Liveness and Boundedness of Synchronous Data Flow Graphs *

A.H. Ghamarian, M.C.W. Gellen, T. Basten, B.D. Theelen, M.R. Mousavi and S. Stuijk
Eindhoven University of Technology, Electronic Systems Group
a.h.ghamarian@tue.nl

Abstract. Synchronous Data Flow Graphs (SDFGs) have proven
to be suitable for specifying and analyzing streaming applications
that run on single- or multi-processor platforms. Streaming appli-
cations essentially continue their execution indefinitely. Therefore,
one of the key properties of an SDFG is liveness, i.e., whether all
parts of the SDFG can run infinitely often. Another elementary
requirement is whether an implementation of an SDFG is feasi-
ble using a limited amount of memory. In this paper, we study
two interpretations of this property, called boundedness and strict
boundedness, that were either already introduced in the SDFG lit-
erature or studied for other models. A third and new definition is
introduced, namely self-timed boundedness, which is very impor-
tant to SDFGs, because self-timed execution results in the maxi-
mal throughput of an SDFG. Necessary and sufficient conditions
for liveness in combination with all variants of boundedness are
given, as well as algorithms for checking those conditions. As
a by-product, we obtain an algorithm to compute the maximal
achievable throughput of an SDFG that relaxes the requirement
of strong connectedness in earlier work on throughput analysis.

1 Introduction

Synchronous Data Flow Graphs (SDFGs, see [13]), also
known as weighted Marked Graphs in Petri-net theory, are
used widely in modelling and analyzing data flow appli-
cations. They are often used for modelling DSP applica-
tions [3, 19] and for designing concurrent multimedia ap-
plications implemented on multi-processor systems-on-chip
[17]. The model is suitable for realizing a system with
predictable performance properties as several analysis tech-
niques like throughput analysis exist [8].

An SDFG is a graph with actors as vertices and chan-
nels as edges. Actors represent basic parts of an application
which need to be executed. Channels represent data depen-
dencies between actors. Execution of an actor is designated
by an actor firing. Each actor generates a fixed number of
tokens when it fires. These are stored in the channels with
unlimited capacities. An execution of an SDFG is a se-
quence of actor firings which respects data dependencies.
The exact order of actor firings is not determined. Conse-
quently, several executions exist for an SDFG. Because of
the usage of SDFGs for modelling streaming applications,
only those SDFGs which have executions in which all ac-
tors are fired infinitely often are of interest. This property
of SDFGs is called liveness. Furthermore, only executions

*This work was supported by the Dutch Science Foundation NWO,
project 612.064.206, PROMES, and the EU, project |ST-004042, Betsy.

that require a finite amount of storage for the channels are
of interest. This paper formally studies three different inter-
pretations of this second property, all in combination with
liveness.

The paper investigates two known interpretations,
namely boundedness (whether there exists a bounded ex-
ecution of an SDFG) and strict boundedness (whether all
executions are bounded). We prove necessary and sufficient
conditions guaranteeing that an SDFG is live and (strictly)
bounded. For strict boundedness, these conditions follow
immediately from a similar result known for Petri nets.

The natural way of executing an SDFG in which all ac-
tors fire as soon as they can fire, is called self-timed ex-
ecution. This execution is important since it leads to the
maximal obtainable throughput of an SDFG [19]. Because
of the importance of self-timed execution of SDFGs and
its applications in the context of multi-processor systems,
a new notion of boundedness, namely self-timed bound-
edness is introduced. This notion requires that self-timed
execution of SDFGs is bounded. Necessary and sufficient
conditions for the liveness and self-timed boundedness of
SDFGs are proved. These conditions heavily depend on the
throughput of actors (average number of firings of an actor
per time unit). Existing techniques for throughput calcula-
tion only work for strongly connected SDFGs [6, 8]. We
propose an algorithm that determines the liveness and self-
timed boundedness of an SDFG and at the same time ex-
tends throughput analysis to arbitrary SDFGs. The concept
of self-timed boundedness and the results proven for this
notion are the main contribution of this paper.

The rest of this paper is organized as follows. Section 2
formally introduces SDFGs to allow studying liveness and
boundedness in a rigorous way. Sections 3 and 4 present re-
sults for liveness and (strict) boundedness. Section 5 iden-
tifies conditions for self-timed boundedness of SDFGs and
presents an algorithm for verifying the combination of live-
ness and this type of boundedness. Section 6 discusses re-
lated work, while Section 7 summarizes the conclusions.
Proofs are omitted and can be found in [9].

2 Synchronous Data Flow Graphs
2.1 Basic Definitions

This section formally defines SDFGs and some of their
basic properties. Let Ny = {0,1,...} (and IN = Ny \

Figure 1. An example timed SDFG G.,.

{0}) denote the (positive) natural numbers. The following
definition captures the structure of an SDFG.

