming, restriction or recursion. (We
discuss possible extensions of our results in Section 6.) Processes are thus defined
by the grammar

p, q ::= 0 | α.p | p+ q | p ‖ q
and their operational semantics is given by the following rules.

α.p
α−→ p

p
α−→ p′

p+ q
a−→ p′

q
α−→ q′

p+ q
a−→ q′

p
α−→ p′

p ‖ q α−→ p′ ‖ q
q

α−→ q′

p ‖ q α−→ p ‖ q′
p

a−→ p′ q
ā−→ q′

p ‖ q τ−→ p′ ‖ q′

We write p α−→ q to denote that this transition is provable by these rules. We
assume also that ·̄ : A → A is a bijective function on action names such that
¯̄a = a.

The decomposition of a computation resulting from the evolution of two
parallel components must retain the information about the order of steps in
the interleaved computation. We do so by modelling the decomposition using
stuttering computations. These are computations that are not only sequences of
transition triplets, but may also involve pseudo-steps labelled with 99K. Intu-
itively, p 99K p means that process p has remained idle in the last transition
performed by a parallel process having p as one of its parallel components. We
denote the set of stuttering computations with C∗T or simply C∗. For example,

the computation (a.0 ‖ b.0, a.0 ‖ b.0 a−→ 0 ‖ b.0 b−→ 0 ‖ 0) is decomposed into
the stuttering computations (a.0, a.0 a−→ 0 99K 0) and (b.0, b.0 99K b.0 b−→ 0).
However, the decomposition of a parallel computation is not in general unique,
as there may be several possibilities stemming from different synchronization
patterns. For example consider a computation with path (a.0 + b.0) ‖ (ā.0 + b̄.0)
τ−→ 0 ‖ 0. From this computation it is not possible to distinguish if the transi-

tion labelled with τ was the result of communication of the a and ā actions, or
of the b and b̄ actions. We thus consider all possibilities simultaneously, i.e., a
decomposition of a computation is actually a set of pairs of components.

The following function over paths defines the decomposition of a computa-
tion.

D(λ) = {(λ, λ)}
D(π(p ‖ q 99K p ‖ q)) = {(µ1(p 99K p), µ2(q 99K q)) | (µ1, µ2) ∈ D(π)}

D(π(p ‖ q α−→ p′ ‖ q′)) =



{(µ1(p α−→ p′), µ2(q 99K q))
| (µ1, µ2) ∈ D(π)} if q = q′

{(µ1(p 99K p), µ2(q α−→ q′))
| (µ1, µ2) ∈ D(π′)} if p = p′

{(µ1(p a−→ p′), µ2(q ā−→ q′))
| (µ1, µ2) ∈ D(π), a ∈ A,

p
a−→ p′, q

ā−→ q′} otherwise

5

Note that if (µ1, µ2) is a decomposition of a computation π, then the three
computations have the same length. Furthermore last(π) = last(µ1) ‖ last(µ2).

Another notable property of path decomposition is that it is injective, i.e., a
pair (µ1, µ2) can only be the decomposition of at most one path.

Lemma 1. Let π1 be a path of a parallel computation and (µ1, µ2) ∈ D(π1). If
π2 is a path such that (µ1, µ2) ∈ D(π2) also, then π1 = π2.

We now aim at defining the quotient of an HML�-formula ϕ with respect to a
computation (q, µ2), written ϕ/(q, µ2), in such a way that a property of the form

(p ‖ q, π) � ϕ ⇔ (p, µ1) � ϕ/(q, µ2)

holds when (µ1, µ2) ∈ D(π). However, since we are dealing with sets of decom-
positions, we need to quantify over these sets. It turns out that a natural way
to do so, which also gives a strong result, is as follows. Given that a composed
computation satisfies a formula, we prove in Section 4 that one component of
every decomposition satisfies a formula quotiented with the other component:

(p ‖ q, π) � ϕ ⇒ ∀(µ1, µ2) ∈ D(π) : (p, µ1) � ϕ/(q, µ2).

