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1 Introduction

Motivation Increasingly, software systems are subjected to adaptation at run-time
due to changes in the operational environments and user requirements. Adapta-
tion is classified into two broad categories [1]: structural adaptation and behavioral
adaptation. While structural adaptation aims to adapt system behavior by changing
system’s architecture, the behavioral adaptation focuses on modifying the function-
alities of the computational entities.

There are several challenges in developing self-adaptive systems. Due to the fact
that self-adaptive systems are often complex systems with greater degree of auton-
omy, it is more difficult to ensure that a self-adaptive system behaves as intended
and avoids undesirable behavior. Hence, one of the main concerns in developing self-
adaptive systems is providing mechanisms to trust whether the system is operating
correctly, where formal methods can play a key role.

Zhang et al. [2] proposed a model-driven approach using Petri Nets for de-
veloping adaptive systems. They also presented a model-checking approach for
verification of adaptive system [3,4] in which an extension of LTL with ”adapt”
operator was used to specify the adaptation requirements. In this work, system
was modeled using a labeled transition system. Furthermore, authors in [5,6] used
labeled transition systems at a low level of abstraction to model and verify embed-
ded adaptive systems. Kulkarni et al. [7] proposed a theorem proving approach to
verify the structural adaptation of adaptive systems.

Flexibility is another main concern to achieve adaptation. Since, hard-coded
mechanisms make tuning and adapting of long-run systems complicated, so we
need methods for developing adaptive systems that provide a high degree of flexi-
bility. All the proposed formal models hard-code the adaptation logic which leads
to system’s inflexibility. Recently, the use of policies has been given attention as a
rich mechanism to achieve flexibility in adaptive system. A policy is a rule describ-
ing under which condition a specified subject must (can or cannot) do an action
on a specific object. In [8,9,10,11,24], policies are used as a structural adaptation
mechanism. Additionally, [12,13] proposed architectures for engineering autonomic
computing systems that use policies for behavioral adaptations.
This paper In this paper we propose a formal model called PobSAM (Policy-
based Self-Adaptive Model) for developing and specifying self-adaptive systems that
employs policies as the principal paradigm to govern and adapt system behavior. We
model a self-adaptive system as a collection of interacting actors directed to achieve
particular goals according to the predefined policies. A PobSAM model consists
of a set of Self-Managed Modules(SMMs). An SMM is composed of a collection of
autonomous managers and managed actors. Autonomous managers are meta-actors
responsible for monitoring and handling events by enforcing suitable policies. Each
manager adapts its policies dynamically in response to the changing circumstances
according to adaptation policies. The behavior of managed actors is governed by
managers, and cannot be directly controlled from outside.

PobSAM has a formal foundation that employs an integration of algebraic for-
malisms and Actor-based models. The computational (functional) model of Pob-
SAM is based on actor-based models while an algebraic approach is proposed to
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specify policies of managers. Operational semantics of PobSAM is described with
labeled transition systems. The proposed model is suitable for cases where the set
of governing policies of each context is known in advance.

In our previous work [14], we proposed a formal model for policy-based self-
adaptive systems using an actor-based language Rebeca [15]. In [14], we added
policies as rules to the Rebeca code and we focused on policy conflict detection.
Combining adaptation concerns with system functionality in [14] increases the com-
plexity of the model as well as the formal verification process. In order to address
these drawbacks, we need an approach in which adaptation concerns are separated
from system functionality. Here, we extracted the policy rules, specified by an al-
gebraic formalism, from Rebeca code. Moreover, the policies are presented in two
classes, separating the policies governing the actor behavior from the policies which
determine the adaptation strategy (when and how the system passes the adaptation
phase safely). Additionally, here we added modules as an encapsulation mechanism
in which each module can manage itself autonomously.
Contribution Formal methods are proposed for the analysis of adaptive systems,
mainly at the low levels of abstraction, and flexible policy-based approaches are
proposed for designing adaptive systems without formal foundation. Here, we pro-
pose a flexible policy-based approach with formal foundation to support modeling
and verification of self-adaptive systems. Policies allow us to separate the rules that
govern the behavioral choices of a system from the system functionality giving us a
higher level of abstraction; so, we can change system behavior without changing the
code or functionality of the system. We are also concerned about the adaptation
strategy, to pass the adaptation phase safely and at the right moment. As an ex-
ample, we are able to change and reason about the scheduling of jobs using policies
independent of the system code. Although our approach can support both structural
and behavioral adaptation, in this paper, we focus on the behavioral adaptation.
The formal foundation, the modular model, and separation of adaptation rules will
help us in developing rigorous analysis techniques.
Structure of the paper This paper is organized as follows. In Section 2 we
introduce an example to illustrate our approach. Section 3 introduces the PobSAM
model in brief. Sections 4 and 5 introduce the syntax and semantics of PobSAM
respectively. Section 6 presents related work and compares our approach with the
existing approaches. In Section 7, we present our conclusions and plans for the
future work.