Definition 1 [Synchronous Data Flow Graph (SDFG)] An
SDFG is apair (A,C'), where A denotes the set of actors
andC C A% x IN? the set of channels. Each (s, d,p,c) € C
denotes that actor d depends on actor s, where p and ¢ are
the production and consumption rates of tokens of s and d,
respectively. The predecessors of a in Pred(a) = {s €
Al (s,a,p,c) € C} arethose actors on which a depends.
The channels between o and its predecessors are referred
to as the input channels of a, denoted by 1C(a). Similarly,
the successors of a in Succ(a) = {d € A | (a,d,p,c) €
C'} arethose actors that depend on a. The output channels
(channels between o and its successors) of a are denoted
by OC(a). We call a channel from an actor a to itself a
self-loop channel. We denote the set of self-loop channels
of an actor a by SLC(a) = IC(a) N OC(a). An SDFG
in which all production and consumption rates are one is
called a Homogeneous SDFG (HSDFG).

Figure 1 shows a simple example of an SDFG. Actors are
labeled with their names and execution times (introduced
later). Channels are labeled with production and consump-
tion rates. The black dots are tokens. To capture the execu-
tion of an SDFG, we define the channel state of an SDFG
as the distribution of tokens over its channels.

Definition 2 [Channel State] A channel state of an SDFG
(A,C) isafunction S : C — IN that returns the number
of tokens stored in each channel. Each SDFG has an ini-
tial channel state Sy denoting the number of tokens that are
initially stored in the channels.

An execution of an SDFG is defined based on the firings of
its actors, which may lead to changes in the channel state.

Definition 3 [Firing] Let a € A be an actor of an SDFG
(A,C). Actor a is said to be enabled in channel state S
in case S(e) > c for al input channelse = (s,a,p,c)
in IC(a). If a is enabled in S; and it fires, the result-
ing channel state S; 1 is defined by S1(e) = S;(e) — ¢
for each input channel e = (s,a,p,c) in IC(a)\SLC(a),
Siy1(e) = S;(e)+p for each output channel e = (a, d, p, c)
inOC(a)\SLC(a), S;+1(e) = Si(e) + p — ¢ for each self-
loop channel ¢ = (a,a,p,c) € SLC(a), and S;+1(e) =
Si(e) for all channelse ¢ 1C(a) U OC(a).

Definition 4 [Execution and Maximal Execution] Let Sy
denote the initial channel state of an SDFG (A,C). An
execution o of (A, C) is a (fi nite or infi nite) sequence of

channel states Sy, S ... such that S;.1 is the result of fi r-
ing an enabled actor in S; for al i > 0. An execution is
maximal if and only if it is fi nite with no actors enabled in
the fi nal channel state, or if it isinfi nite.

Not all SDFGs are considered to be useful in practice. One
normally seeks a system that is deadlock-free or live.

Definition 5 [Deadlock and Liveness] An SDFG has a
deadlock if and only if it has a maximal execution of fi nite
length. An SDFG is live if and only if it has an executionin
which all actorsfi re infi nitely often.

It is known [11] that the execution of an SDFG is deter-
minate, which means that the order of execution does not
affect the states that can eventually be reached. Thus, if one
execution of an SDFG deadlocks, then all executions dead-
lock. The example SDFG G, is live.

2.2 Timed SDFGs

For performance analysis of streaming applications, an
SDFG is often extended with time.

Definition 6 [Execution Time] An execution time models
the execution duration of actors for SDFGs. In an SDFG
(A, C), theexecutiontimeisafunction E : A — Q¢ U{co}
that assigns to each actor the amount of time it takes to fi re,
where@ U{oc} isthe set of positiverational numbers plus
0 andoo. Fora € A, E(a) is referred to as the execution
time of a.

Definition 7 [Timed SDFG] A timed SDFG is a triple
(A, C, E) denoting an SDFG (A, C') with executiontime E.

The infinite execution times are used lateron to model dead-
locks. Normally, SDFGs do not have infinite actor execu-
tion times.

Notice that actor firings in a timed SDFG are not atomic.
Firing an actor now takes time. To define the state of a timed
SDFG, we assume that all changes in the number of tokens
on all channels of an actor happen at the end of its firing.

Definition 8 [Timed State] A state of a timed SDFG
(A,C,FE) isapair (S,7), where S is a channdl state and
T € @f is the accumulated time. The initia state of
(A,C, E) is given by the initial channel state S, and the
Start time of the system o = 0.

Definition 9 [Timed Execution] An execution of a
timed SDFG (A,C,E) is a sequence of timed states
(So,70), (S1,71), - .., wherer,11 > 7;. Each two consecu-
tivestates (S; 1, m+1) and (S;, 7;) are the same except that
an actor a which started its firing a %11 — E(a) fi nishes
itsfiringat %,1. S;11 isrelated to S; in precisely the same
way as defi ned in Defi nition 3.

((1,1,3,1),0) —Sm ((1,1,0,4),1) % ((1,2,0,4),2) 2w ((1,1,2,2),2+61)

b a b
7, ((1,02,2),7+6n)

((1,1,4,0),6+6m) ((1,0,4,0),3+6m)

a
a

((1,0,0,4),6+6n) ((1,1,4,0),4+6n)
c c
((1,0,3,1),5+6n) <2 ((1,1,1,3),4+6m)

Figure 2. Self-timed execution of G;.

