
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/220197764

Symmetry and partial order reduction techniques in model checking Rebeca

Article in Acta Informatica · February 2010

DOI: 10.1007/s00236-009-0111-x · Source: DBLP

CITATIONS

32
READS

195

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Restricted delegation and revocation security language View project

RoboRebeca: A new framework to design verified ROS-based robotic programs View project

Mohammad Mahdi Jaghoori

Centrum Wiskunde & Informatica

30 PUBLICATIONS 360 CITATIONS

SEE PROFILE

Marjan Sirjani

Malardalen University

174 PUBLICATIONS 1,785 CITATIONS

SEE PROFILE

Mohammad Reza Mousavi

University of Leicester

168 PUBLICATIONS 1,457 CITATIONS

SEE PROFILE

Ehsan Khamespanah

University of Tehran

43 PUBLICATIONS 289 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ali Movaghar on 30 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/220197764_Symmetry_and_partial_order_reduction_techniques_in_model_checking_Rebeca?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/220197764_Symmetry_and_partial_order_reduction_techniques_in_model_checking_Rebeca?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Restricted-delegation-and-revocation-security-language?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/RoboRebeca-A-new-framework-to-design-verified-ROS-based-robotic-programs?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad-Mahdi-Jaghoori?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad-Mahdi-Jaghoori?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Centrum-Wiskunde-Informatica?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad-Mahdi-Jaghoori?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marjan-Sirjani?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marjan-Sirjani?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Malardalen_University?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marjan-Sirjani?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad-Mousavi-23?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad-Mousavi-23?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Leicester?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mohammad-Mousavi-23?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ehsan-Khamespanah-2?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ehsan-Khamespanah-2?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Tehran?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ehsan-Khamespanah-2?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ali-Movaghar?enrichId=rgreq-cff03baf1e9dab34eae3d5d00faefcf9-XXX&enrichSource=Y292ZXJQYWdlOzIyMDE5Nzc2NDtBUzoxMDI1MjE3NDU5NjkxNThAMTQwMTQ1NDQ5NzYzMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Acta Informatica manuscript No.
(will be inserted by the editor)

Symmetry and Partial Order Reduction Techniques in
Model Checking Rebeca

Mohammad Mahdi Jaghoori · Marjan

Sirjani · MohammadReza Mousavi · Ehsan

Khamespanah · Ali Movaghar

Received: date / Accepted: date

Abstract Rebeca is an actor-based language with formal semantics which is suitable

for modeling concurrent and distributed systems and protocols. Due to its object model,

partial order and symmetry detection and reduction techniques can be efficiently ap-

plied to dynamic Rebeca models. We present two approaches for detecting symmetry

in Rebeca models: One that detects symmetry in the topology of inter-connections

among objects and another one which exploits specific data structures to reflect inter-

nal symmetry in the internal structure of an object. The former approach is novel in

that it does not require any input from the modeler and can deal with the dynamic

changes of topology. This approach is potentially applicable to a wide range of mod-

eling languages for distributed and reactive systems. We have also developed a model

checking tool that implements all of the above-mentioned techniques. The evaluation

results show significant improvements in model size and model-checking time.

Keywords Rebeca · Actor · Partial order reduction · Symmetry reduction · Model

checking

M. M. Jaghoori
CWI, Amsterdam, The Netherlands
Tel: +31 (0)20 592 4299, Fax: +31 (0)20 592 4199
E-mail: jaghouri@cwi.nl

M. Sirjani
Reykjav́ık University, Reykjav́ık, Iceland
University of Tehran, Tehran, Iran
IPM, Tehran, Iran
E-mail: msirjani@ut.ac.ir

M. Mousavi
Eindhoven University of Technology, Eindhoven, The Netherlands
E-mail: m.r.mousavi@tue.nl

E. Khamespanah
University of Tehran, Tehran, Iran
E-mail: e.khamespanah@ece.ut.ac.ir

A. Movaghar
Sharif University of Technology, Tehran, Iran
E-mail: movaghar@sharif.edu

2

1 Introduction

Rebeca [55] (reactive objects language) is an actor-based language [31,2] that can be

used at a high level of abstraction for modeling concurrent and distributed reactive sys-

tems. Different interpretations, dialects and extensions of actor models are proposed in

several domains and are claimed to be the suitable model of computation for the most

dominating applications, like in embedded system, multi-core programming, and web

services [32]. Actors have been proposed as models of computation for designing em-

bedded systems [45] and wireless sensor networks [12]. They are also used for designing

web services [11,10].

The asynchronous message-passing paradigm in Rebeca allows for efficient modeling

of loosely-coupled distributed systems. Rebeca is designed to suit model checking [56,

58], which is an algorithmic approach to verification [14]. Due to concurrency, which

is usually modeled by interleaving semantics, model checking is subject to state-space

explosion, namely the exponential growth of the number of states with respect to the

number of system components. Among the methods for overcoming this problem are

symbolic verification [47], partial order reduction [60,27,50], and symmetry reduction

[21,39,15,48]. These techniques are sometimes combined to gain even more compact

representations of the system under analysis [1,22,24].

In this paper, we show how the asynchronous object model of Rebeca leads to an

efficient application of symmetry and partial order reduction. Unlike most of the tradi-

tional notations of formal languages, Rebeca has a simple Java-like syntax that makes

it easy to learn for software practitioners. Despite its simplicity, Rebeca is powerful

enough to enable verification of distributed software systems and protocols that are

asynchronous by nature, e.g., [57,33]. In addition, Rebeca has been successfully applied

in model checking security protocols [54] and system-level hardware design [43,4].

Reactive objects (called rebecs in Rebeca) have message servers for processing the

incoming messages. A rebec has a single thread of execution and thus resembles a

process in a language like Promela [34]. The execution of a message server is performed

in one atomic step, therefore, it corresponds to one action. Due to this coarse granularity

in interleaving, partial order reduction can be very efficient. We described in [41] how

to apply partial order reduction to Rebeca. In this paper, we formalize the correctness

proof of the approach.

The state space of a system can be viewed as a graph: the states are the vertices and

the transitions are the edges. The intuitive idea of the symmetry reduction technique

[21,39,15,48] is to partition the state space into equivalence classes corresponding to

isomorphic graphs and use one state as the representative of each class. Calculating

the representative state, known as the constructive orbit problem is NP-hard [13]. The

problem is usually alleviated by first detecting or specifying the symmetry among

higher-level constructs (such as processes or objects) and then using it in the orbit

problem. For example, the notion of scalar sets were proposed by Ip and Dill in [39],

and later used by others (e.g., [7], [29]) to allow the modeler to (explicitly) specify the

symmetry in the system.

We previously [42] gave a polynomial-time solution for detecting structural sym-

metry without relying on any symmetry-related input from the modeler. Since rebecs

instantiated from the same reactive class exhibit similar behavior, inter-rebec sym-

metry in a Rebeca model can be detected by analyzing its communication structure

(which is similar to the analysis method discovered independently in [19]). In this paper,

we extend the approach by allowing the modeler to specify intra-object symmetries,

3

which can be added to the analysis of the communication structure. We give a proof

of soundness for these techniques. We also give an efficient heuristic for computing a

representative by combining our technique with the ideas of Bosnacki et al. [7]. Our

techniques can in principle be adopted in other similar models of computation.

The model checking engine of Rebeca (Modere) was introduced in [41] to apply

partial order reduction on Rebeca. We explain in this paper how symmetry reduction

is added to it. Finally, some case studies are modeled with Rebeca, and model checked

with Modere. Symmetry and partial order reduction techniques (separately and to-

gether) are applied to these examples. The results show that not only using these

techniques separately can be useful in model checking Rebeca, but, whenever possible,

their combination yields even more reduction due to their complementary nature.

In summary, this paper describes how partial order and symmetry reduction tech-

niques can be applied in model checking Rebeca, summarizing, integrating and ex-

tending the results of [41,42]. In the following, we illustrate the complete work, while

mentioning the contributions of this paper:

– The main contribution of our work is a symmetry detection technique based on

the object-based nature of Rebeca. A polynomial time algorithm for inter-rebec

structural symmetry detection is proposed in [42]. To the best of our knowledge,

it is novel in the sense that it needs no symmetry-related input from the modeler.

A similar approach (without support for dynamic process creation) has been dis-

covered independently and reported in [17]. In this paper, we extend the method

to incorporate intra-rebec symmetries, which enables the automatic detection of

structural symmetry in more topologies. Additionally, we show how to apply these

techniques in computing the representative of a given state while model checking.

– To establish the formal proofs, we gave in [42] a refined formal semantics of Re-

beca (compared to [55]), in which dynamic rebec creation and dynamic change of

topology are neatly handled by introducing rebec variables (variables holding re-

bec identifiers). In this paper, we slightly improved the presentation of this refined

semantics.

– An algorithm for applying static partial order reduction to model checking Rebeca is

proposed in [41]. In this paper, we formalize the correctness proof of the algorithm.

– The formal proofs for the correctness of both (inter- and intra-rebec) symmetry

reduction techniques are presented in this paper.

– The model checking engine of Rebeca, Modere, is introduced in [41], which could

apply partial order reduction. In this paper, we explain how to implement the

algorithms for the inter- and intra-rebec symmetry detection techniques in Modere.

Modere is now extended to use symmetry as well as partial order reduction. It can

employ the techniques separately or in combination.

1.1 Related Work

Symmetry

One of the most widely used techniques for symmetry detection has been using scalar-

sets to explicitly specify the symmetry among the processes (see, e.g., [39,40]). We

refer to [48], for a comprehensive survey of various other symmetry detection and

reduction techniques. In our inter-rebec symmetry detection, we automatically extract

4

symmetric structures in the communication among rebecs, without any symmetry-

related constructs like scalar sets. The closest work to ours is that of Donaldson, Miller

and co-authors, who independently from our work, have proposed several techniques

for detecting symmetry in models of computation (mainly Promela) and reducing the

state space using the detected symmetries [8,17–20].

In [17] the (initial) communication topology of a Promela code is abstracted into a

static channel diagram. Symmetries present in the static channel diagram are further

exploited to generate a maximal sub-group of valid symmetries for the Promela code.

This approach resembles our inter-rebec symmetry reduction technique. Bosnacki et

al. [8] introduce scalar sets (à la [40]) into Promela in order to capture the global

symmetric structure of Promela processes. In [46], the same technique is applied to the

B method [53]. Donaldson et al. [20] suggest a generalization of scalar sets for detecting

and exploiting non-full symmetries of the topology of communication channels.

To detect symmetries in B, Leuschel and Massart [46] do not extend the syntax (as

in inter-rebec symmetry) because the deferred sets construct gives rise to symmetric

data values similar to scalar sets. This is in itself advantageous over the techniques

proposed before. However, the modeler is still involved in the process, as the detected

symmetry depends on the proper use of deferred sets.

Similar to our inter-rebec symmetry detection, Donaldson et al. [17] can detect

symmetry automatically without depending on particular syntactic notations in the

language (scalar sets, deferred sets or the like). Moreover, arbitrary structural symme-

tries can be captured and thus, the approach is not restricted to full- or ring-based

symmetries. The advantage of our inter-rebec symmetry detection compared to those

reported above is that our approach works for a model of computation with dynamic

creation of processes. Furthermore, we extend this approach to consider intra-rebec

symmetries.

In intra-rebec symmetry, we propose to use scalar-sets but for a different purpose

from its usual use. Our use of scalar sets is in line with the modular modeling en-

couraged by the actor model. We use scalar sets locally for each class to specify the

symmetric behavior of that class with respect to its known rebecs (when applicable),

rather than specifying the symmetry in the whole system. This is an extension of inter-

rebec symmetry allowing us to consider the internal symmetry of rebecs along with

their communication structure. Similar to [40, Section 3.8], we allow modulo arithmetic

operations on the scalar sets and thus the rebec does not need to have a fully symmetric

internal behavior.

Our symmetry reduction method, i.e., computing a representative state during

model checking, is inspired by the techniques introduced in [39] and further explored

in [6,7]. We use a variant of the sorted heuristic in [7] to work around the orbit problem.

In order to model check temporal logic formulae on the quotient structure, one

needs to make sure that the formula under consideration is also invariant under the

applied automorphisms. We assume that our formulae are constructed from symmetric

sub-formulae. An interesting future direction is to investigate this problem further,

along the lines of [52], where the symmetry in the temporal logic formulae is exploited

in order to detect more (partial) symmetries in the system. The generalized symmetry

groups as proposed in [52], use the structural symmetries in the temporal formulae,

in order to detect symmetries that are otherwise impossible to detect since symmetric

components satisfy different (yet symmetric) propositions.

5

Partial Order Reduction

Many model checking tools take advantage of partial order reduction. The approach in

SPIN [34] is the closest to ours, because it is based on explicit state enumeration and

uses stack proviso. PV [49] uses an alternate proviso, and VIS [3] and COSPAN [44]

are based on implicit state exploration. Our approach is based on statically finding safe

actions. The idea is that a safe action can be executed before other enabled actions

without being interleaved (see Section 4 for details).