2 Smart Home

In a home automation system, sensors are devices that provide smart home with
the physical properties of the environment by sensing the environment. In addition,
actuators are physical devices that can change the state of the world in response
to the sensed data by sensors. The system processes the data gathered by the
sensors, then it activates the actuators to alter the user environment according to
the predefined set of policies. Smart homes can have different features. Here, we take
into account three features including: (1) The lighting control which allows lights to
switch on/off automatically depending on several factors. In addition, the intensity
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of the lights placed in a room can be adjusted according to the predefined policies.
(2) Doors/Windows management that enable inhabitants to manage windows and
doors automatically. In addition, if windows have blinds, these should be rolled up
and down automatically too. (3) Heating control which allows inhabitants to adjust
the heating of the house to their preferred value. The heating control will adjust
itself automatically in order to save energy.

The smart home system is required to adapt its behavior according to the
changes of the environment. To this aim, we suppose that the system runs in
normal, vacation and fire modes and in each context it enforces various sets of
policies to adapt to the current conditions. For the reason of space, here we only
identify policies defined for lighting control module while the system runs in normal
and fire modes as follows:
Defined policies in the normal mode

P1 Turn on the lights automatically when night begins.

P2 Whenever someone enters an empty room, the light setting must be set to
default.

P3 When the room is reoccupied within T1 minutes after the last person has left
the room, the last chosen light setting has to be reestablished.

P4 The system must turn the lights off, when the room is unoccupied.

Defined policies in the fire mode

P1 Turn on the emergency light.

P2 Disconnect power outlets.

P3 When the fire is extinguished, turn off the emergency light.

3 Modeling Concepts of PobSAM

Self-Managed Module (SMM) is the policy-based building block of PobSAM. A
PobSAM is composed of a set of SMMs. An SMM, in turn, may contain a number
of SMMs structured hierarchically. An SMM is a set of actors which can manage
their behavior autonomously according to predefined policies. PobSAM supports
interactions of an SMM with the other SMMs in the model. To this aim, each SMM
provides well-defined interfaces for interaction with other SMMs. In the smart home
case study, we consider three SMMs including LightClModule, TempClModule and
DWClModule to manage lighting, temperature and doors/windows respectively.

An SMM structure can be conceptualized as the composition of three layers
illustrated in Figure 1.

• Managed Actors Layer This layer is dedicated to the functional behavior of
SMM and contains computational actors. Actors are governed by autonomous
managers using policies to achieve predefined goals. Henceforth, we use the terms
managed actors and actors interchangeably.

• Autonomous Managers Layer Autonomous managers are meta-actors that
can operate in different configurations. Each configuration consists of two classes
of policies: governing policies, and adaptation policies. Using governing policies,
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Fig. 1. The PobSAM Model

the manager directs the behavior of actors by sending messages to them. Adap-
tation policies are used to switch between different configurations to adapt the
module behavior properly. Moreover, a manager may has its local variables too.

• View Layer In PobSAM, each actor provides its required state information to
the relevant managers. Not all aspects of the operational environment have di-
rect influence on the behavior of managers, the views provide only the required
information for managers. The view layer is composed of views that provides
a view or an abstraction of an actor’s state that is adequate for the managers’
needs. The distinction between the underlying computational environment and
the required state information of actors makes analyzing managers much simpler.

Example 3.1 In our example, LightClModule module comprises an autonomous
manager named LightMngr, two light actors (light1 and light2 ), an outlet actor and
a number of views indicating the overall light intensity of room and the status of
the lights.

4 PobSAM Syntax

Figure 2 shows a typical SMM containing manager meta-actors, views and actors,
which we elaborate in the sequel.