We denote the number of completed firings of an actor a €
A which occurred up to time 7 by F, -.

Among all timed executions there are some of special
interest. A timed execution for which the firing of an actor
always starts as soon as possible is called a self-timed exe-
cution. Self-timed executions are important in the context
of performance analysis because they imply obtaining the
maximal attainable throughput [19].

Definition 10 [Self-timed Execution] A timed execution is
called self-timed if and only if it is maximal and all actors
Start their fi ring as soon as they are enabled.

If two or more actors complete their firing at some point
in time in a self-timed execution, the order of their appear-
ance in the execution is not determined. In other words, any
permutation of such actor firings results in a self-timed exe-
cution. Thus, the number of self-timed executions is larger
than one in such cases. Note that in all self-timed executions
the start and end times of firings of all actors are equal. Also
the channels states after completion of all actor firings that
can complete at a certain point in time are the same in all
self-timed executions.

Figure 2 illustrates a self-timed execution of the exam-
ple SDFG G, of Figure 1. The state contains a channel
component with the distribution of tokens over the channels
a-a, a-b, b-c, c-b, respectively, and a time component. In the
depicted cycle, the time component is denoted symbolically
to emphasize that the behavior repeats itself every six time
units, after some initial transient phase.

2.3 Structural Properties

The directed graph of an SDFG has some structural prop-
erties that are relevant for deciding boundedness. This pa-
per assumes connected SDFGs for which the directed graph
consists of one component. SDFGs consisting of multiple
components can be considered as a set of single-component
SDFGs, which can be analyzed separately.

A well known stronger form of connectivity is given by
the following two definitions.

Definition 11 [Path and Cycle] A directed path p is a se-
quenceof actorsay, as . .. a; such that a;+1 € Succ(a;) for
all <i <l Pathpissmpleiffa; # a; forali # j. If
a1 = a; andl > 2, thenp issaid to be a cycle.

Definition 12 [Strongly Connected SDFG] An SDFG is
strongly connected iff there exists a directed path from any
actor to any other actor. Any subgraph of an SDFG which
is strongly connected is called a strongly connected compo-
nent (SCC, for short). An SCC « is maximal iff there is no
SCC ' wherek isastrict subgraph of «’.

Another structural property of SDFGs concerns the corre-
spondence between production and consumption rates.

Definition 13 [Consistency and Balance Equations] A rep-
etition vector for an SDFG (A, C) isafunctiony : A —
INy such that for every (s,d,p,c) € C, the equation
py(s) = c¢y(d) holds. These equations are called bal-
ance equations. Repetition vector v is called non-trivial iff
~v(a) > 0 forala € A. If anon-trivia repetition vector ex-
ists, the SDFG is called consistent. The smallest non-trivial
repetition vector of a consistent SDFG is referred to as the
repetition vector.

Note that the definitions in this subsection carry over to
timed SDFGs in a straightforward way. Timed SDFG G,
is consistent with repetition vector (a — 3,b — 3,c+— 2).

2.4 Throughput of Timed SDFGs

In this section the throughput of timed SDFGs is defined,
and the relation between the execution of an SDFG and its
throughput is explained.

Definition 14 [Throughput] The throughput Th(a) of an
actor o for a sdf-timed execution of a timed SDFG
(A,C, E) is defi ned as the average number of fi rings of a
per time unit. Formally,

Fa‘r
Th(a) = lim ——.
T—00 T

If G = (A,C, E) is consistent, then its throughput is de-
fi ned as

where + is the repetition vector of (A,C, E). That is, the
throughput of G isthe minimal actor throughput normalized
by the repetition vector.

We define the local throughput of an actor as the throughput
of that actor in a self-timed execution where non-self-loop
input channels are removed; in other words, the throughput
of an actor when it does not need to wait for data from other
actors.

Definition 15 [Local Throughput] The local throughput
LTh(a) of an actor a for a self-timed execution of a timed
SDFG (A, C, E) is defi ned as
LTh(a) =
0, ifthereisach = (a,a,p,c) inSLC(a)
suchthatp < c or So(ch) < ¢

i So(ch E(a), otherwise.
ch:(a,a,r}“l,lg)lESLC(a)L O(C)/TJ/ (a)

If an actor has a self-loop channel with a lower production
rate than consumption rate or insufficient tokens for an ini-
tial firing, its local throughput is zero, i.e., it deadlocks at
some point in time. Otherwise, the local throughput is deter-
mined by the self-loop channels with equal production and
consumption rates. If there are no such channels, i.e., there
are no self-loop channels or all self-loop channels have a
higher production than consumption rate, local throughput
is by definition infinite.

In a self-timed execution of a timed SDFG, there is al-
ways a time 7, after which only a repetitive pattern of actor
firings occurs (when ignoring the order among actor firing
completions occurring at the same moment in time) [8, 1].
The self-timed execution from the beginning up to time 7,
is called the transient phase, and thereafter is addressed as
the periodic phase. Figure 2 illustrates this fact. Thus, the
throughput of an arbitrary actor a in the self-timed execu-
tion can be calculated by counting the number of occur-
rences of firings of a in one period divided by the amount
of time that the period takes. The firings of a in one period
can be spread over the period, but the number of firings of
one actor in one period is always fixed.