On the other hand, to show the implication from right to left, we need only one
witness of a decomposition that satisfies a quotiented formula to deduce that
the composed computation satisfies the original one:

∃(µ1, µ2) ∈ D(π) : (p, µ1) � ϕ/(q, µ2) ⇒ (p ‖ q, π) � ϕ.

In order to define the quotienting transformation, we need a logic that allows us
to describe properties of computations involving explicit pseudo-steps. To this
end, we now extend HML� with two additional modal operators.

Definition 2 (Stuttering Hennessy-Milner logic with past). Consider
an LTS T = 〈P,A,→〉. The set HML∗�(A), or simply HML∗�, of stuttering
Hennessy-Milner logic formulae with past is defined by the grammar

ϕ,ψ ::= > | ϕ ∧ ψ | ¬ϕ | 〈α〉ϕ | 〈←α〉ϕ | 〈99K〉ϕ | 〈L99〉ϕ

where α ∈ Aτ . The satisfaction relation �∗⊆ C∗T ×HML∗� is defined in the same
manner as for Hennessy-Milner logic with past, by extending Definition 1 with
the following two items.

– ρ �∗ 〈99K〉ϕ iff ρ(p 99K p) �∗ ϕ where p = last(ρ).
– ρ �∗ 〈L99〉ϕ iff ρ′ �∗ ϕ where ρ = ρ′(p 99K p) for some p.

Similarly, �∗ ∈ P ×HML∗� is defined by p �∗ ϕ if and only if (p, λ) �∗ ϕ.

The satisfaction relations �∗ and � coincide over CT ×HML�.

6

Why are the pseudo-steps necessary? One may ask why we need to extend both
the computations and the logic to include the notion of pseudo-steps. The reason
for doing so is to capture information about the interleaving order in component
computations. This in turn is necessary because the original logic can differenti-
ate between different interleavings of parallel processes. For an example, consider
the computation (a.0 ‖ b.0, π), where π = a.0 ‖ b.0 a−→ 0 ‖ b.0 b−→ 0 ‖ 0. Clearly
this computation does not satisfy the formula 〈←a〉>.

Another interleaving of the same parallel composition is the computation
(a.0 ‖ b.0, π′), where π′ = a.0 ‖ b.0 b−→ a.0 ‖ 0 a−→ 0 ‖ 0. This computation,
on the other hand, does satisfy 〈←a〉>. Since the logic can distinguish between
different interleaving orders of a parallel computation, it is vital to maintain
information about the interleaving order in our decomposition. If the decom-
position of the above computations only considered the actions contributed by
each component, this information would be lost and the two paths would have
the same decomposition. As a result, we could not reasonably expect to test if
they satisfy the formula 〈←a〉> in a decompositional manner.

4 Decompositional Reasoning

We now define the quotienting construction over formulae structurally. The com-
plete quotienting transformation is given in Table 1. Below we limit ourselves to
discussing the quotienting transformation for formulae of the form 〈←α〉ϕ.

To define the transformation for formulae of that form, we examine several
cases separately. First we consider the case when ρ has the empty path. In this
case it is obvious that no backward step is possible and therefore:

(〈←α〉ϕ)/(p, λ) = ⊥.

The second case to consider is when ρ ends with a pseudo-transition. In this case
the only possibility is that the other component (the one we are testing) is able
to perform the backward transition.

(〈←α〉ϕ)/ρ′(p′ 99K p′) = 〈←α〉(ϕ/ρ′)

The third case applies when ρ does indeed end with the transition we look for.
In this case the other component must end with a matching pseudo-transition.

(〈←α〉ϕ)/ρ′(p′′ α−→ p′) = 〈L99〉(ϕ/ρ′) (1)

The only remaining case to consider is when ρ ends with a transition different
from the one we look for. We split this case further and consider again separately
the cases when α ∈ A and when α = τ . The former case is simple: if ρ indicates
that the last transition has a label other than the one specified in the diamond
operator, the composite computation cannot satisfy 〈←a〉ϕ because the other
component must have performed a pseudo-step.