In SPIN, assignments to local variables are safe, while allowing the specification to

use only global variables. Channel operations are safe if the executing process has the

proper exclusive access (read or write) to the channel. The safety of a read (resp. write)

depends on the used channel not being empty (resp. full). This is called conditional

safety. In Rebeca, read from channels (queues) is performed implicitly in every message

server for removing the message at the queue head, which is always safe (cf. Lemma

5 in the Appendix). In addition, unbounded queues in Rebeca eliminate the need

for conditional safety (as explained in Section 2, queues are bounded in the actual

implementation, but in case of a queue overflow, the bound must be increased, resulting

in a behavior identical to a system with unbounded queues).

There is also a tool for translating Rebeca to Promela [58]. In that tool, Promela

processes represent rebecs, and channels are used to substitute the rebec queues. Since

only global variables are allowed in the property specification, all rebec variables are

mapped to global variables in the equivalent Promela model. This way, the gener-

ated Promela model does not depend on the property that will be checked. This code

can be fed to SPIN to be model checked. However, using global variables renders all

assignments unsafe. Furthermore, since SPIN is basically designed for fine-grained in-

terleaving, it works rather slowly for the atomic message servers in Rebeca. In addition,

channel operations are conditionally safe in SPIN, which slows down the execution of

‘send’ and ‘message removal’ sub-actions. More importantly, SPIN cannot handle the

special case of the ‘initial’ message server (cf. Section 4) which can in turn produce

much reduction (see experimental results in Section 6).

Paper Structure. In the next Section, we explain the syntax and refined semantics

of Rebeca. Section 3 introduces symmetry reduction and in Section 4, partial order

reduction is described. The details of applying symmetry and partial order reduction

techniques to Rebeca are also given. In Section 5, we elaborate on the model checking

engine of Rebeca (Modere) and how we incorporate the reduction techniques in it.

Section 6 shows the empirical results of model checking some case studies and compares

the reductions caused by symmetry, partial order and their combination. Section 7

concludes the paper.

2 Rebeca

Rebeca [58,55,56] is a modeling language with formal semantics based on an oper-

ational interpretation of the actor model [31,2]. A Rebeca model is a closed system

defined as the parallel composition of a set of concurrent rebecs (reactive objects),

written as R = ‖i∈I ri, where I is the set of the indices used for identifying each rebec.

Rebeca inherits from actor languages the dynamically changing topology and dynamic

creation of objects; thus, the number of rebecs, and hence I, may change in the course

6

CL ::= reactiveclass C(Nat) {KRs Vars Mtd∗}
KRs ::= knownrebecs { 〈Vdcl ; 〉∗ }
Vars ::= statevars { 〈Vdcl ; 〉∗ }
Vdcl ::= T 〈v〉+,
Mtd ::= msgsrv M(〈T v〉∗,) {St∗}

Call ::= v.M | self .M | sender.M
St ::= v = e;

| v = new C(〈e〉∗,);
| Call(〈e〉∗,);

| if (e) {St∗} 〈 else {St∗} 〉?

Fig. 1 BNF grammar for Rebeca classes. Angle brackets 〈...〉 are used as meta parentheses,
superscript ? for optional parts, superscript + for repetition more than once, superscript * for
repetition zero or more times, whereas using 〈...〉, with repetition denotes a comma separated
list. Identifiers C, T , M and v denote class, type, method and variable names, respectively;
Nat denotes a natural number; and, e denotes an (arithmetic, boolean or nondeterministic
choice) expression.

of execution. Each rebec is instantiated from a reactive-class (denoting its type) and

has a single thread of execution. A reactive-class defines a set of local variables that

constitute the local state of its instances. The initial state is modeled by instantiating

some rebecs.

Rebecs communicate only through asynchronous message passing and have un-

bounded buffers for automatically storing the incoming messages, i.e., there is no

statement in Rebeca syntax to explicitly wait for receiving a message. When a rebec is

scheduled to run, the message at the head of the queue is taken out and processed. Each

message that can be serviced by rebec ri has a corresponding message server, which is

given in the definition of the reactive class. Message servers are executed atomically;

therefore, each message server corresponds to an action. There is at least a message

server ‘initial’ in each reactive class, which is responsible for initialization tasks (like

‘constructors’ in object oriented programming languages). Each rebec receives this

message implicitly upon creation.

Rebecs have local variables making up their states but there are no shared variables.

Rebecs may have variables that range over rebec indices (called rebec variables). These

variables are used to designate the intended receiver when sending a message. By

changing the values of rebec variables, one can dynamically change the topology of a

model. For each rebec ri, a subset of its rebec variables are identified as known rebecs.

The actual values of the known rebecs must be provided upon creation (this is enforced

by the syntax). We use Ki to denote the list of the initial values of the known rebecs of

ri. Instead of using [name,value] pairs for each known rebec, we use an ordered list to

keep the values only, in the same order as they appear in the reactive class definition.

The initial topology (initial communication graph) of a system can be represented by

a directed graph, where nodes are rebecs (those created at the initial state), and there

is an edge from ri to rj iff j ∈ Ki.
Each rebec has an unbounded queue for storing its incoming messages. A rebec is

said to be enabled if its queue is not empty. In that case, the message at the head of the

queue determines the enabled action of that rebec. The behavior of a Rebeca model

is defined by the fair and interleaved execution of the enabled actions. At the initial

state, a number of rebecs are created statically, and an ‘initial’ message is implicitly

put in their queues. The execution of the model continues as rebecs send messages to

each other and the corresponding enabled actions are executed. Although each rebec

has one queue, we can model multiple reception queues between different rebecs by

adding extra rebecs representing each queue. Figure 1 shows the syntax for defining

classes in Rebeca, the details of which is clarified in the following example.

7

reactiveclass Fork(3) {
knownrebecs {

Phil philL, philR;
}
statevars {

boolean busy, requester;
}
msgsrv initial() {

busy = false;
}
msgsrv request() {

if (sender != self) {
if (sender == philL) {

if (busy) {
requester = true;
self.request();

} else {
busy = true;
philL.permit();

}
} else {

if (busy) {
requester = false;
self.request();

} else {
busy = true;
philR.permit();

}
}

} else {
if (busy) {

self.request();
} else {

busy = true;
if (requester) {

philL.permit();
} else {

philR.permit();
}

}
}

}
msgsrv release() {

busy = false;
}

}

reactiveclass Phil(3) {
knownrebecs {

Fork forkL, forkR;
}
statevars {

boolean eating, fL, fR;
}
msgsrv initial() {

fL = false;
fR = false;
eating = false;
self.arrive();

}
msgsrv eat() {

eating = true;
self.leave();

}
msgsrv permit() {

if (sender == forkL) {
fL = true;
forkR.request();

} else {
fR = true;
self.eat();

} }
msgsrv arrive() {

forkL.request();
}
msgsrv leave() {

fL = false;
fR = false;
eating = false;
forkL.release();
forkR.release();
self.arrive();

} }
main {

Phil phil0(fork0, fork3):();
Phil phil1(fork0, fork1):();
Phil phil2(fork2, fork1):();
Phil phil3(fork2, fork3):();
Fork fork0(phil0, phil1):();
Fork fork1(phil1, phil2):();
Fork fork2(phil2, phil3):();
Fork fork3(phil3, phil0):();

}

Fig. 2 Rebeca code for the dining philosophers problem

Example 1 (Dining Philosophers) In this problem, there are a number of philosophers

sitting around a table. There is one fork between each two philosophers. Each philoso-

pher needs the forks on his/her both sides for eating. To model this problem in Rebeca,

two reactive classes are introduced: Phil and Fork. Each Phil knows (as its known

rebecs) his/her left and right Forks, and each Fork knows its left and right Phils.

Figure 2 shows the Rebeca code of this example.

The parameter ‘3’ passed to the reactive classes denotes the upper bound on the

queue length, provided by the modeler. This upper bound is used to avoid infinitely

large states due to unbounded queues. The model checker will produce a proper message

if queue overflow occurs. Then the modeler needs to increase this upper bound. Having

8

model checked this example, we know that 3 is the minimum upper bound with no

queue overflow.

The ‘main’ section of the code, specifies the initial configuration of the model. The

first list of parameters passed to each rebec represent the values to be assigned to known

rebecs. The parameters to the initial message server can be provided separately after

the colon (empty list in this example). To avoid deadlock and consequently starvation,

for every other philosopher we bind the left and right forks in the reverse order. For

example, in Figure 2, both phil0 and phil1 try to take fork0 first, and only the one

who succeeds will try to take its second fork.

2.1 The Formal Semantics of Rebeca

In [55], the formal semantics of Rebeca is expressed as a labeled transition system

(LTS). In this section, we introduce and use a more detailed semantics for Rebeca,

again expressed as an LTS. The details introduced here are useful for the proofs given

in the remainder of this paper.

An LTS consists of states and the transitions between them. Each transition is

labelled by an action, which corresponds to execution of a message server from one

rebec. Since instances of similar reactive classes have similar actions, actions of each

rebec are indexed by the identifier of that rebec. We may write s
ai−→ t for a transition

from s to t labeled by action ai. In the case of a nondeterministic choice in an expression,

it is possible to have two or more transitions with the same action from a given state

(a nondeterministic choice of the form ?(d1,...,dn) chooses an arbitrary value from

the list (d1,...,dn) to be used in the corresponding expression). A formal definition

of LTS for Rebeca is given at the end of this section.

Definition 1 (Data Variables) The variables for holding and manipulating data are

called data variables. We assume that all data variables take values from the domain

set D, which includes the undefined value (represented by ⊥).

We may use a subscript ‘d’ to distinguish data variables.

Definition 2 (Rebec Variables) Rebec variables are those holding rebec indices.

All rebec variables take values from I ∪ ⊥, where I is the index set, and ⊥ again

represents the undefined value.

We may use a subscript ‘r’ to distinguish rebec variables.

Rebec variables can participate in different expressions, only when:

– assigned to other rebec variables;

– compared for equality;

– used to specify the receiver of a send statement; or,

– assigned (the index of) a dynamically created rebec.

Rebec variables can be passed around as arguments to messages, resulting in a dynamic

topology. As mentioned in the previous subsection, some of these variables are statically

initialized as the known-rebecs, reflecting the initial configuration of the rebecs.

Definition 3 (Queue) For each rebec rj , we assume one message queue (rj .m[]) and

one sender queue (rj .s[]). Consider the number of parameters that each message server

accepts. If hj is the maximum of these numbers, we also need hj parameter queues

9

(rj .p1[], . . . , rj .phj []). The contents of these queues are to be considered together. For

example, rj .m[1] and rj .s[1] show the oldest (unprocessed) message and its sender,

respectively. The parameters to this message are kept in rj .p1[1], . . . , rj .phj [1]. We

write rj .Q to refer to the queue as a whole. Note that the first element in queue has

index 1.

The domain of message queue variables is Mj ∪ ⊥, where Mj is the set of the

names of message servers defined in rj and ⊥ is re-used to represent an empty queue

element. The sender queue variables are treated as rebec variables, while parameter

queue variables can be either data or rebec variables.

In the semantics, we assume unbounded queues for rebecs, however, in order to

make model checking feasible, we need to put an upper bound on the queue of a rebec.

This upper-bound is in practice supplied by the modeler and must be increased in case

of a queue overflow. Thus, it can simulate the unbounded queue semantics of Rebeca.

Definition 4 (Global State) Given a set Is of live rebec indices, a global state is

defined as the combination of the local states of all rebecs: s =
Q
j∈Is sj . Note that Is

may change in the course of transitions due to dynamic rebec creation.1

The local state of a rebec rj consists of its local (data and rebec) variables plus the

queue, formally written as: sj = (rj .v1, . . . , rj .vwj , rj .Q), where wj ≥ 0 shows the

number of the local variables in rj .

Definition 5 (Initial state) In the initial state s0, a number of rebecs are created

as indicated in the model. For every j ∈ Is0 , rj .m[1] is set to ‘initial ’; rj .s[1] is set

to j; the variables corresponding to the known rebecs are initialized according to the

model; and, if the initial message server of rj accepts nj (nj ≤ hj) parameters other

than the known rebecs, the variables rj .p1[1], rj .p2[1], . . . , rj .pnj [1] are also initialized

accordingly. All other (local and queue) variables are assigned the value ⊥.

Definition 6 (LTS) R = 〈S,A, T, s0〉 is called a labeled transition system, where:

– The set of global states is shown as S (cf. Definition 4).

– s0 is the initial state.

– A denotes the set of actions (message servers) of different reactive classes.

– The transition relation T ⊆ S ×A× S is defined as follows.

We write aj for action a in rebec rj . There is a transition s
aj−→ t in the system,

iff the action aj is enabled (i.e., rj .m[1] = a) at state s, and its execution results in

state t. Each action is defined as a (finite) sequence of sub-actions. Henceforth, we

define the different possible kinds of sub-actions. In the formulas below, the symbol ←
represents an assignment, where the value of the expression on the right-hand side is

computed with regard to the values of variables in s, and is assigned to the variable

on the left-hand side, in state t.