Consider again SDFG G, of Figure 1. The local
throughput of actor a is % whereas it is oo for b and c.
The throughput of the three actors equals 2 = 1, 2 = 1,
and 2 = 1, respectively. The graph throughput Th(G.,) is
determined by actor a (with repetition-vector entry 3) and
is equal to (2)/3 = 1. This illustrates that the periodic be-
havior of the graph as a whole needs 6 time units per period.

2.5 Boundedness Definitions

Different useful notions of boundedness can be defined
for SDFGs. To enable identifying these forms, we first de-
fine boundedness for a given execution.

Definition 16 [Bounded Channel and Bounded Execution]
Leto = Sy, S1,... be an execution of an SDFG (A, C).
We call achannel ch bounded under o iff there exists some
B € IN suchthat S;(ch) < B foradli > 0. If al channels
of the SDFG are bounded under o then o is bounded.

Definition 16 carries over to timed executions in a straight-
forward way. Now, we give a definition for the boundedness
of an SDFG which intuitively means that it can be imple-
mented using a finite amount of memory.

Definition 17 [Bounded SDFG] A (timed) SDFG is called
bounded iff there exists a bounded maximal execution. It is
unbounded otherwise.

A stronger form of boundedness is strict boundedness.

Definition 18 [Strictly Bounded Channel and Strictly
Bounded SDFG] A channel is strictly bounded iff it is
bounded under all executions. A (timed) SDFG is called
strictly bounded iff all of its channels are strictly bounded.

Note that any strictly bounded SDFG is also bounded. We
finally define another form of boundedness, which only
considers self-timed executions of timed SDFGs.

Definition 19 [Self-timed Bounded SDFG] A timed SDFG
is self-timed bounded iff all self-timed executions are
bounded. A channel in atimed SDFG is self-timed bounded
iff it is bounded in all self-timed executions.

All self-timed bounded SDFGs are bounded but not neces-
sarily strictly bounded. Running example G . is not strictly
bounded because « can be fired indefinitely without firing b
and ¢. However, it is self-timed bounded, as Figure 2 illus-
trates. It is not difficult to construct bounded SDFGs that
are not self-timed bounded. If the execution times of actors
band cin G, are changed to 3, for example, then the SDFG
remains bounded but it is no longer self-timed bounded.
These examples show that the notion of self-timed bounded-
ness does not coincide with other notions of boundedness.
Given the importance of self-timed execution, it is worth
investigating this notion in some detail.

3 Boundedness

In this section, we study necessary and sufficient condi-
tions under which an SDFG is live and bounded.

Theorem 20 A live SDFG G = (A, C) is bounded iff it is
consistent.

Theorem 20 states the consistency of an SDFG as a neces-
sary and sufficient condition for boundedness of live SD-
FGs. If a subgraph of an SDFG deadlocks (which means
that the SDFG is not live) then the consistency of an SDFG
is not sufficient for boundedness. For example, consider
G, of Figure 1 without the initial token in the ¢-b chan-
nel. Execution times may be ignored. The resulting SDFG
is consistent but not bounded. The SCC of the graph that
consists of actors b and ¢ deadlocks after the first firing of
both actors. However, actor a can continue its firing, which
leads to an unbounded channel between a and b.

Proposition 21 [20] A strongly connected SDFG is live iff
it is deadlock-free.

The definition of liveness states that a live SDFG has an
execution in which all actors fire infinitely often. If a live
SDFG is strongly connected, then all actors fire infinitely
often in all maximal executions.

Lemma 22 If one SCC in an SDFG G deadlocks then ei-
ther G deadlocks or it is unbounded.

This lemma implies that a deadlock-free and bounded
SDFG is live.

Corollary 23 An SDFG is live and bounded iff it is
deadlock-free and bounded.

The following theorem follows from Theorem 20, Proposi-
tion 21, Lemma 22, and Corollary 23.

Theorem 24 An SDFG is live and bounded iff it is consis-
tent and all its SCCs are deadlock-free.

The example SDFG G, is live and bounded because it is
consistent and all its SCCs are deadlock-free.

Next, we give an algorithm to check liveness and bound-
edness of an SDFG.

Algorithm isLive&Bounded(G)

Input: A connected (timed) SDFG G

Output: “live and bounded” or “either deadlock or un-
bounded”

1. if Gis inconsistent

2 then return “either deadlock or unbounded”

3. for each maximal SCC S in G

4, do if S deadlocks

5 then return “either deadlock or unbounded”

6. return “live and bounded”

Consistency of SDFGs can be verified efficiently as ex-
plained in [3]. Maximal SCCs of a graph can also be com-
puted efficiently [5]. Algorithms for detecting deadlock for
consistent strongly connected SDFGs that are efficient in
practice are given in [12, 8].

4 Strict Boundedness

This section identifies sufficient and necessary condi-
tions for the liveness and strict boundedness of an SDFG.

Theorem 25 [20, Theorem 4.11] A live (timed) SDFG is
strictly bounded iff it is consistent and strongly connected.