(〈←a〉ϕ)/ρ′(p′′
β−→ p′) = ⊥ where a 6= β

7

>/ρ = >
(ϕ1 ∧ ϕ2)/ρ = ϕ1/ρ ∧ ϕ2/ρ
(¬ϕ)/ρ = ¬(ϕ/ρ)

(〈a〉ϕ)/ρ = 〈a〉 (ϕ/ρ(p′ 99K p′)) ∨
(∨

ρ′:ρ
a→ ρ′
〈99K〉(ϕ/ρ′)

)
(〈τ〉ϕ)/ρ = 〈τ〉 (ϕ/ρ(p′ 99K p′)) ∨

(∨
ρ′:ρ

τ→ ρ′
〈99K〉(ϕ/ρ′)

)
∨
(∨

ρ′,a:ρ
a→ ρ′
〈ā〉(ϕ/ρ′)

)
(〈←α〉ϕ)/(p, λ) = ⊥
(〈←α〉ϕ)/ρ′(p′ 99K p′) = 〈←α〉(ϕ/ρ′)
(〈←α〉ϕ)/ρ′(p′′

α−→ p′) = 〈L99〉(ϕ/ρ′)
(〈←a〉ϕ)/ρ′(p′′

β−→ p′) = ⊥ where a 6= β

(〈←τ〉ϕ)/ρ′(p′′
b−→ p′) = 〈← b̄〉(ϕ/ρ′)

(〈99K〉ϕ)/ρ = 〈99K〉 (ϕ/ρ(p′ 99K p′))

(〈L99〉ϕ)/ρ =

{
〈L99〉(ϕ/ρ′) if ρ = ρ′(p′ 99K p′)

⊥ otherwise

Table 1. Quotienting transformations of formulae in HML∗�, where p′ = last(ρ)

If however the diamond operator mentions a τ transition, then we must look for
a transition in the other component that can synchronise with the last one of ρ.
Note that this case does not include computations ending with a τ transition,
as that case is covered by Equation (1).

(〈←τ〉ϕ)/ρ′(p′′ b−→ p′) = 〈← b̄〉(ϕ/ρ′)

This covers all possible cases for 〈←α〉ϕ/ρ.
We are now ready to prove the main theorem in this section, to the effect

that the quotienting of a formula ϕ with respect to a computation ρ is properly
defined.

Theorem 1. For CCS processes p, q and a computation (p ‖ q, π) ∈ C(p ‖ q)
and a formula ϕ ∈ HML∗�, we have

(p ‖ q, π) �∗ ϕ ⇒ ∀(µ1, µ2) ∈ D(π) : (p, µ1) �∗ ϕ/(q, µ2) (2)

and, conversely,

(p ‖ q, π) �∗ ϕ ⇐ ∃(µ1, µ2) ∈ D(π) : (p, µ1) �∗ ϕ/(q, µ2). (3)

Theorem 1 uses the existential quantifier in the right-to-left direction. This makes
it easy to show that a computation of a process of the form p ‖ q satisfies a for-
mula, given only one witness of a decomposition with one component satisfying
the corresponding quotient formula. Note, however, that the set of decomposi-
tions of any given process is never empty, i.e., every parallel computation has a
decomposition. This allows us to write the above theorem in a more symmetric
form.

8

Corollary 1. For CCS processes p, q, a parallel computation (p ‖ q, π) and a
formula ϕ ∈ HML∗�, we have (p ‖ q, π) �∗ ϕ iff (p, µ1) �∗ ϕ/(q, µ2), for each
(µ1, µ2) ∈ D(π).

5 Adding recursion to HML∗
�

In this section, we extend the results from Section 4 to a version of the logic
HML∗� that includes (formula) variables and a facility for the recursive definition
of formulae. Following, e.g., [30], the intended meaning of a formula variable is
specified by means of a declaration, i.e., a mapping from variables to formulae,
which may themselves contain occurrences of variables. A declaration is nothing
but a system of equations over the set of formula variables.

By using the extension of the logic HML∗� discussed in this section, we can
reason about properties of processes and computations that go beyond one step
of lookahead or look-back. For example we can phrase the question “Has the
action α ever happened in the past?” as the least model of a suitable recursive
logical property.