1. Message removal : This is an implicit sub-action that exists in all actions. It includes

removing the first element of message, sender and parameter queues, plus shifting

other elements of the queues. This sub-action automatically happens as the last

sub-action of any action. Note that parameters are available in the message server

by using their names (as in Java).

1 The subscript s of Is may be omitted when no ambiguity arises.

10

∀i>0 � rj .m[i] ← rj .m[i+ 1]

∀i>0 � rj .s[i] ← rj .s[i+ 1]

∀i>0 � ∀0<k≤hj � rj .pk[i] ← rj .pk[i+ 1]
2. Assignment : An assignment is a statement of the form ‘w ← d’, where w is a local

variable in rj . If w is a data variable, d must take values from D \ ⊥. It represents

an expression (which may include normal arithmetic on integers and boolean op-

erations on booleans) evaluated using the values of the (local or parameter) data

variables in state s. If w is a rebec variable, d can be either a (local or parameter)

rebec variable, or the index assigned to a dynamically created rebec (see next item);

for instance, d cannot be a literal to represent an explicit rebec index. As a result

of this assignment, the value of d is assigned to w in state t.

3. Rebec creation: This statement has the form ‘new rc(kr1, . . . , krm) : (p1, . . . , pz)’

where rc is the name of a reactive-class, each kri is a rebec variable, and pk shows

the k’th parameter to the initial message. This sub-action chooses a new index

v /∈ Is to be assigned to the newly created rebec, and means that It ← Is ∪ {v}
in state t. Hence, the global state t will also include the local state of rv. In state

t, the known rebec variables of rv are initialized by the values of kr1 . . . krm; the

message initial is placed in rv.m[1]; the values of parameters p1, . . . , pz are placed

in rv.p1[1], . . . , rv.pz [1], respectively; and, rv.s[1] is assigned the value j (the creator

rebec). All other (local and queue) variables of rv are undefined (⊥).

4. Send : Rebec rj may send a message m with parameters n1, . . . , nz to the rebec rk,

provided that m ∈Mk, rj has a rebec variable that holds the value k, and z ≤ hk
is the number of parameters that message m accepts. Each parameter ni may be a

data parameter (ni ∈ D \ ⊥) or a rebec parameter (ni ∈ Is), where the same rules

as the right-hand side of an assignment apply. This send statement results in the

message m being placed in the first empty slot (tail) of the queue of the receiving

rebec: for y such that rk.m[y] = ⊥ ∧ ∀0<u<yrk.m[u] 6= ⊥, we have the following:

rk.m[y]← m,

rk.s[y]← j,

∀1≤i≤zrk.pi[y]← ni (other elements keep their ⊥ value).

3 The Symmetry Reduction Technique

The state space of a system can be viewed as a graph: the states are the vertices and

the transitions are the edges. The intuitive idea of the symmetry reduction technique

[21,39,15,48] is to partition the state space into equivalence classes corresponding to

isomorphic graphs and use one state as the representative of each class. In this section,

we explain formally how to use symmetry reduction in model checking.

3.1 Preliminaries

Consider a system M , consisting of n concurrently executing processes, represented

by a labeled transition system M = 〈S, A, T, s0〉. A global state s ∈ S is composed

of local states of the processes: s =
Q
i∈I si where I is the set of process indices. A

permutation π : I → I is defined as a bijection (1-1 and onto function) on the set I

of process indices, but it can be lifted to global states and actions in a straightforward

way by permuting the indices of the local states and actions. A formal definition of

11

(a) Selecting representatives (b) Annotated quotient structure

Fig. 3 An example of a symmetric state-space

this lifting for Rebeca is given in the next subsection. The set of all permutations

on I is shown by SymI. In the following, we use π to denote the lifting of the same

permutation onto states and actions.

Example 2 (taken from [21] with minor changes) Consider a system of n identical pro-

cesses that start in a non-critical state and try to enter the critical section (by executing

action ai), and then leave the critical section (by executing action bi). Associated to

each process i is a variable Vi, which is represented by either Ci (when in critical

section) or Ni (non-critical section).

Figure 3-a shows the state-space of this system. Consider the index set I = [1..n],

and the permutations defined in I. Henceforth, we write a permutation π as an ordered

list, the i’th element of which denotes π(i). For example, if p = /2, 1, 3, . . . , n − 1, n/,

then p(1) = 2, p(2) = 1 and other indices are mapped to themselves. This permutation

p maps {C1, N2, . . . , Nn} to {N1, C2, . . . , Nn}, while applying any permutation to the

state {N1, N2, . . . , Nn} results in the same state.

Definition 7 (Automorphism [21,39]) A permutation π is said to preserve the

transition relation when s
a−→ t ∈ T implies π(s)

π(a)−→ π(t) ∈ T . Such a permutation is

called an automorphism of M , if π(s0) = s0.

The set of automorphisms of M is denoted by AutM .

The set SymI (and similarly AutM) forms a group [30] with respect to functional

composition, i.e., it includes the identity permutation and is closed under composition

and the inverse operation. Any subgroup G of AutM induces an equivalence relation on

the states, such that two states s and s′ are equivalent iff ∃π∈Gπ(s) = s′. The resulting

equivalence classes are called orbits. For example in Figure 3-a, every permutation on

the index set is an automorphism of M , i.e., AutM = SymI. With respect to SymI, one

orbit contains {N1, N2, . . ., Nn}, and other states form another orbit. Intuitively, for

model checking M , it is sufficient to construct the state-space with one representative

from each orbit (Figure 3-b).

Definition 8 (AQS [21]) Given a subgroup G of AutM , the annotated quotient

structure (AQS) for M with respect to G is MG = 〈S,A, T , s0〉, where S is the set

of the representative states (which contains exactly one state from each orbit) and

T
.
= {s a,π−→ t | π ∈ G, s ∈ S ∧ t ∈ S ∧ s a−→π(t) ∈ T}.

In an AQS of M , all the states in any given orbit are replaced by the representative

state of that orbit. However, the outgoing transitions of the (representative) states are

12

preserved. These transitions are annotated with a permutation that helps us find the

original target state (in the original state-space M), by applying the permutation on the

representative target state. Consider a path in M starting from the initial state. The

corresponding path in M can be obtained by consecutively applying the permutations

(on the transitions) to the states.

In Figure 3-a the (arbitrarily) chosen representatives of its two orbits are dis-

tinguished with a line around them. Figure 3-b shows the AQS of this system, which

contains the selected representative states, and the (properly annotated) outgoing tran-

sitions of each (representative) state.

Suppose that G denotes a group of automorphisms for a system; and the formula

representing the desired property is also symmetric with respect to G.2 Emerson et al.

[21] show that using MG instead of M is enough in the automata theoretic approach

to model checking. This approach is extended in [23] for model checking under fairness

conditions. Bosnacki in [5] shows how symmetry reduction can be employed in Nested

Depth-First Search (NDFS) [36]. To apply these methods, the representative for each

state should be determined while exploring the state-space, known as the constructive

orbit problem, which is NP-Hard [21,13]. In the following, we show how we can detect

symmetries in a Rebeca model efficiently. Exploiting the detected symmetries in order

to efficiently construct the quotient structure, i.e., a polynomial-time heuristic solution

to the constructive orbit problem, is described in Section 5.1.

3.2 Inter-rebec Symmetry in Rebeca

Recall the dining philosophers problem in Example 1. Intuitively, taking into consid-

eration the starvation-free binding of the rebecs, every other philosopher/fork should

have symmetric behavior; no matter how the Phil and Fork classes are implemented.

Assume that the philosophers are assigned the indices 0 to 3 and forks are assigned 4

to 7. Following this intuition, r0 (phil0) and r2 (phil2) should have symmetric behav-

iors. In other words, one automorphism should be a permutation π, where π(0) = 2

and π(2) = 0. In general, a Rebeca system is symmetric if the communication pattern

among rebecs, i.e., the binding of the known-rebecs, is symmetric. In the following, we

define this formally.

3.2.1 Formal Definitions

Consider a system R = 〈S,A, T, s0〉 = ||i∈I ri of a Rebeca model, where I = [1..n] is

the index set of the rebecs. To exploit symmetry, we use the permutations acting on

I. Since rebecs of the same type (i.e., instances of the same reactive-class) consist of

the same message servers, they exhibit similar behavior. We limit the permutations to

those preserving rebec types.

Definition 9 (Preserving rebec types) A permutation π is said to preserve rebec

types, if for all i,j such that π(i) = j, the rebecs ri and rj are instances of the same

reactive-class.

2 We do not address the problem of detecting symmetry in formulas. One solution is to use
indexed temporal logics [21] or to detect the symmetries in temporal logic formulas [52].

13

Next, we define formally how to lift a permutation π defined on the index set I

to be applied on states and actions. For an action ai ∈ A, we define π(ai) = aπ(i).

Obviously, aπ(i) ∈ A if π preserves the rebec types.

Definition 10 (Permutation on states) The application of π on a global state s,

denoted by π(s), is defined as follows:

1. The values of data variables, say rj .vdi, rj .m[i] or rj .pdk[i], in state s, are assigned

to the local or queue variables rπ(j).vdi, rπ(j).m[i] or rπ(j).pdk[i] in state π(s),

respectively.

2. Suppose the value of a rebec variable, say rj .vri, rj .s[i] or rj .prk[i], in state s is

x. In state π(s), the value π(x) is assigned to the variable rπ(j).vri, rπ(j).s[i] or

rπ(j).prk[i], respectively.

Definition 11 (Preserving KR relation) If Ki = (t1, t2, . . . , tPi) denotes the or-

dered list of the indices of the known-rebecs of ri, where i ∈ I, a permutation π

is said to preserve the known-rebec relation iff: ∀i∈IKπ(i) = π(Ki). The application

of π on a list is defined as the list obtained by applying π on every element, e.g.,

π(Ki) = (π(t1), π(t2), . . . , π(tPi)).

Lemma 1 Given a permutation π, π(s0) = s0 if π preserves rebec types and known

rebec relation and the parameters to the initial message servers are symmetric, i.e., if

π(i) = j, and p is a parameter to the initial message server of ri, the corresponding

parameter for rj should

– have the same value as p, if p is a data variable; or,

– be equal to π(p), if p is a rebec variable.

The proof is straightforward from the definition of initial state (Def. 5) and the

application of permutations on states given above (Def. 10).

Theorem 1 (Soundness) If a permutation π preserves rebec types and π(s0) = s0,

then π is an automorphism of R (cf. Definition 7).

Theorem 2 The set of all permutations satisfying Theorem 1 form a group.

The proofs of these theorems are given in the Appendix. As an example of using

Theorem 1, we check if the permutation π = /2, 3, 0, 1, 6, 7, 4, 5/ is an automorphism

of the dining philosophers model as was discussed at the beginning of this subsection.

Notice that π satisfies the intuitive condition we expect, i.e., π(0) = 2 and π(2) = 0.

First of all, this permutation preserves rebec types; because, it does not map Forks to

Phils or vice versa. To check if π(s0) = s0, we first need to make sure that π preserves

the known rebec relation (cf. Lemma 1). Consider r0 (phil0), whose known rebecs are

(fork0, fork3), i.e., K0 = (4, 7). We have: π(K0) = (π(4), π(7)) = (6, 5). Notice that

r6 and r5 represent fork2 and fork1, respectively, which are the known rebecs of r2
(phil2). So we showed that π(K0) = K2 = Kπ(0). Similarly, one can ensure that the

known rebec relation is preserved for other rebecs, too. Finally, observe that the initial

message servers have no parameters, so it is also easy to see that π(s0) = s0. From

Theorem 1, we can deduce that this permutation is an automorphism of the system.

In Section 5.1, we present an algorithm for checking whether a permutation pre-

serves rebec types and known-rebec relation; and we show how to use the group of

these permutations (cf. Theorem 2) for computing a representative during symmetry

14

KRs ::= knownrebecs { 〈KRdcl ; 〉∗ }
KRdcl ::= Vdcl | T 〈v [i : Nat ..Nat]〉+,
Vdcl ::= T 〈vGr〉+,
vGr ::= v 〈[i]〉?

Call ::= vGr .M | self .M | sender.M
St ::= vGr = e;

| vGr = new C(〈e〉∗,);
| forEachValueOf (i) {St∗}

Fig. 4 Extended syntax including scalar sets. The declarations here include only what is
different or added to Figure 1. Expressions (denoted by e) can now include scalar expressions.
An identifier i denotes a scalar set.

reduction. This approach does not need any changes to be made to the syntax of Re-

beca, and is not based on any special syntactic notations used by modeler. This relieves

the modeler from the task of using symmetry-related constructs (e.g., scalar-sets) in

order to exhibit the automorphisms (see related work in Section 1.1).

3.3 Intra-rebec Symmetry in Rebeca

In systems with loosely coupled objects, symmetry is usually caused by the symmetric

composition of objects, thus, inter-rebec symmetry can be detected without scrutinizing

the internal behavior of the objects (like in ring networks). Such systems are addressed

by inter-rebec symmetry explained in the previous sub-section. However, sometimes

the internal structure of some objects also needs to be considered in order to reveal

the symmetric composition in the system, e.g., of the object in the center of a star

network. Intra-rebec symmetry extends inter-rebec symmetry to address this problem.