4.1 Actors

The encapsulation of state and computation, and the asynchronous communication
make actors a natural way to model distributed systems. Therefore, we use an actor-
based model to specify the computational environment of a self-adaptive system.
To this aim, an extension of Rebeca is used. Rebeca [15] is an actor-based language
for modeling concurrent asynchronous systems which allows us to model the system
as a set of reactive objects called rebecs interacting by message passing. Each
rebec provides methods called message servers (msgsrv) which can be invoked by
others. Each rebec has an unbounded buffer for coming messages, called queue.
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SMM SMM1
Managers

Manager ManagerName1(InitialConfiguration11)
// definition of local variables
Datatype var1;
// manager’s view
<ViewName11,..., ViewName1n>;
// definition of manager’s configurations in terms of
// their governing and adaptaion policies
Configurations

ConfigurationName1={gp11,...,gp1m}<ap11|...|ap1n>;
.
.
.

EndC
Policies

//Definition of governing policies(gps)
GoverningPolicyName1: on eventi if condi do actionsi;
.
.
.
//Definition of adaptation policies(aps)
AdaptationPolicyName1:

on eventj if condj switchto Configuration1 when condk priority Oj;
.
.
.

EndP
EndM
// definition of other managers

EndMS
Views

//definition of views
Datatype1 ViewName1 as expr1;
Datatype2 ViewName2 as expr2;
.
.
.

EndV
Actors

//definition of actors
reactiveclass Classname1() {

Knownrebecs{}
Statevars{ Public datatype v1;

Private datatype v2;}
msgsrv initial() {}
msgsrv msgsrv1(){}

}
main {

...
Classname1 rebec1(...):(...);
...

}
EndA
EndSMM

Fig. 2. The Typical Syntax of a PobSAM Model

Furthermore, the rebecs’ state variables (statevars) are responsible of capturing the
rebec state. The known rebecs of a rebec (Knownrebecs) denotes the rebecs to
which it can send messages. In our extension, an actor can expose a number of its
state variables to the managers (Figure 2). The exposed state variables are used in
the definition of views.

Example 4.1 In the LightClModule SMM, the managed layer comprises a set of
light rebecs controlled by LightMngr. We consider a reactive class named Light
to model the lights which contains setIntensity, switchOn and switchOff message
servers as well as intensity and status state variables.

4.2 Views

In PobSAM, the views are defined in terms of the public state variables of actors. A
view variable could be an actual state variable, or a function or a predicate applied to
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state variables. Views enable managers not to be concerned about internal behavior
of actors and they provide an abstraction of actor’s state to managers.

Example 4.2 In the LightClModule SMM, the LightMngr does not require the
exact values of the lights intensities and providing overall intensity as low, medium
or high values is sufficient to decide. The overall intensity is defined based on the
intensity statevar of the light rebecs as a view.

4.3 Managers

In our model, policies direct the system behavior, and adaptation is achieved by
changing policies. A manager can be in various configurations enforcing different
policy sets. As shown in Figure 2, a manager is defined in terms of its possible
configurations, its view of the actor layer and its local variables.

Governing Policies
Whenever a manager receives an event, it identifies all the policies that are trig-
gered by that event. For each of these policies, the policy condition is evaluated
if one exists. If the condition evaluates to true, the action part of the triggered
policy is requested to execute by instructing the relevant rebecs to perform actions
through sending asynchronous messages. We express governing policies using a
simple algebra as follows, in which P and Q indicate the policy sets:

P, Q
def= P ∪Q|P −Q|P ∩Q|{p}|∅

P ∩ Q means that intersection of policy sets P and Q is used to direct actors.
P-Q reduces policy set P by eliminating all the policies in the second set Q. P ∪Q

represents the union of P and Q governing the actors simultaneously. {p} denotes a
policy set with the simple policy p as its member. P ∩Q and P ∪Q are commutative
and associative.

A simple action policy p=[o,ε,ψ, α] consists of priority o, event ε , optional
condition ψ and action α. In PobSAM, events are defined as the execution of a
message server, sending a message to a rebec, creating new actor or holding a specific
condition in the system. Actions can be composite or simple. A simple action is of
the form r.`(υ) which denotes message `(υ) is sent to actor r. Composite actions
are created by composing simple actions as follows:

α, β
def= α; β|α ‖ β|α + β|[ω?α : β]|r.`(υ)

Thus a composite action can be the sequential (α; β) or parallel execution (α ‖ β) of
actions α and β. Also, an action can be chosen to execute non-deterministically(+).
Term ([ω?α : β]) represents that action α is chosen to be executed if ω holds, else
β will be chosen. + and ‖ are commutative and associative.