Definition 3. Let A be a finite set of actions and let X be a finite set of iden-
tifiers. The set HML∗�,X (A), or simply HML∗�,X , is defined by the grammar

ϕ,ψ ::= > | ϕ ∧ ψ | ¬ϕ | 〈α〉ϕ | 〈←α〉ϕ | 〈99K〉ϕ | 〈L99〉ϕ | X

where X ∈ X . A declaration over X is a function D : X → HML∗�,X , assigning a
formula to each variable contained in X , with the restriction that each occurrence
of a variable in a formula in the range of D is positive, i.e., any variable is within
the scope of an even number of negations.

When reasoning about recursive formulae, it is technically convenient to define
their meaning (i.e., the set of computations that satisfy them) denotationally,
because well-definedness of the semantics of recursive formulae relies on Tarski’s
fixed point theory. This in turn, depends on a notion of monotone function with
respect to lattice, which is best described by the denotation function and the
usual subset ordering on the set of states satisfying a formula. For the sake of
clarity, we rephrase Definition 2 in a denotational setting. As it is customary,
the following definition makes use of a notion of environment to give meaning to
formula variables. An environment is a function σ : X → P(C∗). Intuitively, an
environment assigns to each variable the set of computations that are assumed
to satisfy it. We write EX for the set of environments over the set of (formula)
variables X . It is well-known that EX is a complete lattice when environments
are ordered pointwise using set inclusion.

Definition 4 (Denotational semantics of HML∗�,X). Let T = 〈P,A,→〉
be an LTS. Let ϕ be a HML∗�,X formula and let σ be an environment. The

9

denotation of ϕ with respect to σ, written [[ϕ]]σ, is defined structurally as follows:

[[>]]σ = C∗T [[¬ϕ]]σ = C∗T \ [[ϕ]]σ

[[X]]σ = σ(X) [[ϕ ∧ ψ]]σ = [[ϕ]]σ ∩ [[ψ]]σ

[[〈α〉ϕ]]σ = 〈·α·〉[[ϕ]]σ [[〈←α〉ϕ]]σ = 〈· ←α·〉[[ϕ]]σ

[[〈99K〉ϕ]]σ = 〈· 99K ·〉[[ϕ]]σ [[〈L99〉ϕ]]σ = 〈· L99 ·〉[[ϕ]]σ,

where the operators 〈·α·〉, 〈· ←α·〉, 〈· 99K ·〉, 〈· L99 ·〉 : P(C∗T) → P(C∗T) are de-
fined thus:

〈·α·〉S = {ρ ∈ C∗T | ∃ρ′ ∈ S : ρ α−→ ρ′}
〈· ←α·〉S = {ρ ∈ C∗T | ∃ρ′ ∈ S : ρ′ α−→ ρ}
〈· 99K ·〉S = {ρ ∈ C∗T | ∃ρ′ ∈ S : ρ 99K ρ′} and
〈· L99 ·〉S = {ρ ∈ C∗T | ∃ρ′ ∈ S : ρ′ 99K ρ}.

The satisfaction relation �σ⊆ C∗T ×HML∗�,X is defined by

ρ �σ ϕ ⇔ ρ ∈ [[ϕ]]σ.

It is not hard to see that, for formulae in HML∗�, the denotational semantics
is independent of the chosen environment and is equivalent to the satisfaction
relation offered in Definition 2.

The semantics of a declaration D is given by a model for it, namely by an
environment σ such that σ(X) = [[D(X)]]σ, for each variable X ∈ X . For every
declaration there may be a variety of models. However, we are usually interested
in either the greatest or the least models, since they correspond to safety and
liveness properties, respectively. In the light of the positivity restrictions we have
placed on the formulae in the range of declarations, each declaration always has
least and largest models by Tarski’s fixed-point theorem [38]. See, e.g., [4, 30] for
details and textbook presentations.

Decomposition of formulae in HML∗�,X We now turn to the transformation of
formulae, so that we can extend Theorem 1 to include formulae from HML∗�,X .
Our developments in this section are inspired by [23], but the technical details
are rather different and more involved.