To this end, a new data type, namely scalar set, is added to the syntax of Rebeca.

3.3.1 Motivating Example - Bridge Controller

In this example, there is a two-way bridge with the capacity of only one train at a

time. In this model, two reactive-classes are introduced: Train and Controller. Two

Train instances, t1 and t2, are used for modeling the trains arriving at either side

of the bridge. The controller provides mutual exclusion and schedules the trains such

that starvation is avoided. For the controller, the trains have equal priorities and are

treated equally.

Suppose we do not consider the internal behavior of the rebecs, and only rely on the

communication structure (as required by Theorem 1). Assume the indices 1 and 2 for

the trains, and the index 3 for the controller. Then the known rebecs of the controller

are K3 = (1, 2). We intuitively expect π = /2, 1, 3/, which swaps t1 and t2, to be an

automorphism. However, π does not preserve the known rebec relation, because: π(K3)

= (π(1), π(2)) = (2, 1) 6= Kπ(3). We extend inter-rebec symmetry to allow swapping

the order of the known rebecs when the rebec has symmetric internal behavior.

3.3.2 Scalar Sets in Rebeca

To enable the modeler to exhibit internal symmetries in rebecs, we add scalar sets

[39] to the syntax of Rebeca (see Figure 4). An abridged Rebeca model of the Bridge

Controller system using scalar sets is shown in Figure 5. We use this as the running

example in this section.

15

reactiveclass Controller (6) {
knownrebecs {Train trn[i:1..2];}
statevars
{boolean signal[i],waiting[i];}

...
msgsrv Arrive() {

forEachValueOf (i) {
if (sender == trn[i]) {

if (! signal[i +% 1]) {
signal[i] = true;
trn[i].Pass();

} else {
waiting[i] = true;

} } } } }

reactiveclass Train (3) {
knownrebecs {

Controller cntlr;
}
...
msgsrv Pass() {

...
} }

main {
Controller ctrl(t1,t2):();
Train t1(ctrl):();
Train t2(ctrl):();

}

Fig. 5 Using scalar sets in Rebeca

Scalar Sets. A scalar set is a set of consecutive scalar values. Scalar values are natural

numbers, on which only the operations for adding modulo the size of a set (+%) and

checking equality and non-equality are allowed. Formally, if i denotes a scalar value

from the scalar set [d, d + 1, ..., d + n − 1], then i +% c means ((i + c − d) % n) + d,

where % denotes remainder of integer division and c is a non-scalar integer.

Grouped Known-rebecs. When the modeler realizes that the behavior of a reactive

class is identical (i.e., symmetric) towards some of its known rebecs, s/he can group

them using scalar sets. The model checker can then consider this internal symmetry.

New scalar sets can be introduced only when declaring grouped known-rebecs. For

example, in Figure 5, Controller declares the scalar set i with the range [1,2] along

with the array-like definition of two known rebecs of type Train. This also helps the

modeler avoid repeating the symmetric part of the code in that reactive class (explained

in the sequel). The syntactic constraints on using scalarsets ensure that the containing

reactive class (e.g., Controller) has symmetric behavior towards these known rebecs.

Variables. The scalar sets defined for grouping known rebecs can be used as the

data type for defining other variables, called scalar variables; or, again in an array-like

definition of variables (or even other known rebecs). Variables and known rebecs defined

with this array-like syntax are called grouped variables and known rebecs, respectively.

signal and waiting in the controller are examples of grouped variables. Scalar variables

are distinguished by a subscript ‘s’ when necessary.

We define a cluster as the set of grouped known rebecs, grouped state variables, and

scalar variables that are defined using the same scalar set. The scalar set identifying

each cluster denotes the type of that cluster. In Figure 5, trn, signal and waiting

form a cluster of type (the scalar set) i. In other words, in each reactive class, there

is one cluster associated to each scalar set defined in it. A cluster is a logical concept

only used in the proofs.

Scalar Expressions. Given a scalar set ‘sclr’, a scalar expression of type sclr is

defined to be:

– a scalar variable of type sclr, or

– a scalar variable of type sclr added (using +%) to an integer, or

16

– a nondeterministic choice from all values of sclr.

Scalar expressions are the only means for (indexed) access to grouped known rebecs

and variables. It is required that a scalar expression used as an index is of the same

type as the cluster containing the accessed known rebecs/variables. For instance, in

Figure 5, ‘i +% 1’ is a scalar expression (of type i) that is used for indexing signal.

For simpler manipulation of grouped known rebecs and variables, we define the con-

struct forEachValueOf that associates a number of statements with a scalar set. Inside

the block, the name of the scalar set can be used as a scalar variable, which can, in

turn, participate in forming scalar expressions, and hence in indexing grouped known

rebecs and variables (but not on the left hand side of assignments). In the message

server Arrive in Controller, the grouped known rebecs and variables are accessed

inside a forEachValueOf block. In execution, the code in this block is repeated for the

different values of i, which can be 1 or 2.

The behavior of these blocks is similar to the for loop construct in programming

languages such as C and Java, or similar to the ALL construct in SMC [59]. The state-

ments in such blocks are repeated for each value of the given scalar set. However, the

statements forming the body of each block must be written in such a way that the

result of the execution is independent of the order of the iterations. Two sufficient

(but not necessary) restrictions (taken from [39] and adapted to Rebeca) to obtain this

property are that:

– the set of variables written by any iteration should be disjoint from the set of

variables referenced (read or written) by other iterations; and,

– each known rebec can be chosen as destination for sending messages, only in one

iteration. For instance, you cannot use both trn[i] and trn[i +% 1] in send state-

ments inside one block, because trn[1] will be called both when i is 1 and 2.

3.3.3 Using Scalar Sets for Detecting Symmetry

In this section, we write variables as ri.vg[e], where ri.vg represents a group of variables

of ri that share a name vg (e.g., signal in Figure 5), and e is the scalar value used as

the index. Without loss of generality, for non-grouped variables and known rebecs, we

assume a cluster typed with the singleton scalar set [1].

Definition 12 (Grouped KR lists) The grouped known rebecs list of ri is defined as

Li = (Li1, Li2, . . ., Libi), where each Lij denotes the ordered list of the known-rebecs

sharing the same name.

In this definition, bi is the number of such lists for ri, and each Lij is assumed

to have dij elements. Obviously, the elements in each Lij have the same type. For

example, in Figure 5, Controller has two known rebecs of type Train sharing the

name trn. So its grouped known rebecs list contains one sub-list with two elements,

namely L3 = (L31), where L31 = (1, 2), assuming that 1 and 2 are the indices of the

Train instances t1 and t2.

Definition 13 (Rotary permutation) For a given i and j, the rotary permutations

acting on the members of Lij are defined as ψc(x)
.
= x +% c, where 1 ≤ c ≤ dij .

17

Definition 14 (Preserving grouped KR relation) A permutation π, defined on

the index set I, is said to preserve the grouped known rebec relation iff for every i ∈ I
and 1 ≤ j ≤ bi, we can find a rotary permutation ψc, such that Lπ(i)j = π(ψc(Lij)).

For each Lij the proper ψc is denoted as ψij .

This definition is illustrated at the end of this section. Note that preserving the

known rebec relation is a necessary condition for preserving the grouped known rebec

relation, and it becomes sufficient whenever for all i and j, Lij is a singleton (dij = 1).

Definition 15 (Permutation on states - extension of Def. 10) Given a permu-

tation π defined on the index set I, together with a rotary permutation ψij for each

Lij , the action of π on a global state s, denoted π(s), is defined as follows. Suppose ‘e’

is a scalar variable that takes values from the scalar set associated to Lij .

1. The value of a data state variable, say ri.vdg[e], in state s, is assigned to the variable

rπ(i).vdg[ψij(e)] in state π(s).

2. Suppose the value of a rebec state variable, say ri.vrg[e], in state s is x. In state

π(s), the value π(x) is assigned to the variable rπ(i).vrg[ψij(e)].

3. If the value of a scalar state variable, say ri.vsg, in state s is y; in state π(s), the

value ψij(y) is assigned to the variable rπ(i).vsg.

4. Queue variables are treated in the same way as in Definition 10.

The idea here is to allow permuting the grouped known rebecs internally using

rotary permutations whenever the strict ordering is irrelevant. This is indeed due to

the internal symmetry of the rebec. Considering the new definition of applying permu-

tations on states, Theorems 1 and 2 presented in the previous sub-section still hold (by

taking the proper rotary permutations into account). However, we need to rephrase

Lemma 1 as follows.

Lemma 2 Given a permutation π, π(s0) = s0 if π preserves rebec types and grouped

known rebec relation and the parameters to the initial message servers of symmetric

rebecs are symmetric.

The proof is again straightforward from the definition of initial state (Def. 5) and

the application of permutation on states considering grouped known rebecs and vari-

ables (Def. 15). Note that the same definition of symmetric parameters is applicable,

because scalar variables cannot be passed as parameters to the initial message server.

That is due to the fact that the scope of scalar variables is inside reactive classes.

Recall that the permutation π = /2, 1, 3/ does not preserve the known rebec relation

of the bridge controller example and so Lemma 1 is not applicable. However, it does

preserve the grouped known rebec relation. To check that, consider the grouped known

rebec relation for the controller: L3 = (L31), where L31 = (1, 2). We must find a

proper rotary permutation ψ that satisfies: Lπ(3)1 = π(ψ(L31)). It is easy to verify

that ψ = /2, 1/ satisfies this condition. After checking the same property for other

rebecs, Lemma 2 ensures that π(s0) = s0 and hence Theorem 1 states that π is an

automorphism of the model.

4 Partial Order Reduction

Partial order reduction is an efficient technique for reducing the state-space size when

model checking concurrent systems for next-time-free linear-time temporal logic (LTL-

X) [60,50,26–28]. We use static partial order reduction (as explained in [35]), which is

18

considered to be the most practical variant of the partial order reduction techniques.

The idea here is that instead of considering all enabled actions at a given state s

(denoted by enabled(s) in the following), it is enough to explore only a subset based on

static characteristics of the actions. Recall from Section 2.1 that action aj is enabled

in s, if the corresponding message is at the queue head of rebec rj .

Definition 16 (Invisibility) An action that does not affect the satisfiability of the

(propositions used in the) specification to be checked is called invisible. A transition

labelled with an invisible action is also called invisible.

Definition 17 (Independence) A symmetric irreflexive relation I ⊆ A × A on ac-

tions is said to be an independence relation iff for all (ai, bj) ∈ I and for each s such

that {ai, bj} ⊆ enabled(s), the following conditions hold:

– if there exists t1 such that s
ai−→ t1 then bj ∈ enabled(t1).

– if for some t1, t2, t
′
1, t
′
2 ∈ S, s

ai−→ t1
bj−→ t′1 and s

bj−→ t2
ai−→ t′2 then t′1 = t′2.

Two transitions labelled with independent actions are called independent.

Intuitively, the independence of two actions ai and bj , means that whenever ai and

bj are both enabled at a given state s, the execution of one of them cannot disable the

other, and the consecutive execution of both, no matter which one is executed first,

must result in the same state.

Definition 18 (Global independence) An action is called globally independent if

it is independent from all actions of other rebecs. The transitions labelled with globally

independent actions are called globally independent.

Definition 19 (Safety) An action is called safe if it is invisible and globally inde-

pendent. All the transitions labeled with a safe action are also called safe.

To apply static partial order reduction, the safety of actions must be known a

priori, i.e., must be determined by a static analysis of the model before staring the

model checking. Intuitively, the execution of a safe action at a given state leads to

a state where all other enabled actions (from other rebecs) remain enabled. So the

execution of other enabled actions can be postponed to the future states. Therefore, at

each state, we can define a subset of the enabled actions, called the ample set, which

contains the minimum actions that need to be explored.

This strategy alone may cause some postponed enabled actions to be ignored for-

ever. This so called ignoring problem may occur in the case of a loop. Generally, the

solutions to the ignoring problem are called provisos (e.g., stack proviso [35], alternate

proviso [49] or provisos for safety and liveness properties in [25]) whose need was first

recognized by Valmari [60]. The stack proviso, implemented in SPIN, requires that the

execution of none of the actions in the ample set should cut the DFS search stack

(which definitely closes a loop). If no ample set satisfying the chosen proviso can be

found, all the enabled actions from all rebecs must be explored. Such a state is said to

be fully expanded.

19

4.1 Partial Order Reduction for Rebeca

In a Rebeca model, at each state, at most one action from each rebec is enabled (because

there can be only one message at the queue head). This action may result in more than

one transition (if it involves nondeterministic choices). Therefore, at a given state, the

ample set can be the set of transitions due to the enabled action of a rebec, provided

that: 1) the enabled action is safe; 2) some proviso, e.g., stack proviso, is also fulfilled.