Example 4.3 The governing policies of the lightMngr in the normal configuration
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are as follows, where night, occpd, rccpd and unoccpd denote events and c1, c2, d1
and d2 are arguments indicating the light intensity.

pn1
def= [1 ,night , true, light1 .switchon() ‖ light2 .switchon()]

pn2
def= [2 , occpd , true, light1 .setIntensity(d1 ) ‖ light2 .setIntensity(d2 )]

pn3
def= [3 , rccpd , true, light1 .setIntensity(c1 ) ‖ light2 .setIntensity(c2 )]

pn4
def= [4 , unoccpd , true, light1 .switchoff () ‖ light2 .switchoff ()]

Adaptation Policies
One of the main characteristics of a formal model to specify a self-adaptive system
is considering adaptation semantics. To this end, we should deal with a number
of issues such as ”the time at which an adaptation is performed in the system”
, ”the time at which the manager’s policies are modified” , ”the time at which
the enforcement of new policies begin after modifying policies” or ”the ability to
restricting the system behavior during adaptation”.

Whenever an event requiring adaptation occurs, relevant managers in different
SMMs are informed. However, the adaptation cannot be done immediately and
when the system reaches a safe state, the managers switch to the new configura-
tion. Therefore, we introduce a new mode of operation named adaptation mode
in which a manager runs before switching to the next configuration. While the
manager is in the adaptation mode, it is likely that events occur which need to be
handled by managers. To handle these cases, we introduce two kinds of adaptations
named loose adaptation and strict adaptation. Under loose adaptation a manager
enforces old policies, while under strict adaptation all events will be ignored until
the manager exits the adaptation mode and the system reaches a safe state. For
example in our smart home example, when LightMngr is in the fire configuration
and there is a request for the vacation mode, while fire has not been put out, it
keeps enforcing policies of the fire configuration by switching to the loose adaptation
mode. Also, when LightMngr is in the normal configuration, once fire is detected,
it stops enforcing its current policies by switching to the strict adaptation mode.

A simple configuration C is defined as C
def= 〈P, A〉 where P and A indicate

the governing policy set and the adaptation policy of C respectively. Adaptation
policies are defined using an algebraic language as follows:

A
def= bDcδ,γ,λ,ϑ|A⊕A

in which D, δ , γ , λ and ϑ, respectively denote an arbitrary configuration, the con-
ditions of triggering adaptation, the conditions of applying adaptation, adaptation
type (loose or strict) and the priority of adaptation policy. The simple adaptation
policy, bDcδ,γ,λ,ϑ, specifies when the triggering condition δ holds and there is no
other adaptation policy with the higher priority, the manager evolves to the strict
or loose adaptation modes based on the value of λ. When the condition of applying
adaptation γ becomes true, it will perform adaptation. Adaptation policies of a
manager is defined as the composition, ⊕, of the simple adaptation policies. Here,
composition of two policies means that those policies are potentially to be triggered.
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⊕ is associative and commutative. D is defined as follows where ω is an arbitrary
condition:

D,D′ def= [ω?D : D′]|D2D′|C

Terms [ω?D : D′] and D2D′ represent conditional and non-deterministic choices
respectively. In conditional choice, configuration D is chosen if ω holds, else D′ will
be chosen. Non-deterministic choice means that the choice between configuration D
or D′ is made non-deterministically. This operator is associative and commutative.

Example 4.4 In our smart home example, there are three configurations including
Cn, Cv and Cf . Formal specification of lightMngr ’s configurations are as follows
in which pmj denotes policy j defined in mode Cm. vacReq, fire, firePutout and
comebackHome are events while isPutout , isCnfrmd and onVac are lightMngr ’s
local variables. As an example, when the lightMngr is in the fire mode and there is
a request for going on vacation, while fire has net been put out, it can not switch
to the Cv configuration.