In Section 4 we defined how a formula ϕ is quotiented with respect to a com-
putation ρ. In particular, the quotiented formula >/ρ is > for any computation
ρ. This works well in the non-recursive setting, but there is a hidden assump-
tion that we must expose before tackling recursive formulae. In Theorem 1, the
satisfaction relations are actually based on two different transition systems. By
way of example, consider the expression on the right-hand side of (2), namely

∀(µ1, µ2) ∈ D(π) : (p, µ1) � ϕ/(q, µ2).

When establishing this statement, we have implicitly assumed that we are work-
ing within the transition system of computations from p that are compatible with

10

the computations from q—i.e., above, µ1 really is a path that is the counterpart
of µ2 in a decomposition of the path π.

Intuitively, the set of computations that satisfy a quotient formula ϕ/ρ is the
set of computations that are compatible with ρ and whose composition with ρ
satisfies the formula ϕ. However, defining >/ρ = > does not match this intuition,
if we take the denotational viewpoint of the formula > on the right-hand side
as representing all possible computations. In fact, we expect >/ρ to represent
only those computations that are compatible with ρ. We formalize the notion of
pairs of compatible computations and refine our definition of >/ρ.

Definition 5. Paths µ1 and µ2 are compatible with each other if and only if
they have the same length and one of the following holds if they are non-empty.

– If µ1 = µ′1(p′′ τ−→ p′) then µ2 = µ′2(q′ 99K q′) and µ′1 and µ′2 are compatible.
– If µ1 = µ′1(p′′ a−→ p′) then either µ2 = µ′2(q′′ ā−→ q′) or µ2 = µ′2(q′ 99K q′);

and in both cases µ′1 and µ′2 are compatible.
– If µ1 = µ′1(p′′ 99K p′) then either µ2 = µ′2(q′′ α−→ q′), for some action α, or
µ2 = µ′2(q′ 99K q′); and in both cases µ′1 and µ′2 are compatible.

We say that two computations are compatible with each other if their paths are
compatible.

We now revise our transformation of the formula >. We want >/ρ to be a formula
that is satisfied by the set of all computations that are compatible with ρ. It
turns out this can be expressed in HML∗� as described below.

Definition 6. Let π be a path of transitions in the LTS T = 〈P,A,→〉. Then
the HML∗� formula >π is defined as follows.

>λ = [←Aτ]⊥ ∧ [L99]⊥
>
π′(p

τ−→ p′)
= 〈L99〉>π′

>
π′(p

a−→ p′)
= 〈← ā〉>π′ ∨ 〈L99〉>π′

>π′(p 99K p′) = 〈←Aτ 〉>π′ ∨ 〈L99〉>π′

Our reader may notice that this is a rewording of Definition 5, and it is easy to
see that the computations satisfying >π are exactly the computations that have
paths compatible with π. Now the revised transformation of > is

>/(p, π) = >π, (4)

which matches our intuition. For the constructs in the logic HML∗�, we can reuse
the transformation defined in Section 4. We therefore limit ourselves to highlight-
ing how to quotient formulae of the form X. However, instead of decomposing
formulae of this form, we treat the quotient X/ρ as a variable, i.e., we use the
set X ×C as our set of variables. The intuitive idea of such variables is as follows:

(p, µ1) �σ′ X/(q, µ2)⇔ (p ‖ q, π) �σ X ⇔ (p ‖ q, π) ∈ σ(X),

11

where σ is an environment for a declaration D over the variables X , σ′ is an
environment for a declaration D′ over the variables X ×C, and (µ1, µ2) ∈ D(π).
We explain below the relation between D and D′ as well as the one between σ
and σ′.

Formally, the variables used in quotienting our logic are pairs (X, ρ) ∈ X ×C.
Formulae of the form X are simply rewritten as X/ρ = (X, ρ), where the X/ρ
on the left-hand side denotes the transformation (as in Section 4) and the pair
on the right-hand side is the variable in our adapted logic. When there is no risk
of ambiguity, we simply use the notation X/ρ to represent the variable (X, ρ).

Transformation of declarations Generating the transformed declaration D′ from
a declaration D is done as follows:

D′(X/ρ) = D(X)/ρ. (5)

Note that the rewritten formula on the right-hand side may introduce more
variables which obtain their values in D′ in the same manner.