This theorem in combination with Proposition 21 implies
the following theorem.

Theorem 26 An SDFG is live and strictly bounded iff it is
deadlock-free, consistent and strongly connected.

So the algorithm for checking liveness and strict bounded-
ness first checks whether the SDFG is strongly connected
and consistent, and then whether it is deadlock-free using
the algorithms from [5, 3, 8, 12]. The example of Figure 1
is not strictly bounded because it is not strongly connected.

5 Sdf-timed Boundedness

In this section, we investigate the liveness and self-timed
boundedness of timed SDFGs. A self-timed execution of
a live and self-timed bounded SDFG uses a finite amount
of memory and all actors fire infinitely often in such an ex-
ecution. Necessary and sufficient conditions for liveness
and self-timed boundedness are given, and an algorithm for
checking these conditions.

5.1 Some Basic Properties

Self-timed boundedness has a strong relationship with
the throughput of an SDFG. In this subsection, some prop-
erties for the throughput as well as the relation between
boundedness and throughput of timed SDFGs are given.

The throughput of an actor is only determined by the
throughput of its predecessors and its local throughput.

Lemma 27 The throughput of an actor b € A of atimed
SDFG G = (A, C, E) satisfi es the equation

Th(b) = min{ in b

=Th LTh(b)}.
(a6, 0) EICNSLG) ¢ (a), LTh(b)}

1)
The throughput of actor b of G, for example, is % because

its predecessor a has that throughput, the rates of channel a-
b are 1 and its local throughput is oco.

Corollary 28 If actorsa,b € A of an SDFG G are con-
nected by a channel (a, b, p, ¢) then Th(b) < (p/c)Th(a).

After having illustrated the factors that are involved in cal-
culating the throughput of an actor, we now show that the
only case that a channel is not self-timed bounded, is when
the production of tokens into one channel is larger than the
consumption of tokens out of that channel.

Lemma29 SDFG (A,C,FE) is self-timed bounded iff
Th(b) > (p/c) Th(a) for every channel (a,b,p,c) € C.

The next proposition gives necessary and sufficient con-
ditions for self-timed boundedness of a live strongly con-
nected SDFG.

Proposition 30 A live and strongly connected SDFG G is
self-timed bounded iff it is consistent.

Lemmas 31 and 32 and Proposition 33 prove some use-
ful properties about the relation between the throughput
of various actors. Lemma 31, which follows immediately
from Corollary 28 and Lemma 29, shows the relation be-
tween producer and consumer actors of an arbitrary self-
timed bounded channel. Lemma 32 shows the relation be-
tween the actor throughputs for any two actors in an SCC
of an SDFG. Proposition 33 gives the relation between the
throughput of two arbitrary actors in consistent self-timed
bounded or strongly connected SDFGs.

Lemma 31 If a channd (a,b,p,c) connecting a and b is
self-timed bounded then Th(b) = (p/c) Th(a).

Lemma 32 If a and b are two actors of an SCC of a con-
sistent SDFG with repetition vector ~, then Th(a)/v(a) =

Th(b)/~(b).
Proposition 33 If a and b are two actors of a consistent

sdf-timed bounded or strongly connected SDFG G with
repetition vector v then Th(a)/v(a) = Th(b)/~(b).

This proposition shows that for consistent self-timed
bounded or strongly connected SDFGs the throughput as
defined in Definition 14 can be calculated via an arbitrary
actor without explicitly computing the minimum.

5.2 Reduction to an HSDFG

In this section, we propose a method for reducing a
consistent SDFG G to an HSDFG Gy which preserves
(non-)liveness and self-timed (un)boundedness of G. In
Gy, every actor has a self-loop channel with one initial to-
ken, rates of all channels are one (i.e., it is an HSDFG), and,
ignoring self-loops, it is acyclic. Because of these simple
properties, we use the reduced graph for verifying the live-
ness and self-timed boundedness of the original SDFG. The
reduction also preserves throughput which means our algo-
rithm also provides the throughput of the original SDFG G.

The reduction uses the notion of local throughput of an
SCC of an SDFG, and it is illustrated in Figure 3 which
provides the reduced graph for the running example.

Definition 34 [Local Throughput of an SCC] The local
throughput LTh(x) of an SCC k = (A,;, Cy, E,;) inacon-
sistent SDFG G = (A, C, E) with repetition vector v is
defi ned as the actor throughput of an arbitrary actor a € A,
when all input channelsfrom A\ A, to A,, are removed, di-
vided by v(a).

Lemma 32 implies that this definition is sound.

Figure 3. The reduced HSDFG for G,.