As explained in the previous subsection, the static partial order reduction technique

requires that the safety of actions is determined statically.

Theorem 3 If a message server is only composed of safe assignment and safe send

statements, its corresponding action is safe.

The proofs of the theorems are given in Appendix C. According to Theorem 3, in

order to determine the safety of message servers statically, we need to determine the

safety of assignments and send statements. In addition as shown in Appendix C, the

assignments in the initial message server are always safe. This, for example, directly

leads to the safety of the initial message server if it contains no ‘send’ statement.

The safety of other assignments is also easy to determine by considering the desired

property.

To guarantee the safety of send statements, we need to find those queues that are

accessed (for write) only by one rebec [41] (see Lemma 7 in Appendix C). In order to

find such queues statically, it is necessary that the model does not involve dynamic

rebec creation nor dynamic change of topology. Both can be statically determined by

making sure that rebec variables do not appear on the left hand side of assignments

or as parameters of message servers. Otherwise, only the safety of assignments can

be determined statically. As shown in Section 6, even in such cases, this can lead to

considerable reductions.

In a model with no dynamic statements, known-rebecs can be statically bound to

real rebecs. Then by a static analysis of the send statements in the model, it is possible

to find the rebecs that access each queue (i.e., send messages to the rebec that owns

the queue). Note, however, that the initial message is not considered in this analysis,

because it is implicitly placed in the queue of all rebecs at the initial state. As a result,

it cannot disable or be disabled by other actions.

5 The Rebeca Model Checking Tool

The Rebeca model checking tool consists of two components: a translator and an

engine.3 The ‘Model-checking Engine of Rebeca (Modere)’ is the component that per-

forms the actual task of model checking. It is based on the automata-theoretic approach

[61,62]. In this approach, the system and the specification (of the negation of the de-

sired property) are each specified with a Büchi automaton. The system satisfies the

property when the language of the automaton generated by the synchronous product

of these two automata is empty. Otherwise, the product automaton has a reachable

accepting cycle (a cycle reachable from the initial state and containing at least one

3 http://www.reykjavikuniversity.is/icerose/applying-formal-methods/tools/ or
http://ece.ut.ac.ir/fml/rmc.htm

20

accepting state) that shows the undesired behavior of the system. In this case, an error

trace witnessing a counter-example to the property is reported.

Given a Rebeca model and some LTL specification (for the negation of the desired

property), the translator component generates the automata for the system and the

specification. These automata are represented by C++ objects. The files containing these

objects are placed automatically beside the engine (Modere). The whole package is then

compiled to produce an executable for model checking the given Rebeca model.

In Modere, the local states of rebecs are stored locally. A global state is the com-

position of the local states of all rebecs and the specification automaton, which are

represented by their id numbers. This method is similar to the “collapse” compres-

sion method used in SPIN [34]. Modere uses Nested Depth First Search (NDFS) [36]

for computing the product automaton and performing model-checking on-the-fly. For

better memory management, Modere uses a non-recursive implementation of NDFS,

and handles the search stack manually. Furthermore, Modere considers only the fair

sequences of execution. An infinite sequence is considered (weakly) fair when all the

rebecs are infinitely often executed or disabled.

5.1 Exploiting Symmetry

In Section 3, we showed that a permutation should satisfy three conditions in order to be

an automorphism: preserve rebec types, preserve (grouped) known rebec relation and

preserve the symmetry of the parameters to the initial message server. The algorithm

in Figure 6 checks if a permutation (π or pi) exists that maps ri to rj while preserving

rebec types and known rebec relation. If the algorithm returns true, pi contains this

permutation. The algorithm is extended in Figure 7 to consider grouped known rebec

relation. Checking the third condition is straightforward.

In this subsection, the names in type-writer font refer to variables in the algo-

rithms. First, π(i) is assumed to be j. In order to preserve known rebec relation, π(Ki)

must match Kj ; i.e., applying π on the elements of K(i) (representing Ki) must result

in the elements of K(j). At each step, there are two lists of rebec indices, represented by

p1 and p2, that must match via π, and are initialized at line 4 by K(i) and K(j). Lines

6 to 12 ensure that the first element of p1, assigned to x, matches the first element of

p2, assigned to y. When we add π(x) = y to the permutation, their known rebecs must

be checked, too. This is ensured in line 10, by adding their known rebecs to p1 and

p2. The algorithm repeats the process and returns true if all the indices in p1 and p2

match. If the computed permutation pi is not complete, we can repeat the algorithm

for checking the equivalence of the missing rebec indices until a complete permutation

is found (cf. Section 5.1.1).

In order to add support for intra-rebec symmetry, we use grouped known rebec

lists, i.e., L(i) instead of K(i) (lines 4 and 10 in Figure 7). As a result, each member

of p1 or p2, is itself a list of rebec indices (call them sublists). To match the indices

within the sublists, we must find a proper rotary permutation ψt (cf. Definition 14).

The variable t is used to determine ψt at each step, and t+%m computes ψt(m). To

ensure that a proper value for t is selected in Line 7.1, consider the sublists x and y in

Figure 7 that must match via ψt. There are three possibilities. First, suppose π(x[u])

is already defined to be y[v] for some u and v (when this line is to be executed). In

that case, t is set to v − u. Second, if π is defined for no element of x, then t can be

an arbitrary number (less than the size of x and y). In that case, the algorithm sets t

21

00 int[] pi; // permutation
01 check (i, j) : boolean;
02 if (type[i] != type[j]) return false;// must preserve rebec types
03 pi[i] := j; // i is mapped to j
04 p1 := K(i); p2 := K(j);
05 while p1 not empty do
06 x := removeFirstElement(p1);
07 y := removeFirstElement(p2);
08 if (pi[x] is undefined)
09 pi[x] := y;
10 p1 += K(x); p2 += K(y); // add to the end of the list
11 else if (pi[x] != y) // known-rebec relation is not preserved
12 return false;
13 od
14 return true;
15 end

Fig. 6 Inter-rebec symmetry detection algorithm

00 int[] pi; // permutation
01 check (i, j) : boolean;
02 if (type[i] != type[j]) return false;
03 pi[i] := j;
04 p1 := L(i); p2 := L(j); // the grouped known rebec lists of i,j
05 while p1 not empty do
06 x := removeFirstElement(p1);
07 y := removeFirstElement(p2);
07.1 determine proper t // see text for explanation
07.2 for m:=0 to lengthOf(x) do
08 if (pi[x[m]] is undefined)
09 pi[x[m]] := y[t+%m]; // add t to m modulo lengthOf(y)
10 p1 += L(x[m]); p2 += L(y[t+%m]);
11 else if (pi[x[m]] != y[t+%m])
12 return false;
12.1 od
13 od
14 return true;
15 end

Fig. 7 General symmetry detection algorithm (inter- and intra-rebec symmetry)

to 0. Third, if for some u, π(x[u]) is defined, but is not in y, the algorithm fails and

returns false. After determining t (in fact ψt), lines 7.2 to 12.1 make sure that other

members of x are mapped to the proper indices from y (i.e., π(x[m]) = y[ψt(m)]. As

before, the algorithm iterates over all elements of p1 and p2 to make sure that the

grouped known rebec relation is preserved.

5.1.1 Applying Symmetry Reduction

Applying symmetry reduction during model checking amounts to computing the rep-

resentative of every state we reach. One way to tackle this problem is by computing

all the automorphisms of the model before starting the model checking. To this end,

we can run the check algorithm for every pair of rebecs and thus find the equivalence

groups of rebecs. Then we can compute the group of automorphisms that correspond

to this partitioning of the rebecs. Then, during model checking we need to find the

proper automorphism, such that unique representatives are obtained for the equiva-

lence classes induced on states; for example, the automorphism resulting in the smallest

22

(phil0) (phil1) (phil2) (phil3) (fork0) (fork1) (fork2) (fork3)

rebec index 0 1 2 3 4 5 6 7

local state 5 7 3 4 1 8 4 6

Fig. 8 A global state in the dining philosophers example

state representation w.r.t. lexicographic ordering (cf. [13,7]). A naive computation of

this, i.e., comparing all automorphisms, may be computationally expensive because in

full symmetry the number of automorphisms is exponential. The advantage of the naive

algorithm is that it results in more reduction (at the cost of more execution time).

Alternatively, we propose to use the check algorithm at model checking time to

compute the proper automorphism on-the-fly. The idea is again to select as represen-

tative the smallest state (w.r.t. the lexicographic ordering) from the equivalence class

induced by the symmetry group resulting from Theorem 2. In this approach, first we

(lexicographically) sort the local states of the rebecs. Then, using the check algorithm,

we find the automorphism that maps (the index of) the rebec with the smallest local

state to 0. If no such automorphism exists we try the rebec with the second small-

est local state and so on. If the check does not produce a complete permutation, we

complete the permutation by calling check again to assign the rebec with the smallest

remaining local state to the first empty element of the permutation. The process is

repeated until the proper permutation is found (which may very well be the identity

permutation).

For example assume Figure 8 shows a global state of the dining philosophers exam-

ple, where the local states are represented by numbers. Since fork0 (rebec with index

4) has the smallest local state, we first try to map π(4) = 0 by calling check(4,0).

This is not possible because rebecs 0 (i.e., phil0) and 4 (i.e., fork0) are not of the same

type. The rebec with the next smallest local state is phil2. Calling check(2,0) returns

true and it results in pi holding the permutation /2, 3, 0, 1, 6, 7, 4, 5/.

We took the idea of using lexicographic ordering on the states from Bosnacki et

al. [7]. As they mention, in some cases, this heuristic may result in multiple represen-

tatives when more than a rebec with the same local states exist. The algorithm can

be made more accurate at the cost of comparing all orderings of such rebecs, which in

the worst case is again exponential. Nevertheless, the empirical results in Section 6 are

encouraging. In that section, we compare the on-the-fly approach with the naive one.

5.1.2 Complexity Analysis

We show now that the on-the-fly algorithm for finding the representative states works

in polynomial time (in the number of rebecs in the given model). First consider the

check algorithm. In its both versions, line 8 ensures that each element of π (=pi) is

assigned at most once. Since π has n elements, lines 9 and 10 are executed O(n) times.

In the following paragraph, the text in parentheses applies only to the analysis of the

second algorithm (for intra-rebec symmetry).

Consider the indices (in the sublists) of known-rebecs of x([m]) that are added

to p1 in line 10. Once an index is added to p1, it is later checked exactly once in

line 8 (although in line 6 a sublist of indices are removed together from p1). (Line

7.1 may also need to check each index in x at most O(1) times for finding proper t.)

However, the number of indices added to p1 in line 10 is at most n− 1, which happens

23

if x([m]) contains all other rebec indices. Therefore, lines 8 to 12 are at most executed

O(n∗(n−1)) = O(n2) times. This means that the running time of the check algorithm

is O(n2).

For computing a representative state using the on-the-fly approach, first it takes

O(nlog(n)) to sort the local states. In the worst-case, we may then compare every pair

of rebecs, which results in an execution time of O(nlog(n) +n2×n2) = O(n4) in total.

5.1.3 Discussion

Considering the raw idea of symmetry explained in Section 3.1, the methods pre-

sented here may miss some of the automorphisms on the states. In other words, these

algorithms are sound (according to the theorems in Sections 3.2 and 3.3) but not nec-

essarily complete. In fact, all practical approaches to using symmetry reduction (cf.

related work in Section 1.1) suffer from the same inaccuracy. That is what we lose,

as we want to avoid the exponential time analysis of the whole state space. However,

intuitively, it is usually believed that the symmetry in the transition system is mainly

due to symmetric processes/rebecs.

To the best of our knowledge, the algorithms given in this section, have no coun-

terpart in the literature (except the line of work by Miller, Donaldson et al. [17–20],

see related work in Section 1.1), as it has usually been the modeler’s task to specify

the symmetry explicitly, or general graph-isomorphism algorithms are employed. In

Rebeca, we can find the automorphisms by analyzing the known rebec relation, be-

cause we have encapsulated objects that communicate only via asynchronous message

passing. We expect our techniques to be generalizable to other high-level models of

concurrency of which encapsulation and asynchronous message passing form the basis.

The current implementation of Modere is based on NDFS. Therefore, we adopted

the method in [5] for exploiting symmetry. As shown by Bosnacki [5] with a sim-

ple example in terms of a state graph, under fairness assumptions, this method does

not necessarily produce all the counter examples. Nevertheless, any property violation

produced by this method is a counter example of the system. Therefore, the current im-

plementation can still be useful for debugging very big systems that cannot be analyzed

otherwise, or for the verification of safety properties that do not require fairness.

5.2 Combining Partial Order and Symmetry Reduction

Modere, as described in our previous work [41], also supports partial order reduction.

The combination of partial order reduction and symmetry reduction techniques was

first studied by Emerson et al. [22]. For this purpose, partial order reduction can be

applied on the quotient structure obtained by exploiting the symmetry in a model. To

do so, we need to find an ample function that works on the quotient structure (ample

function computes the ample set for a given state, cf. Section 4). Iosif [38] proposes an

algorithm for applying partial order reduction while constructing the quotient structure

on-the-fly. Since Modere does indeed construct the quotient structure on-the-fly, the

latter approach is more appropriate. Furthermore, in this algorithm, the ample function

works on the original state graph of the system.