Transformation of environments The function Φ maps environments over X to
environments over X × C thus:

σ′(X/(q, µ2)) = Φ(σ)(X/(q, µ2))
= {(p, µ1) | (p ‖ q, π) ∈ σ(X)

for some π with (µ1, µ2) ∈ D(π)}.

Our order of business now is to show that if σ is the least (respectively, largest)
model for a declaration D, then σ′ is the least (respectively, largest) model for D′
and vice versa. In particular, we show that there is a bijection relating models
of D and models of D′, based on the mapping Φ. First we define its inverse.
Consider the function Ψ , which maps an environment over X ×C to one over X .

Ψ(σ′)(X) = {(p ‖ q, π) | ∀(µ1, µ2) ∈ D(π) : (p, µ1) ∈ σ′(X/(q, µ2))}

It is not hard to see that Φ and Ψ are both monotonic.
We now use the model transformation functions Φ and Ψ to prove an extended

version of Theorem 1.

Theorem 2. Let p, q be CCS processes, (p ‖ q, π) ∈ C∗(p ‖ q). For a formula
ϕ ∈ HML∗�,X and an environment σ, we have

(p ‖ q, π) �σ ϕ ⇔ ∀(µ1, µ2) ∈ D(π) : (p, µ1) �Φ(σ) ϕ/(q, µ2). (6)

Conversely, for an environment σ′,

(p ‖ q, π) �Ψ(σ′) ϕ ⇔ ∀(µ1, µ2) ∈ D(π) : (p, µ1) �σ′ ϕ/(q, µ2). (7)

We can now show that the functions Φ and Ψ are inverses of each other.

12

Lemma 2. Ψ ◦ Φ = idEX and Φ ◦ Ψ = idEX×C .

This means that Φ is a bijection between the collections of environments over
the variable spaces X and X × C, and Ψ is its inverse. The last theorem of this
section establishes soundness of the decompositional reasoning for HML∗�,X by
showing that Φ and Ψ preserve models of D and D′, respectively.

Theorem 3. Let D be a declaration over X , and let D′ be its companion dec-
laration over X × C defined by (5). If σ is a model for D, then Φ(σ) is a model
for D′. Moreover, if σ′ is a model for D′, then Ψ(σ′) is a model for D.

Theorem 3 allows us to use decompositional reasoning for HML∗�,X . Assume, for
example, that we want to find the least model for a declaration D. We start by
constructing the declaration D′ defined by (5). Next, we find the least model
σ′min of D′ using standard fixed-point computations. (See, e.g., [4] for a textbook
presentation.) We claim that Ψ(σ′min) is the least model of the declaration D.
Indeed, let σ be any model of D. Then, by the above theorem, Φ(σ) is a model
of D′ and thus σ′min ⊆ Φ(σ) holds, where ⊆ is lifted pointwise to environments.
Then the monotonicity of Ψ and Lemma 2 ensure that Ψ(σ′min) ⊆ Ψ(Φ(σ)) = σ.
To conclude, note that Ψ(σ′min) is a model of D by the above theorem.

6 Extensions and further related work

In this paper, we have developed techniques that allow us to apply decomposi-
tional reasoning for history-based computations over CCS and Hennessy-Milner
logic with past modalities. Moreover, we extended the decomposition theorem
to a recursive extension of that logic. The contribution of this paper can thus be
summarized as follows. For each modal formula ϕ (in the µ-calculus with past)
and each parallel computation π, in order to check whether (p ‖ q, π) �σ ϕ, it
is sufficient to check (p, µ1) �Φ(σ) ϕ/(q, µ2), where (µ1, µ2) is a decomposition
of π and ϕ/(q, µ2) is the quotient of ϕ with respect to the component (q, µ2).
(The implication holds in the other direction, as well; however, the application
of this theorem is expected in the aforementioned direction.) In the presentation
of the decomposition of computations that is at the heart of our approach, we
rely on some specific properties of CCS at the syntactic level, namely to detect
which rule of the parallel operator was applied. By tagging a transition with
its proof [11, 15], or even just with the last rule used in the proof, we could
eliminate this restriction and extend our approach to other languages involving
parallel composition. Another possibility is to construct a rule format that guar-
antees the properties we use at a more general level, inspired by the work of [18].
However, all our results apply without change to CCS parallel composition over
(possibly infinite) synchronization trees.