Definition 35 [Reduced Graph] Let a consistent SDFG
G = (ACE) contan n maximal SCCs k1 =
(Alﬁ ’ Clilv Elﬂ)v ceeyBkn = (Alinv Cﬁnv Enn)' S”pp0$’y
is the repetition vector of G. We defi ne the reduced SDFG
Gy = (AH,CH,EH) as follows: Ag = {xl|1 <1 < n}
(which means one actor for each maximal SCC in G); Cy
contains a channel (x;, z;, py(a), cy(b)) for every channel
(a,b,p,c) € C wherea € A;,, b€ Ay, i # j;, Cy ds0
contains self-loop channels (x;, x;, 1, 1) for every actor; the
execution time Ey (x;) equals 1/LTh(k;) if k; does not
deadlock and ~o if it does. According to the balance equa-
tions we know that for each channel in the original graph
(a,b,p,c), py(a) = ¢y(b). Thus, the production and con-
sumption rates for every channel in Cy are equal. There-
fore, we can ssimplify the reduced G by setting all rates of all
channelsin Cy to one. Consequently, we obtain an HSDFG
as the result. Finally, every self-loop channel in G con-
tains oneinitial token, and all the other channels are empty.

Since the HSDFG resulting from the reduction is acyclic
when ignoring self-loops, the preservation of throughput,
(non-)liveness and self-timed (un-)boundedness that we are
aiming at, is independent of the number of initial tokens
on the non-self-loop channels. Hence, we choose to leave
those channels empty.

Consider the reduced graph shown in Figure 3. The orig-
inal graph G, has two maximal strongly connected com-
ponents, containing actor a, and actors b and ¢, respectively.
These SCCs are reduced to actors x; and 5. Since actor a
has throughput % and repetition-vector entry 3, the execu-
tion time of x; is set to 6, illustrating that 3 firings of a
take 6 time units. Considering the other SCC in isolation,
it can be verified that one period of this SCC containing 3
firings of b and 2 of ¢ consists of 4 time units. Given the
repetition vector of G, and Definition 34, this gives a local
throughput of i and an execution time of 4 for 5.

The following proposition shows the relation between
the throughput of actors in a maximal SCC of an SDFG
and the throughput of the actor corresponding to that SCC
in the reduced SDFG.

Proposition 36 Let Gy be the reduced SDFG of aconsis-
tent timed SDFG G with repetition vector . If a maximal
SCCk = (A, Cy, Ey) inG isreplaced by actor x in Gy,
thenforanya € A, Th(a) = v(a) Th(x).

It is easy to verify that Proposition 36 holds for the run-
ning example. Consider for instance actor zo of the re-
duced graph. Its throughput in the reduced graph is fully
determined by the throughput of z; and becomes there-
fore . Proposition 36 states that Th(b) = 3(%) = 3 and
Th(c) = 2(3) = 3, which corresponds to the throughput
values for b and ¢ computed at the end of Section 2.4.

The next corollary follows from the definition of
throughput, the observation that all repetition-vector entries
of an HSDFG are always one, and Propositions 33 and 36.

Corollary 37 The throughput of a consistent self-timed
bounded SDFG is equal to the throughput of its reduced

graph.
The reduction also preserves self-timed (un-)boundedness.

Theorem 38 A consistent timed SDFG is self-timed
bounded iff its reduced graph is self-timed bounded.

Proposition 36 implies that non-zero throughput (i.e.,
(non-)liveness) is preserved.

Corollary 39 A consistent timed SDFG is live iff its re-
duced graphislive.

5.3 Verifying Self-timed Boundedness

This section introduces an algorithm that determines
whether an SDFG is live and self-timed bounded. The fol-
lowing theorem follows from the results obtained so far.

Theorem 40 A timed SDFG G is live and self-timed
bounded iff isLive& SelftimedBounded (G) returns “yes”.

Algorithm isLive&SelftimedBounded(G=(A, C, E))

Input: A connected timed SDFG G

Output: “yes, Th(G)” if self-timed bounded and live, “no”
otherwise

1. if notisLive&Bounded(G)

2. then return “no”

3. Gy = (AH, OH, EH) <—I'6dUC€(G)

4. AL[1..|Ay|] —topologicalSort(G)

5 if|Ag|=1

6. then return “yes, M”

7. fori<—1to|Apy]

8. do AL[:].Th &m

9. if Pred(AL[i]) = {AL[i]} and AL[i].Th = oo
10. then return “no”

11. maxPTh «— 0

12. for each j € Pred(AL[i])\{AL[i]}

13. do AL[].Th —min(AL[:]. Th, AL[j]. Th)
14. maxPTh «—max(mazPTh, AL[j].Th)
15. if maxPTh > AL[i].Th

16. then return “no”

17. return “yes, AL[1].Th”

The algorithm works in two steps. The first step checks the
liveness and boundedness (as defined by Definition 17) of
the graph by calling algorithm isLive&Bounded (lines 1 and
2). If the graph is not live and bounded, it cannot be live and
self-timed bounded. The second step concerns determining
whether the reduced HSDFG is self-timed bounded (lines 3
to 17).

If isLive&Bounded returns “yes”, we know that the
SDFG is consistent. Then, line 3 of the algorithm reduces
the SDFG according to Definition 35 and stores the result
in G . Note that the reduction requires throughput calcula-
tions for all SCCs. For efficiency reasons, these throughput
calculations can be delayed till the algorithm really needs
this information. Calculations may then be avoided if the
algorithm returns “no” early. We have not made this ex-
plicit in the algorithm. Since G is at this point known to
be live and consistent, by Corollary 39, also G is live. It
remains to determine self-timed (un-)boundedness.