The C++ code of Modere (generated for a given Rebeca model) contains the appro-

priate code for both symmetry and partial order reduction methods. The pieces of code

24

related to these techniques are surrounded by compiler directives (like the code for par-

tial order reduction in SPIN). To select each of these reduction methods, the modeler

can decide to include the relevant code in compilation. This means that no decision

about the reduction method is made during run-time resulting in faster execution.

6 Empirical Results

In this section, we provide the results from model checking some case studies, by

applying symmetry and partial order reduction separately and in combination. In all

these cases, we checked the models for deadlock on a 3.2GHz Intel processor with 2GB

main memory. Although these case studies do not make full use of Modere’s features

like LTL model checking and fairness, they do demonstrate an effective application of

the developed reduction techniques in model checking.

Table 9 compares the effect of the implemented reduction techniques. A plus (+) in

this table implies that the model checker has used up all the available physical memory

and thus model checking could not be finished. A minus (-) is used when a reduction

technique was not applicable, i.e., would cause no reduction. Note that the reduction in

model checking time is not proportional to the reduction in states, due to the overhead

of using symmetry and partial-order reduction.

Table 10 compares the results of on-the-fly reduction based on inter-rebec and

intra-rebec symmetry detection with a naive algorithm. The naive algorithm computes

statically the symmetry groups based on intra-rebec symmetry detection technique

(when applicable) and at each state compares the application of all automorphisms to

find the lexicographically smallest state. Table 10 also shows the size of the automor-

phism groups computed statically (in the column under ‘Aut Size’).

Dining Philosophers. The dining philosophers problem was introduced in Section 2. The

size of this model is shown as the number of philosophers in the model. We checked this

model for 2 to 5 philosophers. Model checking 6 philosophers was not possible with any

reduction technique. With four philosophers, binding rebecs in the same way as shown

in Figure 2 (in Section 2) makes the model symmetric (with respect to inter-rebec

symmetry). In order to avoid deadlock, no symmetry can be used for other numbers

of philosophers. However, partial order reduction can be applied to all sizes. The only

safe action in this model is the initial message server of Fork, which contains only

assignments (cf. Section 4). Even one safe action can result in considerable reduction.

This is seen better when the two reduction techniques are combined.

Trains - Bridge controller. This model was used as the motivating example for intra-

rebec symmetry in Section 3.3. This example is extended so that it can be modeled

with different configurations by increasing the number of trains. The number of trains

is used to show the size of these models in Table 9. Partial order reduction in this model

is due to the safety of the initial and release message servers of the bridge controller.

Partial order reduction is not effective with models of size 8 or greater. Using scalar sets

of the proper size in the bridge controller makes it possible to use intra-rebec symmetry.

This technique is more effective than partial order reduction in this example and can

handle up to 8 trains. The combination of the two techniques can even handle 9 trains,

in which case 21 million states are stored.

25

No Reduction POR SYMM POR + SYMM

Time # of Time # of Time # of Time # of
size [sec] states [sec] states [sec] states [sec] states

Phil

2 0 285 0 70 - - - -

3 0 3062 0 2985 - - - -

4 5 374K 2 196K 5 237K 1 62K

5 9 676K 6 316K - - - -

Train

2 0 94 0 90 0 57 0 41

3 0 788 0 755 0 340 0 253

4 0 6344 0 5720 0 2165 0 1093

5 0 51K 0 49K 0 15K 0 9538

6 5 432K 4 419K 3 107K 1 54.8K

7 58 3.8M 46 3.7M 23 837K 7 501K

8 + + + + 282 6.7M 47 4.2M

9 + + + + + + 1140 21M

LB

4/2 0 21K 0 10.8K 0 7520 0 1664

6/2 25 1.34M 7 676K 3 65.4K 0 8814

4/3 2 106K 0 46K 3 69.6K 0 11.2K

6/3 268 9.8M 42 3.74M 46 893K 1 59.4K

4/4 10 436K 1 172K 10 233K 1 42K

6/4 + + + + + + 1 90K

2PC
2 0 324 - - 0 166 - -

3 8 617K - - 3 105K - -

Fig. 9 The effect of partial order and symmetry reduction techniques. This table is based on
intra-rebec symmetry except for dining philosophers.

On-the-fly detection A priori detection

No Reduction Inter-rebec Intra-rebec Naive reduction

Time # of Time # of Time # of Time # of Aut
size [sec] states [sec] states [sec] states [sec] states size

Phil 4 5 374K 5 237K - - 5 187K 4

Train

2 0 94 - - 0 57 0 50 2

3 0 788 - - 0 340 0 288 3

4 0 6344 - - 0 2165 0 1712 4

5 0 51K - - 0 15K 0 10.9K 5

6 5 432K - - 3 107K 1 76.4K 6

7 58 3.8M - - 23 837K 7 580K 7

LB

4/2 0 21K 0 10.6K 0 7520 1 4833 16

6/2 25 1.34M 4 104K 3 65.4K 40 40.2K 144

4/3 2 106K 2 59K 3 69.6K 10 33.2K 24

6/3 268 9.8M 38 840K 46 893K 667 201K 216

4/4 10 436K 11 312K 10 233K 65 121K 32

6/4 + + + + + + 4840 889K 288

2PC
2 0 324 0 166 0 166 0 166 2

3 9 617K 6 208K 3 105K 4 103K 6

Fig. 10 Comparing symmetry reduction heuristics.

26

c1 c2 c3 c4 c5 c6

lb1 lb2

s2 s3s1

Fig. 11 Initial communication graph for the load-balancer example

reactiveclass LoadBalancer (4) {
knownrebecs {

Server srv[scs:1..3];
}
statevars {

scs srvNo;
}
msgsrv initial(){

srvNo = ?(1, 2, 3);
}
msgsrv request(){

srv[srvNo].service(sender);
srvNo = srvNo +% 1;

}
}

reactiveclass Server (7) {
knownrebecs {}
statevars {}
msgsrv initial() {}
msgsrv service(Client rec){

rec.serviceComplete();
}

}

reactiveclass Client (2) {
knownrebecs {

LoadBalancer lb;
}
statevars {}
msgsrv initial(){

self.requestService():
}
msgsrv requestService(){

lb.request();
}
msgsrv serviceComplete(){

self.requestService();
}

}
main{

Client c1(lb1):(), c4(lb2):(),
c2(lb1):(), c5(lb2):(),
c3(lb1):(), c6(lb2):();

Server s1():(), s2():(),
s3():();

LoadBalancer lb1(s1,s2,s3):(),
lb2(s1,s2,s3):();

}

Fig. 12 Rebeca code for the load-balancer 6/3 (i.e., 6 clients and 3 servers)

Table 10 shows that a naive reduction behaves better than the on-the-fly reduction

heuristic for this example. This model has a star topology with the controller in the

middle. The only symmetry in this model is the symmetric internal behavior of the

controller. Therefore, the size of the automorphism group is equal to the number of

trains in the model, which is due to the rotary nature of the permutations used in intra-

rebec symmetry. The small size of the symmetry group makes it practically possible to

naively compare all automorphisms in order to compute a unique representative.

Load Balancer. In this problem (from [19]), there are some identical clients that need

some specific service, which is provided by a number of identical servers. Instead of

communicating directly with the servers, the clients send their requests to the load-

balancer entities. The responsibility of a load-balancer is to distribute the incoming

27

requests evenly among the servers. As a result, all servers receive an (almost) equal

number of service requests. The servers, after finishing the requested service, reply

directly to the clients. Only then, the clients may again ask for service. The size of this

model is shown by the number of clients and servers (written as c/s).

Figure 11 shows the known rebec relation of the 6/3 model. As shown here, the

clients are not introduced as known-rebecs of the servers. Instead, the servers receive,

as parameter to the service method, the ID of the client to which they should address

the reply. Furthermore, each load balancer knows all the three available servers. Due to

the symmetric behavior of the load balancers, their known rebecs are introduced using

a scalar set (see Figure 12), thus allowing us to use intra-rebec symmetry reduction in

this model.

This model is subject to both inter-rebec and intra-rebec symmetry. Even without

taking the symmetric behavior of the load balancers into account, we can freely permute

the clients in each side (based on inter-rebec symmetry). Using intra-rebec symmetry,

we can permute the servers, too; but only using rotary permutations. Theoretically,

intra-rebec symmetry should produce more reduction because the symmetry group is

bigger, but using on-the-fly detection, this is not always the case, as can be seen for

4/3 and 6/3 configurations. The reason is that the heuristics applied in finding the

representative states do not always compute a unique representative. Table 10 shows

that by the growth of the size of the automorphism group, the naive reduction gets

very slow, but at the same time very effective in terms of memory usage. For the 6/4

model, the on-the-fly techniques used up all the memory and could not finish, while

the naive method finished successfully after almost one and a half hours.

The application of partial order reduction is also quite effective in this model,

although only the initial message server of load balancer is safe. As can be seen in

Table 9, the only possibility for checking 6 clients and 4 servers is by combining partial

order and symmetry reduction techniques.

Two-phase commit. The last case study we modeled is the two-phase commit protocol

(2PC) for distributed databases. There are some number of similar nodes that may

start a transaction, which can in turn be committed if all nodes come to a consensus.

In our model, when a node nondeterministically decides to create a transaction, it

starts it on all cooperating nodes. The response from the cooperating nodes indicates

whether they commit or fail. There will be a consensus when the number of received

responses is equal to the expected value and they are all true.

In this model, partial order reduction is not applicable because none of the message

servers is safe. The communication graph of this model is a complete graph because

each node is able to communicate with all other nodes. In a model with n nodes, inter-

rebec symmetry can find only n automorphisms because of the order of the known-

rebecs. Intra-rebec symmetry relaxes this limitation. For a model with two nodes, the

results of inter-rebec and intra-rebec symmetry are the same because each node has

only one known rebec. With three nodes, we can see that intra-rebec symmetry has a

better performance (very close to optimal, i.e., the naive reduction). With 4 nodes, we

couldn’t model check this example.

28

reactiveclass Node(10) {
knownrebecs {

Node known[t:1..2];
}
statevars {

boolean receivedResults;
byte received;
byte expected;
boolean[t] cooperator;

}
msgsrv initial() {

self.createTransaction();
}
msgsrv startTransaction() {

sender.coResponse(?(true, false));
}
msgsrv coResponse(boolean result) {

received = received + 1;
if (!result)

receivedResults = false;
if (received == expected) {

self.createTransaction();
}

}

msgsrv createTransaction() {
if (?(true,false)) {

boolean result;
forEachValueOf(t)

cooperator[t] = false;
received = 0;
expected = 0;
receivedResults = true;
forEachValueOf(t) {

cooperator[t] = true;
expected = expected + 1;
known[t].startTransaction();

}
expected = expected + 1;
self.coResponse(?(true, false));

}
else {

self.createTransaction();
} } }
main {

Node node1(node2, node3):();
Node node2(node3, node1):();
Node node3(node1, node2):();

}

Fig. 13 Two-phase commit (2PC) protocol in Rebeca with three nodes

7 Conclusions and Future Work

Rebeca is an actor-based language for modeling and verification of reactive systems

where reactive objects can communicate only through asynchronous message passing.

Dynamic rebec creation and dynamic change of topology are also possible by using the

so called rebec variables. In this paper, we addressed the problem of model checking

Rebeca by applying symmetry and partial order reduction methods.

Considering the asynchrony in the model and the actor-based nature, we proposed

efficient symmetry detection and reduction techniques for Rebeca. We first proposed

inter-rebec symmetry, which can be applied without making any changes to the syntax

of Rebeca. The main advantage of this approach is that the modeler does not need

to be concerned about the reduction techniques being used. We then proposed intra-

rebec symmetry to be used when there are rebecs with internally symmetric behavior

(including but not limited to star topology). We added scalar sets to the syntax of

Rebeca to enable the modeler to show the symmetric behavior of these specific rebecs.

This is still simpler than the traditional approaches that require the modeler to exhibit

the symmetry in the whole system. We proved the soundness of our algorithms. Finally,

we proposed a heuristic algorithm that employs these symmetry detection techniques

in order to calculate the representative states on-the-fly.

We also applied static partial order reduction to Rebeca. Static partial order reduc-

tion, the most practical variant of the partial order reduction techniques, is based on

detecting safe actions statically by overviewing the model. We showed how we can de-

termine the safety of actions in a given Rebeca model. The special case of assignments

in the ‘initial’ message server, which was also helpful in the presented case studies,

makes partial order reduction a promising reduction technique for Rebeca. As shown

29

in the empirical results, the combination of partial order and symmetry can yield even

better reductions in model checking Rebeca models.

The Model checking Engine of Rebeca (called Modere) uses the automata theoretic

approach to model checking. Currently, specifications can be written in LTL and are

automatically translated to Büchi automata. Modere, besides symmetry and partial

order reduction techniques, takes advantage of different tricks to reduce memory usage,

for example by handling the search stack manually.