Cn
def= 〈{pn1 , pn2 , pn3 , pn4}, bCf cfire,true,S ,1 ⊕ bCvcvacReq,isCnfrmd ,L,2 〉

Cf
def= 〈{pf1 , pf2 , pf3}, bonVac?Cv : CncfirePutout ,true,L,1 ⊕ bCvcvacRequest ,isPutout ,L,2 〉

Cv
def= 〈{pv1 , pv2 , pv3 , pv4 , p5}, bCf cfire,true,S ,1 ⊕ bCnccomebackHome,true,L,2 〉

5 Operational Semantics of PobSAM

5.1 Operational Semantics of Actors and Views

The operational semantics of our extension of Rebeca does not differ from that of
Rebeca[15]. However, any changes in state of the rebecs used in the definition of
views must be reflected to the views. Let I1, I2, . . . , In denote the defined views
of SMM S and η denote the set of defined events that S is concerned with. The
state of a view is determined by its current value that is modified by the related
events occurring at the actor level. After execution of a message server, the changes
of public state variables must be reflected in the views state, too. We specify the
operational semantics of the view layer as a labeled transition system.

Let SB, AB and TB ⊆ SB×AB×SB be the set of states, the set of actions and the
state transition relation of the transition system of the actor layer respectively. The
state transition relation of the view layer TI ⊆ SI ×AI ×SI is defined based on TB,
where SI and AI are the set of states and the set of actions of the view layer transi-
tion system respectively and SI = 〈I1, I2, ..., In〉. Suppose Ij(x1, x2, .., xm) denotes
an arbitrary view defined on public state variables x1, x2, .., xm and Ij |σs denotes the
state of Ij , where its state variables are substituted with their corresponding values
in state σsinSB. For each triple 〈σs, a, σt〉 ∈ TB, we consider an associated transition
〈σ′s, a, σ

′
t〉 ∈ TI where σ′s = 〈I1|σs , I2|σs, ..., In|σs〉 and σ′t = 〈I1|σt , I2|σt , ..., In|σt〉 if

and only if a∈ η or ∃Ik|1 ≤ k ≤ n ∧ Ik|σs 6= Ik|σt , i.e.

σs
a−→σt ∈ TB, (a ∈ η) ∨ (∃Ik|1 ≤ k ≤ n ∧ Ik|σs 6= Ik|σt)

σ′s
a−→ σ′t
9
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(NPE1)R = {p|(p.ε ∧ p.ψ) = true} ∧ R 6= ∅
M∅,∅C[0]

ε,τ−→ [M]R,∅C[0]
(NPE2) p ∈ R ∧ (@q ∈ R|q.o > p.o)

[M]R,∅C[0]
p.ε∧p.ψ,enf(p)−−−−−−−−−→ [M]R,pC[p.α]

(NPE3) α −→ α′

[M]R,pC[α + β]
true,τ−→ [M]R,pC[α′]

(NPE4)
[M]R,pC[[ω?α : β]]

ω,τ−→ [M]R,pC[α]
(NPE5)

[M]R,pC[[ω?α : β]]
¬ω,τ−→ [M]R,pC[β]

(NPE6) α → α′

[M]R,pC[α ‖ β]
true,τ−→ [M]R,pC[α

′ ‖ β]

(NPE7)
[M]R,pC[r.`(υ); r′.`′(υ′)]

`,`′ /∈{sendAck,waitAck},τ−−−−−−−−−−−−−−−−→
[M]R,pC[r.`(υ); r.sendAck(r′);r′.waitAck(sendAck(r′)); r′.`′(υ′)]

(NPE8)
[M]R,pC[r.`(υ);β]

true,send(r,`(υ))−−−−−−−−−−→ [M]R,pC[β]

(NPE9)
[M]R,pC[0]

true,τ−→ [M]R−p,∅C[0]
(NPE10)

[M]∅,∅C[0]
true,τ−→ M∅,∅C[0]

Fig. 3. Rules of policy enforcement

5.2 Operational Semantics of Managers

We use a labeled transition system to define the operational semantics of managers
in which labels have two components. The first component indicates the activation
condition of the transition while the second component denotes the action of the
transition. Assume that M is a logical expression defined on state variables, the
transitions are of the form P

M,a−→Q meaning “if M holds then P has an action a

leading to Q”. Henceforth, we denote a transition by P
µ−→Q where µ = (M, a).