Ignoring self-loops, G g is acyclic. Line 4 topologically
sorts the actors of Gy, and stores them in array AL, so
that the predecessors of an actor A L[i] are only among the
AL[j] for j < i. If Gy contains only one actor, then G
is strongly connected, and hence, by Proposition 30, self-
timed bounded, and the algorithm terminates. Based on
Corollary 37, it returns the local throughput of the only ac-
tor of Gy as the throughput of G. Note that every actor in
a reduced graph has a self-loop channel with one token on
it, so this value is equal to 1/FE i (AL[1]). Also note that
En(AL[1]), and Eg(AL[i]) in general, may be 0. In this
case, we assume that 1/ Ey (AL[4]) is equal to oc.

Each iteration of the loop of lines 7 to 16 starts by cal-
culating the local throughput of each actor AL[i], 1 < i <
| Apr|, storing the result in AL[i].Th. In case of detecting a
source actor (an actor without any input channel except its
self-loop channel) with an infinite throughput, the algorithm
returns “no”, because this implies that its output channels
are unbounded. The loop continues by setting maxzPTh to
zero. This variable is a temporary variable for storing the
maximum throughput of the predecessors of actor AL[i] in

iteration 4. In the loop of lines 12 to 14, the minimum be-
tween the local throughput of actor AL[i] and the minimum
throughput of its predecessors is assigned to A L[i]. Th. This
value, according to Lemma 27, is the throughput of the ac-
tor AL[i]. Note that since the actors are topologically sorted
in AL, the throughput of all predecessors has already been
calculated. The maximum throughput of the predecessors
of actor AL[i] is assigned to maxzPTh.

The test of line 15 checks whether the maximum
throughput of predecessors of actor A L[:] (excluding A L[¢])
is greater than the throughput of actor A L[] itself. In case it
is, according to Lemma 29 at least one channel connecting
a predecessor of actor AL[i] to ALi] is unbounded.

If the algorithm reaches line 17, then no unbounded
channel has been detected, and the graph is live and self-
timed bounded. According to Corollary 37 and the fact
that the reduced SDFG is an HSDFG with all repetition-
vector entries one, the value of AL[:].Th for all actors
AL[i] € Ag is equal to the throughput of G. The al-
gorithm returns AL[1]. Th. The emphasis of algorithm is-
Live&SelftimedBounded is on verifying liveness and self-
timed boundedness of an SDFG, so it returns as soon as it
detects that the graph is not live or not self-timed bounded.
It can be easily adapted to compute the throughput for SD-
FGs which are not self-timed bounded as well.

6 Reated Work

There are interesting similarities between SDFGs and
Petri nets. In particular, there is a straightforward transla-
tion from SDFGs to a subclass of Petri nets, called weighted
Marked Graphs and vice versa, where actors are transitions,
and channels are places. Marked Graphs, also called T-
Graphs are known to be the subclass of Petri nets that is
most amenable to rigorous analysis. Thus, it makes sense
to compare the results obtained in this paper with the corre-
sponding results in the literature concerning Petri nets. We
studied liveness in combination with three different defini-
tions of boundedness (Definitions 17, 18 and 19) for (timed)
SDFGs.

We do not know of any related results for boundedness
as defined by Definition 17. The only result we know for
this type of boundedness is in [16] which only introduces
it without providing necessary and sufficient conditions, as
we do.

For strict boundedness in the sense of Definition 18, the
problem has been studied from different viewpoints in the
Petri-net literature (see for an overview [7, 15]). In particu-
lar, [20] gives necessary and sufficient conditions for strict
boundedness of live weighted Marked Graphs (our Theo-
rem 25). Strict boundedness is also the only kind of bound-
edness which has been investigated formally in the litera-
ture on SDFGs themselves; Karp and Miller in their sem-
inal paper [11] introduced computation graphs, which are
slightly more general than SDFGs. They proved necessary
and sufficient conditions for liveness and strict boundedness

in their model. Their results as well as those in [20] corre-
spond to those presented in this paper.

Our third definition of boundedness, self-timed bounded-
ness (see Definition 19) is defined on timed SDFGs. There-
fore, we need to compare it with time-enabled Petri nets.
Petri nets have been extended with quantitative time in dif-
ferent ways, by adding timing information to places, transi-
tions and/or tokens (see [4] for a survey). The timed Petri
net model that comes closest to timed SDFGs is the “time
Petri net” model originally defined by [14]. This exten-
sion of Petri nets associates a duration (delay) and a dead-
line to transitions. We are not aware of any study of the
self-timed boundedness problem for the subclass of time
Marked Graphs. In [18], the liveness and strict bounded-
ness problem for time Petri nets is studied but only some
sufficient conditions are given. These conditions guaran-
tee that once a time Petri net satisfies certain syntactic con-
straints, it is live and strictly bounded if the underlying un-
timed Petri net is live and strictly bounded. Unfortunately,
the results of [18] cannot be applied in our setting since the
syntactic constraints require the absence of either duration
or deadline both of which are necessary for translation of
timed SDFGs to time Petri nets. [10] proves a general un-
decidability result for strict boundedness of time Petri net of
[14]. However, in [2], two sufficient conditions are given for
strict boundedness of time Petri nets. We are not aware of
any result about self-timed boundedness as defined in Def-
inition 19. To the best of our knowledge, both the concept
and the derived results are novel.