In this work we have only considered contexts built using parallel composi-
tion. However, decompositionality results have been shown for the more general
setting of process contexts [31] and for rule formats [10, 18]. In that work, one
considers, for example, a unary context C[·] (a process term with a hole) and a

13

process p with which to instantiate the context. A property of the instantiated
context C[p] can then be transformed into an equivalent property of p, where the
transformation depends on C. As the state space explosion of model-checking
problems is often due to the use of the parallel construct, we consider our ap-
proach a useful first step towards a full decomposition result for more general
contexts. In general, the decomposition of computations will be more complex
for general contexts.

The initial motivation for this work was the application of epistemic logic to
behavioural models, following the lines of [14]. We therefore plan to extend our
results to logics that include epistemic operators, reasoning about the knowledge
of agents observing a running system. This work depends somewhat on the
results presented in Section 5.

As we already mentioned in the introduction, there is by now a substantial
body of work on temporal and modal logics with past operators. A small sample
is given by the papers [21, 27, 39]. Of particular relevance for our work in this
paper is the result in [27] to the effect that Hennessy-Milner logic with past
modalities can be translated into ordinary Hennessy-Milner logic. That result,
however, is only proved for the version of the logic without recursion and does
not directly yield a quotienting construction for the logics we consider in this
paper.

References

1. L. Aceto, A. Birgisson, A. Ingolfsdottir, and M.R. Mousavi. Decompositional
reasoning about the history of parallel processes. Technical Report CSR-10-17,
TU/Eindhoven, 2010.

2. L. Aceto, P. Bouyer, A. Burgueño, and K. G. Larsen. The power of reachability
testing for timed automata. TCS, 300(1–3):411–475, 2003.

3. L. Aceto and A. Ingolfsdottir. Testing Hennessy-Milner logic with recursion. In
FoSSaCS’99, vol. 1578 of LNCS, pp. 41–55. Springer, 1999.

4. L. Aceto, A. Ingolfsdottir, K. G. Larsen, and J. Srba. Reactive Systems: Modelling,
Specification and Verification. Cambridge, 2007.

5. H. R. Andersen. Partial model checking (extended abstract). In LICS’95, pp.
398–407. IEEE CS, 1995.

6. H. R. Andersen, C. Stirling, and G. Winskel. A compositional proof system for
the modal mu-calculus. In LICS’94, pp. 144–153. IEEE CS, 1994.

7. A. Arnold, A. Vincent and I. Walukiewicz. Games for synthesis of controllers with
partial observation. TCS, 303(1):7–34, 2003.

8. J.C.M. Baeten, T. Basten, and M. A. Reniers. Process Algebra. Cambrdige, 2009.

9. S. Basu and R. Kumar. Quotient-based control synthesis for non-deterministic
plants with mu-calculus specifications. In IEEE Conference on Decision and Con-
trol 2006, pp. 5463–5468. IEEE, 2006.

10. B. Bloom, W. Fokkink, and R. J. van Glabbeek. Precongruence formats for deco-
rated trace semantics. ACM Trans. Comput. Log., 5(1):26–78, 2004.

11. G. Boudol and I. Castellani. A non-interleaving semantics for CCS based on proved
transitions. Fundamenta Informaticae, 11(4):433–452, 1988.

14

12. F. Cassez and F. Laroussinie. Model-checking for hybrid systems by quotienting
and constraints solving. In CAV’00, vol. 1855 of LNCS, pp. 373–388. Springer,
2000.

13. V. Danos and J. Krivine. Reversible communicating systems. In CONCUR’04,
vol. 3170 of LNCS, pp. 292–307. Springer, 2004.

14. F. Dechesne, M. Mousavi, and S. Orzan. Operational and epistemic approaches to
protocol analysis: Bridging the gap. In LPAR’07, vol. 4790 of LNCS, pp. 226–241.
Springer, 2007.