The behavior of a manager depends on the mode in which it is running. A
manager can run in different modes such as normal execution, adaptation and policy
enforcement. To distinguish managers in different modes, we use different notations.
Let [M]sR,pC[α] indicate manager M in the enforcement mode in which,

• C is the configuration in which M is running and C
def= 〈P, A〉.

• R is the set of triggered policies to be enforced.
• p is the current policy being enforced by M.
• α is the action of a recent policy being executed by M.
• s denotes M’s view of current context in addition to its local variables.

Ms
∅,∅C[0], |M|sR,pC[α] and ‖M‖s

∅,∅C[0] indicate M in normal execution, loose
adaptation and strict adaptation modes respectively. We ignore s in the definition
of operational semantics of managers.

Policy enforcement semantics
Whenever an event is received by a manager, it identifies all the triggered policies

with the policy condition evaluated to true. Then it enforces the identified policies
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based on their priorities. Once a manager enforces all the triggered policies, it
evolves to normal mode. Figure 3 gives rules of policy enforcement.

Using NPE1 manager switches to the enforcement mode by identifying the trig-
gered policies to be enforced. NPE2 places the action of a policy with the highest
priority in the action part of the manager to be run. NPE3, NPE4 and NPE5 de-
fine the semantics of non-deterministic and conditional choices of actions. NPE7 is
considered to apply two sequential actions in which r′ is an arbitrary actor. To this
aim, we use synchronous message passing provided by Extended Rebeca [16]. The
corresponding actors of two sequential actions are synchronized after execution of
the first action. We considered two message servers for each reactive class named
sendAck(r) and waitAck(r) which sends and receives a synchronization message
to and from rebec r respectively. NPE8 expresses sending a message to an actor
and removing it from the list of actions to be executed. After applying policy p,
NPE9 will remove p from the list of activated policies. When there is no policy to
be enforced, manager will switch to normal execution mode using NPE10.

As mentioned above, managers in loose adaptation mode are able to enforce
policies. Therefore, all the rules introduced for the enforcement mode, except for
NPE10, are applicable in loose adaptation mode too.

Policy adaptation semantics
For the sake of readability, we omit p, [α] and R symbols of managers in nor-

mal execution and strict adaptation modes. Figure 4 shows rules for adaptation in
strict mode in which B, A′ and B′ denote arbitrary adaptation policies. Further-
more, F and D′′ denote a simple adaptation policy and an arbitrary configuration,
respectively.

(SA1) @F ∈ A|(ϑ < F.ϑ ∧ F.δ = true)

M〈P, bDcδ,γ,λ,ϑ ⊕A〉 δ∧λ,τ−−−→ ‖M‖〈P, bDcδ,γ,λ,ϑ〉
(SA2)

‖M‖〈P, bDcδ,γ,λ,ϑ〉 γ,adapt−−−−→M∅,∅D

(SA3) M〈P, B〉 µ−→M〈P, B′〉
M〈P, A⊕B〉 µ−→M〈P, A⊕B′〉 (SA4) M〈P,A〉 µ−→M〈P, A′〉

M〈P,A⊕B〉 µ−→M〈P, A′ ⊕B〉

(SA5)
‖M‖〈P, bDcδ,γ,λ,ϑ〉 µ−→‖M‖〈P, bD′cδ,γ,λ,ϑ〉

‖M‖〈P, bD¤D′′cδ,γ,λ,ϑ〉 µ−→‖M‖〈P, bD′cδ,γ,λ,ϑ〉

(SA6)
‖M‖〈P, bDcδ,γ,λ,ϑ〉 µ−→‖M‖〈P, bD′cδ,γ,λ,ϑ〉

‖M‖〈P, bD′′¤Dcδ,γ,λ,ϑ〉 µ−→‖M‖〈P, bD′cδ,γ,λ,ϑ〉
(SA7)‖M‖〈P, bω?D:D′cδ,γ,λ,ϑ〉 ω,τ−→‖M‖〈P, bDcδ,γ,λ,ϑ〉
(SA8)‖M‖〈P, bω?D:D′cδ,γ,λ,ϑ〉¬ω,τ−→‖M‖〈P, bD′cδ,γ,λ,ϑ〉