7 Conclusions

We have studied the liveness and boundedness of Syn-
chronous Data Flow Graphs, which are also known as
weighted Marked Graphs in the Petri-net literature. Live-
ness and boundedness is a prerequisite of any meaningful
SDFG model of a streaming multi-media application. Two
known notions of boundedness, namely boundedness and
strict boundedness, have been studied rigorously, and in
particular necessary and sufficient conditions for liveness
in combination with these two types of boundedness have
been given. For strict boundedness, these conditions were
already known from the Petri-net literature. Furthermore, a
new notion, self-timed boundedness, was introduced. Self-
timed boundedness checks whether self-timed execution of
an SDFG is bounded. A self-timed execution yields the
maximum throughput for an SDFG. Necessary and suffi-
cient conditions for self-timed boundedness and liveness
have been proven. An algorithm for checking these con-
ditions was presented. Besides, existing throughput analy-
sis techniques, which are only valid for strongly connected
graphs, are extended to arbitrary consistent SDFGs.

References

[1] F.Baccelli, G. Cohen, G. Olsder, and J.-P. Quadrat. Synchro-
nization and linearity: an algebra for discrete event systems.

Wiley, 1992.

[2] B. Berthomieu and M. Diaz. Modeling and verification of
time dependent systems using time Petri nets. IEEE Trans-
actions on Software Engineering, 17(3):259-273, 1991.

[3] S. Bhattacharyya, P. Murthy, and E. Lee. Synthesis of em-
bedded software from synchronous dataflow specifications.
Journal on VLSI Signal Process. Syst., 21(2):151-166, 1999.

[4] F. D. Bowden. A brief survey and synthesis of the roles of
time in Petri nets. Mathematical and Computer Modelling,
31(10):55-68, 2000.

[5] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduc-
tion to Algorithms. MIT Press, 2001.

[6] A. Dasdan. Experimental analysis of the fastest optimum
cycle ratio and mean algorithms. ACM Trans. on Design
Automation of Electronic Systems, 9(4):385-418, 2004.

[7] J. Esparza. Decidability and complexity of Petri net prob-
lems - an introduction. In W. Reisig and G. Rozenberg, ed-
itors, Lectures on Petri Nets I: Basic Models, Advances in
Petri Nets, volume 1491 of Lecture Notes in Computer Sci-
ence, pages 374-428. Springer-Verlag, 1998.

[8] A.H. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moo-
nen, M. Bekooij, B. Theelen, and M. Mousavi. Throughput
analysis of synchronous data flow graphs. In ACSD, Proc.,
pages 25-34. IEEE, 2006.

[9] A. H. Ghamarian, M. C. W. Geilen, T. Basten, B. Theelen,
M. M. R,, and S. Stuijk. Liveness and boundedness of syn-
chronous data flow graphs. Tech. report ESR-2006-04, TU
Eindhoven, http://www.es.ele.tue.nl/esreports/, 2006.

[10] N.D.Jones, L. H. Landweber, and Y. E. Lien. Complexity of
some problems in Petri nets. Theoretical Computer Science,
4(3):277-299, 1977.

[11] R. M. Karp and R. E. Miller. Properties of a model for
parallel computations: Determinacy, termination, queueing.
SIAM Journal on Applied Mathematics, 14(6):1390-1411,
1966.

[12] E. Lee. A coupled hardware and software architecture for
programmable digiral signal processors. PhD thesis, Uni-
versity of California, Berkeley, 1986.

[13] E. Lee and D. Messerschmitt. Synchronous dataflow. Pro-
ceedings of the IEEE, 75(9):1235-1245, September 1987.

[14] P. M. Merlin. A Study of Recoverability of Processes. PhD
thesis, Department of Information and Computer Science,
University of California at Irvine, 1975.

[15] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541-580, 1989.

[16] T. M. Parks. Bounded Scheduling for Process Networks.
PhD thesis, 1995.

[17] P. Poplavko, T. Basten, M. Bekooij, J. van Meerbergen, and
B. Mesman. Task-level timing models for guaranteed per-
formance in multiprocessor networks-on-chip. In CASES,
Proc., pages 63-72. ACM, 2003.

[18] L. Popova-Zeugmann. On liveness and boundedness in time
Petri nets. In Proceedings of the Workshop on Concur-
rency, Specification and Programming (CS&P’95), pages
136-145, 1995.

[19] S. Sriram and S. Bhattacharyya. Embedded Multiproces-
sors: Scheduling and Synchronization. Marcel Dekker, Inc,
New York, NY, USA, 2000.

[20] E. Teruel, P. Chrzastowski, J. M. Colom, and M. Silva. On
weighted T-systems. In Jensen, K., editor, 13th Interna-
tionald Conference on Application and Theory of Petri Nets
1992, Sheffield, UK, volume 616 of Lecture Notes in Com-
puter Science, pages 348-367. Springer-Verlag, 1992.