Other reduction techniques applied to Rebeca in theory include compositional veri-

fication [56] and slicing-based reductions [51]. In future, these techniques can be added

to Modere as well, and their combination with partial order and symmetry should be

studied. Another future direction is the generalization of our symmetry detection algo-

rithms to Promela. On the other hand, the ideas of scalar sets can be further studied for

detecting data symmetries in Rebeca. For example, by reusing the ideas of intra-rebec

symmetry, one may consider the application of scalar-sets in breaking the symmetry

of parameters when applicable.

Acknowledgement

The work of the first author is funded by the European IST-33826 STREP project on

Modeling and Analysis of Evolutionary Structures for Distributed Services (Credo).

The work of the second author is partially funded by the “Synthesis and Analysis of

Connector Components (SYANCO)” project (DN 62-613). The work of the third author

is partially supported by the project “The Equational Logic of Parallel Processes”

(nr. 060013021) of The Icelandic Research Fund.

We would like to thank the anonymous reviewers who helped us improve the quality

of the paper with their rightful comments.

A Proof of Theorem 1

The proof is given here for the more general case of intra-rebec symmetry. To obtain the
simpler proof for inter-rebec symmetry only (without the notion of scalar sets involved), one
can remove the parts related to scalar sets. We first prove some lemmas to make the proof of
the theorem easier.

Lemma 3 Given a permutation π, if a scalar expression evaluates to e in state s then it
evaluates to ψ(e) in π(s), where ψ is the rotary permutation for the cluster type associated to
the expression (cf. Def. 15).

Proof Considering the definition of scalar expressions in Section 3.3.2, there are three possi-
bilities:

a. If the expression is simply a scalar variable, it can either be a scalar state variable or a scalar
set used inside a forEachValueOf block. For scalar state variables, this is straightforward
from Def. 15. In the case of a forEachValueOf block, since the block is executed once per
each value of the scalar set, and the execution of different iterations are independent, we
can map iteration e in aj (in s) to iteration ψ(e) in aπ(j) (in π(s)).

b. A scalar expression can also be a scalar variable added to an integer z. The value z is
based only on data variables, so it is the same value in s and π(s). Suppose that ψ(x) is
defined as x +% c (cf. Def.13). If the scalar expression evaluates to e = x +% z in s, the
same expression in π(s) evaluates to ψ(x) +% z = x +% c +% z = ψ(x +% z) = ψ(e).

c. Finally, a scalar expression can be a nondeterministic choice from all values of the scalar
set denoting its type. We can again simply map the transition due to choosing e in state
s, to the transition due to choosing ψ(e) in π(s). ut

30

Lemma 4 Given a permutation π that preserves rebec types and some state s such that

a transition s
aj−→ t exists, a transition π(s)

aπ(j)−→ t′ exists and the same sub-actions can be
executed in aj and aπ(j).

Proof The fact that action aj is enabled at state s means that the message corresponding to
action a is at the queue head of rj , i.e., rj .m[1] = a. Therefore, in π(s), we have rπ(j).m[1] = a.

This means that there is a transition π(s)
aπ(j)−→ t′ in the model. Since π preserves the rebec

types, a refers to the same message server in both rj and rπ(j).
To show that the same sub-actions will be executed in aj and aπ(j), we analyze conditions

in Rebeca (which may be used inside message servers as guards for sub-actions). Conditions
can be categorized as follows, based on the type of the variables used:

1. Data variables: Since data variables hold similar values in s and π(s), any expression
(including logical expressions and conditions), based only on data variables, also evaluates
to the same value in s and π(s).

2. Rebec variables: Rebec variables (including the sender keyword) are only allowed to be
compared for equality or non equality with other rebec variables. Recall that if a rebec
variable holds the value x in s, in π(s) the corresponding variable evaluates to π(x). Since
π is a bijective function, the equality or non equality of two rebec variables is preserved
by π.

3. Scalar variables: Scalar expressions can only be compared for equality or non equality
with other scalar expressions. Since by applying π on s, the values of scalar expressions
are mapped using ψ, the equality or non equality result remains unchanged.

As a result, conditions in aj and aπ(j) evaluate to the same values, which implies that the
same sub-actions will be executed in these actions. ut

Theorem 1. If a permutation π preserves rebec types and π(s0) = s0, then π is an auto-
morphism of R.

Proof Consider the definition of an automorphism (Def. 7). We have π(s0) = s0; therefore, we

need to prove that if s
aj−→ t is a transition in T , there exists a transition π(s)

aπ(j)−→ π(t) in T ,
too. Instead, we show that for every reachable state t, π(t) is also reachable from s0 (and the
desired property of the theorem will also be proven). Throughout the proof, whenever we refer
to a cluster (cf. Section 3.3.2), we use ψ to denote the rotary permutation associated with that
cluster (according to Def. 15).

We use an induction on the length of the shortest path from s0 to s, denoted by l(s).
It is assumed among the hypotheses of the theorem that π(s0) = s0, thus, the basis of the
induction follows. Now, assume that for any state q with l(q) < k, the induction hypothesis
holds, that is π(q) is reachable from s0. To complete the proof, we have to show that for any
reachable t with l(t) = k, π(t) is also reachable.

Consider some state s with l(s) = k−1, such that s
aj−→ t. Since l(s) < k, π(s) is reachable.

Based on Lemma 4, a transition π(s)
aπ(j)−→ t′ exists, in which the same sub-actions as aj are

executed. In the following, by comparing the effect of executing the enabled sub-actions of aj
and aπ(j), we demonstrate that the variables in t′ hold the same values as in π(t). The possible
sub-actions to be considered are:

1. Message removal: The transition s
aj−→ t always contains this sub-action, which results in:

∀i>0 � rj .m[i] ← rj .m[i+ 1]
∀i>0 � rj .s[i] ← rj .s[i+ 1]
∀i>0 � ∀0<k≤hj � rj .pk[i] ← rj .pk[i+ 1]

By Definition 10, it is deduced that the transition π(s)
aπ(j)−→ t′ contains:

∀i>0 � rπ(j).m[i] ← rπ(j).m[i+ 1]
∀i>0 � rπ(j).s[i] ← rπ(j).s[i+ 1]
∀i>0 � ∀0<k≤hj � rπ(j).pk[i] ← rπ(j).pk[i+ 1]

2. Note that according to Lemma 3, if a scalar expression evaluates to e in s, it evaluates to
ψ(e) in π(s). There are three cases:

31

(a) Assignment to a data variable (say rj .vdi[e]): Assume that y represents the result of
evaluating an expression, which is only based on data variables in state s. The same
expression in π(s) evaluates to the same value y (because data variables retain their
values). Therefore, if aj assigns y to rj .vdi[e] then aπ(j) has a sub-action of the form
rπ(j).vdi[ψ(e)]← y.

(b) Assignment to a rebec variable (rj .vri[e]): In this case, the right hand side can only be
a rebec variable4. Assume that this variable contains the value x in state s. Therefore,
such an assignment in aj can be written as rj .vri[e] ← x. Considering Definition 10,
the same variable has the value π(x) in the state π(s). In other words, aπ(j) has a
sub-action of the form rπ(j).vri[ψ(e)]← π(x).

(c) Assignment to a scalar state variable: If it is assigned e by aj , based on lemma 3, the
value ψ(e) is assigned to the variable by aπ(j).

3. Send: Suppose that aj contains a send sub-action, in which the message m with parameters
n1, . . . , nhk is sent from rj to rk. This necessitates that k is the value of a rebec variable,
e.g. rj .vg [e]. According to Definition 15, rπ(j).vg [ψ(e)] contains the value π(k) in π(s).
Consequently, it is easy to see that the action aπ(j) results in the messagem with symmetric
parameters being sent from rπ(j) to rπ(k). By symmetric parameters, it is meant that one
of the following cases applies, based on the type of the parameter:

– data variable: the same value as in s is used.
– rebec variable: the permutation π is applied to the value in s.
– scalar expression: the proper rotary permutation ψ is applied to the parameter value

when applying π.

Assuming that ηi represents the symmetric value corresponding to ni, in t′ we have: for y
such that rπ(k).m[y] = ⊥ ∧ ∀0<z<yrπ(k).m[z] 6= ⊥) perform

rπ(k).m[y]← m, rπ(k).s[y]← π(j), and ∀1≤i≤hπ(k)
rπ(k).pi[y]← ηi.

4. Rebec creation: If aj results in the creation of a rebec with the new index v, the result of
the execution of aπ(j) would be the creation of a rebec with the new index, say w. We only
need to extend π to include the pair (v, w), i.e. π(v) = w. Placing the initial message
and its parameters at the queue head of the new rebec, is just the same as sending the
initial message.

By analyzing the values of the variables in state t′, it can be deduced that t′ = π(t). So,

we have both shown that π(t) exists, and π(s)
aπ(j)−→ π(t) ∈ T . ut

B Proof of Theorem 2

Theorem 2. The set of all permutations satisfying Theorem 1 form a group.

Proof The conditions in Theorem 1 are preserving rebec types, known rebec relation and the
symmetry of the parameters to the initial message server. The identity permutation trivially
satisfies these conditions.

We first show that the set of permutations satisfying these conditions is closed under
composition of permutations. Assume that π and φ are in the set.

– Since π and φ preserve rebec types, it is easy to see that for any i, the rebecs ri, rπ(i) and
rφ◦π(i) have the same type, therefore, φ ◦ π(i) preserves rebec types.

– We have: φ◦π(Ki) = φ(π(Ki)) = φ(Kπ(i)) = Kφ(π(i)) = Kφ◦π(i), therefore, φ◦π preserves
known rebec relation.

– If p is a rebec parameter to the initial message of ri, the same parameter for rπ(i) and
rφ◦π(i) has the value π(p) and φ ◦ π(p), respectively. In the case of a data parameter, it
has the same value.

It remains to show that the set contains the inverse of all its elements. Assume that π is
in the set, and for a given i assume that j = π−1(i).

– Since π preserve the rebec types, rj and rπ(j) have the same type, which are respectively

equivalent to rπ−1(i) and ri and thus π−1 preserves rebec types.

4 It can also be the sender keyword, which represents the head of the sender queue, and is
also a rebec variable.

32

– We know that π(Kj) = Kπ(j) = Ki. Hence, applying π−1 to the elements of Ki results in

Kj . Therefore, we have π−1(Ki) = Kj = Kπ−1(i).

– The parameters of ri and rj are also trivially symmetric.

This proves the theorem for inter-rebec symmetry and simple known rebecs. We chose this for
a simpler presentation, but the proof can be easily adapted to address grouped known rebecs
by adding the rotary permutations when necessary. ut

C Proof of Theorem 3

In this section, we study the safety of different sub-actions (cf. Section 2) and actions in
Rebeca. In the following, note that actions that only change the local variables of a rebec, like
assignments, are globally independent.

Lemma 5 Message removal is always safe.

Proof The ‘message removal’ sub-action means shifting queue variables (of the current rebec)
toward the queue head. This sub-action is invisible, because a specification is not allowed to
use queue variables. It is globally independent, because it does not affect the variables of other
rebecs. ut

Lemma 6 Assignments in the initial message server and assignments to variables that are
not included in the specification are safe.

Proof An ‘assignment’ changes the value of a local variable and has no effect on the variables
of other rebecs, so all assignments are globally independent. As a result, an assignment is safe
if it is invisible. An assignment in the initial message server is always invisible, because all
variables are just being initialized. In other message servers, if the variable on the left hand side
of an assignment is not used in the requested specification, that assignment is also invisible,
and hence safe. ut

Lemma 7 Sending a message from ri to rj is safe if ri is the exclusive sender to rj (similar
to the idea of exclusive send/receive constructs, xs and xr, in Promela).

Proof Sending a message can be considered as placing that message at the queue tail of the
receiving rebec. Specifications are not allowed to use queue variables, so all ‘send’ operations
are invisible. Therefore, safety of ‘sends’ depends on their being globally independent. But
since each ‘send’ implicitly changes the queue tail, different ‘sends’ to the same queue are
always interdependent. To obtain global independence (i.e., independence from actions from
other rebecs), all ‘sends’ to a given queue must be performed by one rebec. This condition
is achieved if ri is the exclusive sender to rj . In that case, ‘sends’ by ri to rj are globally
independent and hence safe. ut

Theorem 3. If a message server is only composed of safe assignment and safe send state-
ments, its corresponding action is safe.