Fig. 4. Rules of strict adaptation
SA1 states that in the case of strict adaptation, when adaptation policy condi-

tions hold, manager M switches to the strict adaptation mode. SA2 asserts that
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when the condition for applying the adaptation holds, M will evolve to normal
mode and run configuration D. SA5, SA6, SA7 and SA8 define the semantics of
non-deterministic and conditional choices of configurations. SA5, SA6, SA7 and
SA8 rules have a higher priority than SA2. To this aim, we use the ordered SOS
(Structural Operational Semantics) framework [17] and place SA5, SA6, SA7 and
SA8 above SA2. Rules of loose adaptation are identical to strict adaptations rules

except for SA1 which is as @F ∈ A|(ϑ < F.ϑ ∧ F.δ = true)

M〈P, bDcδ,γ,λ,ϑ ⊕A〉δ∧¬λ,τ−→ |M|〈P, bDcδ,γ,λ,ϑ〉
(LA1).

5.3 Interaction of Managers and Views

The other kind of transitions is related to the interaction of managers and view
layer. Figure 5 demonstrates rules for interaction of managers and the view layer
of S where σs

a→σt ∈ TI and t indicates the new state of M . sv and tv are defined
as the projection of σs and σt on M ’s view respectively, i.e. sv = σs ↑ M.v and
tv = σt ↑ M.v. Construct σs ↑ M.v denotes only the state variables of σs that are
in M.v too. IR1, IR2, IR3 and IR4 express changing M’s view of the view layer
by state changing at the view layer in the normal, enforcement, loose adaptation
and strict adaptation modes respectively, where s(t) is union of sv(tv) and lv. lv

indicates the current state of M in terms of its local variables.

(IR1) σs
a−→ σt,∃Ij ∈ s|Ij |σs 6= Ij |σt

Ms
∅,∅〈P,A〉[0]

true,τ−→ Mt
∅,∅〈P, A〉[0]

(IR2) σs
a−→ σt, ∃Ij ∈ s|Ij |σs 6= Ij |σt

[M]s∅,∅〈P, A〉[0]
true,τ−→ [M]t∅,∅〈P, A〉[0]

(IR3) σs
a−→ σt, ∃Ij ∈ s|Ij |σs 6= Ij |σt

|M|sR,p〈P, A〉[0]
true,τ−→ |M|tR,p〈P,A〉[0]

(IR4) σs
a−→ σt, ∃Ij ∈ s|Ij |σs 6= Ij |σt

‖M‖s
∅,∅〈P, A〉[0]

true,τ−→ ‖M‖t
∅,∅〈P, A〉[0]

Fig. 5. Rules for interaction of managers and the view layer

6 Discussion and Related Work

Flexibility of self-adaptive systems is realized by three different features including
separation of concerns, computational reflection and component-based design [18].
We explain how PobSAM can address these requirements in the sequel.

PobSAM decouples the adaptation logic of an SMM from its business logic de-
scribed at an abstract level using policies. Among the proposed formal approaches
to model adaptive systems, [2,20,21] combine the adaptation logic into the busi-
ness logics. In [3,6,19] the adaptation concerns have been separated; however, all
the proposed formal models hard-code the adaptation logic which leads to system’s
inflexibility. The proposed model permits us to direct/adapt system behavior by
enforcing/modifying policies at an abstract level without re-coding actors and man-
agers; thereby it leads to increasing system flexibility and scalability.

Computational reflection is the ability of a system to monitor and change its
behavior subsequently. In PobSAM, managers monitor actor’s behavior through
views and direct/adapt SMMs behavior. Policies provide us a high-level description
of what we want without dealing with how to achieve it. Thus, using policies can be
a suitable mechanism to determine if the goals were achieved using existing policy
refinement techniques.
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Furthermore, PobSAM uses SMM as a policy-based building block for a modu-
lar model where each component is able to adapt its behavior autonomously. This
notion makes PobSAM a suitable model to specify self-organizing and cooperating
systems too. Although, in this paper we focused on behavioral adaptation, how-
ever, PobSAM can support structural adaptation by joining/leaving an actor or an
SMM to/from an SMM dynamically, which is an advantage over the most existing
approaches that concentrate on one adaptation type. SMM notion is similar to
Self-Managed Cell (SMC) notion proposed in [13] as a paradigm for engineering
ubiquitous systems. In this work, an SMC consists of a set of components that
constructs an autonomous management domain.