15. P. Degano and C. Priami. Proved trees. In ICALP’92, vol. 623 of LNCS, pp.
629–640. Springer, 1992.

16. R. De Nicola, U. Montanari, and F. W. Vaandrager. Back and forth bisimulations.
In CONCUR 1990, vol. 458 of LNCS, pp. 152–165. Springer, 1990.

17. R. De Nicola and F. W. Vaandrager. Three logics for branching bisimulation.
JACM, 42(2):458–487, 1995.

18. W. Fokkink, R. J. van Glabbeek, and P. de Wind. Compositionality of Hennessy-
Milner logic by structural operational semantics. TCS, 354(3):421–440, 2006.

19. D. Giannakopoulou, C. S. Pasareanu, and H. Barringer. Component verifica-
tion with automatically generated assumptions. Automated Software Engineering,
12(3):297–320, 2005.

20. J. Y. Halpern and K. R. O’Neill. Anonymity and information hiding in multiagent
systems. Journal of Computer Security, 13(3):483–512, 2005.

21. M. Hennessy and C. Stirling. The power of the future perfect in program logics. I
& C, 67(1-3):23–52, 1985.

22. T. A. Henzinger, O. Kupferman, and S. Qadeer. From pre-historic to post-modern
symbolic model checking. Formal Methods in System Design, 23(3):303–327, 2003.

23. A. Ingólfsdóttir, J. C. Godskesen, and M. Zeeberg. Fra Hennessy-Milner logik til
CCS-processer. Technical report, Aalborg Universitetscenter, 1987.

24. D. Kozen. Results on the propositional mu-calculus. TCS, 27:333–354, 1983.
25. F. Laroussinie and K. G. Larsen. Compositional model checking of real time

systems. In CONCUR’95, vol. 962 of LNCS, pp. 27–41. Springer, 1995.
26. F. Laroussinie and K. G. Larsen. CMC: A tool for compositional model-checking

of real-time systems. In FORTE’98, vol. 135 of IFIP Conference Proceedings, pp.
439–456. Kluwer, 1998.

27. F. Laroussinie, S. Pinchinat, and P. Schnoebelen. Translations between modal
logics of reactive systems. TCS, 140(1):53–71, 1995.

28. F. Laroussinie and P. Schnoebelen. Specification in CTL+past for verification in
CTL. I & C, 156(1):236–263, 2000.

29. K. G. Larsen. Context-dependent bisimulation between processes. PhD thesis,
University of Edinburgh, 1986.

30. K. G. Larsen. Proof systems for satisfiability in Hennessy–Milner logic with recur-
sion. TCS, 72(2–3):265–288, 1990.

31. K. G. Larsen and L. Xinxin. Compositionality through an operational semantics
of contexts. Journal of Logic and Computation, 1(6):761–795, 1991.

32. O. Lichtenstein, A. Pnueli, and L. D. Zuck. The glory of the past. In Logic of
Programs, vol. 193 of LNCS, pp. 196–218. Springer, 1985.

33. M. Nielsen. Reasoning about the past. In MFCS98, pp. 117–128, Springer, 1998.
34. I. C. C. Phillips and I. Ulidowski. Reversing algebraic process calculi. JLAP,

73(1–2):70–96, 2007.
35. J.-B. Raclet. Residual for component specifications. Electr. Notes Theor. Comput.

Sci., 215:93–110, 2008.

15

36. A. K. Simpson. Sequent calculi for process verification: Hennessy-Milner logic for
an arbitrary GSOS. JLAP, 60-61:287–322, 2004.

37. C. Stirling. A complete compositional model proof system for a subset of CCS. In
ICALP’85, vol. 194 of LNCS, pp. 475–486. Springer, 1985.

38. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific
Journal of Mathematics, 5:285–309, 1955.

39. M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP’98,
vol. 1443 of LNCS, pp. 628–641. Springer, 1998.

40. G. Winskel. Synchronization trees. TCS, 34:33–82, 1984.
41. G. Winskel. A complete proof system for SCCS with modal assertions. Fundamenta

Informaticae, IX:401–420, 1986.
42. G. Xie and Z. Dang. Testing systems of concurrent black-boxes—an automata-

theoretic and decompositional approach. In FATES’05, vol. 3997 of LNCS, pp.
170–186. Springer, 2006.

16