Proof The action corresponding to a message server includes an implicit message removal sub-
action, which is shown to be safe. Therefore, the safety of an action depends on the safety of
its explicit sub-actions. It is straightforward to see that an action composed of (the sequential
execution of) only safe (explicit) sub-actions, is itself safe. ut

References

1. Abdulla, P.A., Jonsson, B., Kindahl, M., Peled, D.: A general approach to partial order
reductions in symbolic verification (extended abstract). In: Hu and Vardi [37], pp. 379–390

2. Agha, G.: The structure and semantics of actor languages. In: Proc. the REX Workshop,
pp. 1–59 (1990)

33

3. Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order re-
duction in symbolic state space exploration. In: O. Grumberg (ed.) Proc. Computer Aided
Verification, 9th International Conference, CAV ’97, Haifa, Israel, June 22-25, LNCS, vol.
1254, pp. 340–351. Springer (1997)

4. Behjati, R., Sabouri, H., Razavi, N., Sirjani, M.: An effective approach for model checking
SystemC designs. In: Proc. International Conference on Application of Concurrency to
System Design (ACSD’08), pp. 56–61 (2008)

5. Bosnacki, D.: A light-weight algorithm for model checking with symmetry reduction and
weak fairness. In: T. Ball, S.K. Rajamani (eds.) Proc. Model Checking Software, 10th
International SPIN Workshop. Portland, OR, USA, May 9-10, LNCS, vol. 2648, pp. 89–
103. Springer (2003)

6. Bosnacki, D., Dams, D., Holenderski, L.: A heuristic for symmetry reductions with
scalarsets. In: Proceedings of the International Symposium of Formal Methods Europe
(FM’01), Lecture Notes in Computer Science, vol. 2021, pp. 518–533. Springer (2001)

7. Bosnacki, D., Dams, D., Holenderski, L.: Symmetric SPIN. International Journal on Soft-
ware Tools for Technology Transfer (STTT) 4(1), 92–106 (2002)

8. Bosnacki, D., Donaldson, A.F., Leuschel, M., Massart, T.: Efficient approximate verifica-
tion of promela models via symmetry markers. In: Proceedings of the 5th International
Symposium on Automated Technology for Verification and Analysis (ATVA’07), Lecture
Notes in Computer Science, vol. 4762, pp. 300–315. Springer (2007)

9. Bosnacki, D., Edelkamp, S. (eds.): Proc. Model Checking Software, 14th International
SPIN Workshop, Berlin, Germany, July 1-3, LNCS, vol. 4595. Springer (2007)

10. Chang, P.H., Agha, G.: Supporting reconfigurable object distribution for customized web
applications. In: The 22nd Annual ACM Symposium on Applied Computing (SAC), pp.
1286–1292 (2007)

11. Chang, P.H., Agha, G.: Towards context-aware web applications. In: 7th IFIP International
Conference on Distributed Applications and Interoperable Systems (DAIS), pp. 239–252
(2007)

12. Cheong, E., Lee, E.A., Zhao, Y.: Viptos: a graphical development and simulation environ-
ment for tinyos-based wireless sensor networks. In: Proceedings of the 3rd international
conference on Embedded networked sensor systems, SenSys 2005, pp. 302–302 (2005)

13. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model checking.
In: Hu and Vardi [37], pp. 147–158

14. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge, MA,
USA (1999)

15. Clarke, E.M., Jha, S., Enders, R., Filkorn, T.: Exploiting symmetry in temporal logic
model checking. Formal Methods in System Design 9(1/2), 77–104 (1996)

16. Clarke, E.M., Kurshan, R.P. (eds.): Proc. Computer Aided Verification, 2nd International
Workshop, CAV ’90, New Brunswick, NJ, USA, June 18-21, LNCS, vol. 531. Springer
(1990)

17. Donaldson, A.F., Miller, A.: Automatic symmetry detection for model checking using
computational group theory. In: Proceedings of the International Symposium of Formal
Methods Europe (FM’05), Lecture Notes in Computer Science, vol. 3582, pp. 481–496.
Springer (2005)

18. Donaldson, A.F., Miller, A.: Extending symmetry reduction techniques to a realistic model
of computation. Electronic Notes in Theoretical Computer Science 185, 63–76 (2007)

19. Donaldson, A.F., Miller, A., Calder, M.: Finding symmetry in models of concurrent systems
by static channel diagram analysis. Electronic Notes in Theoretical Computer Science
128(6), 161–177 (2005)

20. Donaldson, A.F., Miller, A., Calder, M.: Spin-to-Grape: A tool for analysing symmetry in
Promela models. Electronic Notes in Theoretical Computer Science 139(1), 3–23 (2005)

21. Emerson, E., Sistla, A.: Symmetry and model checking. Formal Methods in System Design
9(1–2), 105–131 (1996)

22. Emerson, E.A., Jha, S., Peled, D.: Combining partial order and symmetry reductions. In:
E. Brinksma (ed.) Proc. Tools and Algorithms for Construction and Analysis of Systems,
Third International Workshop, TACAS ’97, Enschede, The Netherlands, April 2-4, LNCS,
vol. 1217, pp. 19–34. Springer (1997)

23. Emerson, E.A., Sistla, A.P.: Utilizing symmetry when model checking under fairness as-
sumptions: An automata-theoretic approach. In: P. Wolper (ed.) Proc. Computer Aided
Verification, 7th International Conference, Liege, Belgium, July, 3-5, LNCS, vol. 939, pp.
309–324. Springer (1995)

34

24. Emerson, E.A., Wahl, T.: On combining symmetry reduction and symbolic representation
for efficient model checking. In: D. Geist, E. Tronci (eds.) Proc. the 12th IFIP WG 10.5
Advanced Research Working Conference, CHARME ’03, LNCS, vol. 2860, pp. 216–230.
Springer (2003)

25. Evangelista, S., Pajault, C.: Some solutions to the ignoring problem. In: Bosnacki and
Edelkamp [9], pp. 76–94

26. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software.
In: Proc. the 32nd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 110–121. ACM Press, New York, NY, USA (2005)

27. Godefroid, P.: Using partial orders to improve automatic verification methods. In: Clarke
and Kurshan [16], pp. 176–185

28. Gueta, G., Flanagan, C., Yahav, E., Sagiv, M.: Cartesian partial-order reduction. In:
Bosnacki and Edelkamp [9], pp. 95–112

29. Hendriks, M., Behrmann, G., Larsen, K.G., Niebert, P., Vaandrager, F.W.: Adding sym-
metry reduction to UPPAAL. In: K.G. Larsen, P. Niebert (eds.) Proc. Formal Modeling
and Analysis of Timed Systems: First International Workshop, FORMATS ’03, Marseille,
France, September 6-7, LNCS, vol. 2791, pp. 46–59. Springer (2003)

30. Herstein, I.: Topics in Algebra. Xerox (1964)
31. Hewitt, C.: Procedural embedding of knowledge in planner. In: Proc. the 2nd International

Joint Conference on Artificial Intelligence, pp. 167–184 (1971)
32. Hewitt, C.: What is commitment? physical, organizational, and social (revised). In: Pro-

ceedings of Coordination, Organizations, Institutions, and Norms in Agent Systems II,
Lecture Notes in Computer Science, pp. 293–307. Springer (2007)

33. Hojjat, H., Nokhost, H., Sirjani, M.: Formal verification of the IEEE 802.1D spanning
tree protocol using extended Rebeca. In: Proc. the First International Conference on
Fundamentals of Software Engineering (FSEN’05), ENTCS, vol. 159, pp. 139–159. Elsevier
(2006)

34. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engineering
23(5), 279–295 (1997)

35. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: D. Hogrefe, S. Leue
(eds.) Proc. the 7th IFIP WG6.1 International Conference on Formal Description Tech-
niques, vol. 6, pp. 197–211. Chapman & Hall (1995)

36. Holzmann, G.J., Peled, D., Yannakakis, M.: On nested depth first search. In: Proc. the
Second SPIN Workshop, pp. 23–32. American Mathematical Society (1996)

37. Hu, A.J., Vardi, M.Y. (eds.): Proc. Computer Aided Verification, 10th International Con-
ference, CAV ’98, Vancouver, BC, Canada, June 28 - July 2, LNCS, vol. 1427. Springer
(1998)

38. Iosif, R.: Symmetry reduction criteria for software model checking. In: D. Bosnacki, S. Leue
(eds.) Proc. Model Checking of Software, 9th International SPIN Workshop, Grenoble,
France, April 11-13, LNCS, vol. 2318, pp. 22–41. Springer (2002)

39. Ip, C., Dill, D.: Better verification through symmetry. Formal methods in system design
9(1-2), 41–75 (1996)

40. Ip, C.N.: State reduction methods for automatic formal verification. Ph.D. thesis, Depart-
ment of Computer Science, Stanford University (1996)

41. Jaghoori, M.M., Movaghar, A., Sirjani, M.: Modere: the model-checking engine of Rebeca.
In: H. Haddad (ed.) Proc. ACM Symposium on Applied Computing (SAC ’06), Dijon,
France, April 23-27, pp. 1810–1815. ACM (2006)

42. Jaghoori, M.M., Sirjani, M., Mousavi, M.R., Movaghar, A.: Efficient symmetry reduction
for an actor-based model. In: G. Chakraborty (ed.) Proc. Distributed Computing and
Internet Technology, Second International Conference, ICDCIT ’05, Bhubaneswar, India,
December 22-24, LNCS, vol. 3816, pp. 494–507. Springer (2005)

43. Kakoee, M.R., Shojaei, H., Ghasemzadeh, H., Sirjani, M., Navabi, Z.: A new approach for
design and verification of transaction level models. In: Proc. IEEE International Sympo-
sium on Circuit and Sytems (ISCAS ’07), pp. 3760–3763 (2007)

44. Kurshan, R.P., Levin, V., Minea, M., Peled, D., Yenigün, H.: Static partial order reduction.
In: B. Steffen (ed.) Proc. Tools and Algorithms for Construction and Analysis of Systems,
4th International Conference, TACAS ’98, Lisbon, Portugal, March 28 - April 4, LNCS,
vol. 1384, pp. 345–357. Springer (1998)

45. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded hardware
and software systems. Journal of Circuits, Systems, and Computers 12(3), 231–260 (2003)

35

46. Leuschel, M., Massart, T.: Efficient approximate verification of B via symmetry markers.
In: Proc. of the International Symmetry Conference, Edinburgh, UK, pp. 71–85 (2007)

47. McMillan, K.: Symbolic Model Checking. Kluwer Academic, Boston, MA, USA (1993)
48. Miller, A., Donaldson, A.F., Calder, M.: Symmetry in temporal logic model checking.

ACM Comput. Surv. 38(3) (2006)
49. Nalumasu, R., Gopalakrishnan, G.: An efficient partial order reduction algorithm with

an alternate proviso implementation. Formal Methods in System Design 20(3), 231–247
(2002)

50. Peled, D.: All from one, one for all: on model checking using representatives. In: C. Cour-
coubetis (ed.) CAV, LNCS, vol. 697, pp. 409–423. Springer (1993)

51. Saboori, H., Sirjani, M.: Slicing-based reductions for Rebeca. In: Proc. FACS’08, ENTCS,
pp. 57–71. Elsevier (2008). To be published

52. Säıdi, H.: Discovering symmetries. In: 11th International Workshop on Formal Methods:
Applications and Technology (FMICS/PDMC’06), LNCS, vol. 4346, pp. 67–83. Springer
(2006)

53. Schneider, S.: The B-Method: An Introduction. Palgrave (2001)
54. Shahriari, H.R., Makarem, M.S., Sirjani, M., Jalili, R., Movaghar, A.: Modeling and ver-

ification of complex network attacks using an actor-based language. In: Proc. the 11th
Annual International CSI Computer Conference, pp. 152 – 158 (2006)

55. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Modeling and verification of reactive
systems using Rebeca. Fundamamenta Informaticae 63(4), 385–410 (2004)

56. Sirjani, M., Movaghar, A., Shali, A., de Boer, F.S.: Model checking, automated abstraction
and compositional verification of Rebeca models. Journal of Universal Computer Science
(JUCS) 11(6), 1054–1082 (2005)

57. Sirjani, M., SeyedRazi, H., Movaghar, A., Jaghoori, M.M., Forghanizadeh, S., Mojdeh, M.:
Model checking CSMA/CD protocol using an actor-based language. WSEAS Transactions
on Circuit and Systems 3(4), 1052–1057 (2004)

58. Sirjani, M., Shali, A., Jaghoori, M.M., Iravanchi, H., Movaghar, A.: A front-end tool for
automated abstraction and modular verification of actor-based models. In: Proc. Inter-
national Conference on Application of Concurrency to System Design (ACSD ’04), pp.
145–150. IEEE Computer Society (2004)

59. Sistla, A.P., Gyuris, V., Emerson, E.A.: SMC: a symmetry-based model checker for ver-
ification of safety and liveness properties. ACM Transactions on Software Engineering
Methodology 9(2), 133–166 (2000)

60. Valmari, A.: A stubborn attack on state explosion. In: Clarke and Kurshan [16], pp.
156–165

61. Vardi, M.Y.: Automata-theoretic model checking revisited. In: Proc. of the 8th VMCAI,
LNAI 4349, pp. 137–150 (2007)

62. Vardi, M.Y., Wolper, P.: An automata theoretic approach to automatic program verifica-
tion. In: D. Kozen (ed.) Proc. Symposium on Logic in Computer Science, pp. 322–331.
IEEE Computer Society (1986)

View publication statsView publication stats

https://www.researchgate.net/publication/220197764