One of the main aspects of modeling a self-adaptive system is specifying adapta-
tion requirements. To this aim, we introduced a two phases adaptation strategy to
pass the adaptation phase safely. Upon receiving an adaptation event by a manager,
it switches to the adaptation mode. Adaptation mode models transient states dur-
ing adaptation. When the system reaches a safe state, the adaptation is completed
by evolving the manager to the new configuration. We believe that the modular
nature of adaptation policies enables us to express adaptation requirements easily
and at the high-level of abstraction.

As stated above, PobSAM has decoupled the adaptation layer from the func-
tional layer. Thus, we can verify the adaptation layer independently from the actor
layer provided that we have a labeled transition system modeling view behavior.
This feature can decrease the complexity of verification procedure.

Dynamic adaptation is a very diverse area of research. While structural adapta-
tion has been given strong attention in the research community(see [22]), fewer
approaches tackle behavioral adaptation as we considered. Due to the lack of
space, we restrict ourselves to present related work done on formal modeling of
self-adaptive systems in addition to applying policy-based approaches in engineer-
ing of self-adaptive systems.

Formal verification of adaptive systems is a young research area [23] and only
a few research groups already focused on this topic. A model-driven approach was
proposed for developing adaptive systems in [2]. In this approach, there are dif-
ferent behavioral variants of a process modeled as Petri Nets. At each time, one
Petri Net runs and reconfiguration is carried out by switching between various Petri
Nets. In another work [3], they modeled a system as a set of steady-state programs
among which the system switches. An extension of LTL with “adapt“ operator
was used to specify adaptation requirements before, during and after adaptation
[4]. Then, they use a model checking approach to verify the system. Kulkarni et
al. [7] proposed an approach based on the concept of proof lattice to verify if a
system is in a correct state during and after adaptation in terms of satisfying the
transitional-invariants. Furthermore, Schneider et al. [5] presented a method to
describe adaptation behavior at an abstract level. After deriving transition systems
from a system description, they verify the system using model checking. In their
later work [6], they proposed a framework for model-based development of adaptive
embedded systems using labeled transition systems. In this work, they verify differ-
ent properties using theorem proving, model checking and specialized verification
methods. [19] proposed a coordination protocol for distributed adaptation of the
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component-based systems and used Colored Petri Nets for formal verification. In
our model, adaptation is performed by applying suitable policies in different con-
texts, which in nature differs from the proposed approaches. We have proposed a
formal model of policy-based self-adaptive systems using Rebeca concentrated on
policy conflict detection [14]. Combining adaptation concerns with system func-
tionality in this approach causes an increase in the complexity of model as well as
formal verification process.

Employing policies as a paradigm to adapt self-adaptive systems has been given
considerable attention during recent years. Work in [8,9,10,11,24,26] used policies
as the adaptation logic for structural adaptation, while we use policies as a mech-
anism for governing as well as adapting system behavior. Furthermore, [24] used
policies for a simple type of behavioral adaptation named parameterization, too.
[25] proposed an adaptive architecture for management of differentiated networks
which performs adaptation by enabling/disabling a policy from a set of predefined
QoS policies, but this architecture does not have formal foundation. Anthony [26]
presents a policy definition language for autonomic computing systems in which
the policies themselves can be modified dynamically to match environmental con-
ditions. However, this work does not deal with modeling system and it is limited
to proposing an informal policy language.

7 Conclusions and Future Work

We proposed PobSAM as a formal model to develop self-adaptive systems which
uses policies as the main mechanism to govern and adapt the system behavior. To
this aim, we model a system as the composition of a set of autonomous components
named SMMs. Each SMM contains two types of actors: managed actors that are
dedicated to the functional layer of system and autonomous managers that coordi-
nate actors to achieve the predefined goals using policies. This model integrates two
formal methods including algebra and actor-based model to specify a system. Then,
we presented the operational semantics of PobSAM by means of labeled transition
systems.

There is much more research to pursue in the area of verification of self-adaptive
systems. In this paper, we focused on formal modeling of self-adaptive systems.
Verification of different properties of adaptation and functional layers of PobSAM
models is an ongoing work. We are going to implement a tool to support our ap-
proach too. As our model can support both behavioral and structural adaptations,
our future researches will be concentrated on specifying structural adaptations. Ex-
tending this model for modeling self-organizing systems in which managers need to
coordinate together is considered as a future work, too.
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