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Abstract

SystemC is an IEEE standard system-level language used in hardware/software co-
design and has been widely adopted in the industry. This paper describes a formal
approach to verifying SystemC designs by providing a mapping to the process algebra
mCRL2. Our mapping formalizes both the simulation semantics as well as exhaustive
state-space exploration of SystemC designs. By exploiting the existing reduction tech-
niques of mCRL2 and also its model-checking tools, we efficiently locate the race con-
ditions in a system and resolve them. A tool is implemented to automatically perform
the proposed mapping. This mapping and the implemented tool enabled us to exploit
process-algebraic verification techniques to analyze a number of case-studies, including
the formal analysis of a single-cycle and a pipelined MIPS processor specified in SystemC.

1 Introduction

A growing trend in the microelectronics field is to integrate a complete and sophisticated
system on a single chip (System on Chip). One of the most challenging requisites of the
SoC approach is to define a description language which is capable of specifying the whole
design at a higher level of abstraction. At this level of abstraction, usually known as system
level design [18], the main concern is to simultaneously and homogeneously describe both
hardware and software subsystems. Among the different languages for system level design,
SystemC has become very popular and widely adopted by several leading companies in this
field. Moreover, SystemC 2.1 has been standardized as IEEE standard 1666 [1].

SystemC is a library of classes and macros implemented in C++ that are to be used in
the system level specification. As SystemC is an add-on to the core language, all the features



of C++ are available in modeling but the designer has to adhere to the particular style given
by SystemC. The set of data types in SystemC contains the necessary elements for system
level designs, such as bits, bit vectors, four state logic (low, high, undefined, tri-state), and
data types for fixed-point arithmetic of arbitrary size. The notion of concurrency is realized
by introducing processes. Concurrent processes are scheduled in a non-preemptive fashion.
A process may suspend itself on a particular event, after the occurrence of which it will be
ready to resume. The sensitivity of processes to the events can be static or dynamic. The
communication of different components is represented in SystemC by the concepts of channels
and ports.

One of the goals of SystemC is to provide verification at higher levels of abstraction.
Several attempts have been made in this direction [11, 17, 19, 20, 21, 28] but this aspect of
the language is still in its early stages [30].

In this paper, we describe a mapping from SystemC programs into mCRL2 [13], a process
algebra enhanced with data types, which provides a common framework for analyzing and
verifying systems. By translating the SystemC code to mCRL2 we can carry out various kinds
of analysis using its backbone toolset. First of all the p-calculus model-checker of mCRL2
makes it possible to verify the safety and liveness properties of the system. Particularly using
model-checking we can ensure the absence of race conditions. For this purpose, we check a
temporal formula to the effect that no two conflicting assignments to a signal or variable are
performed (in two paths) during a delta cycle. To prove that the race conditions do not exist
in the model we can alternatively use the confluence checker tool. We hide all the irrelevant
actions which do not have an impact on the value of the desired output. Under this setting,
we show the absence of race condition by proving that that the system is confluent.

We implemented a tool that made this translation automatic. The translation and the
implemented tool enabled us to verify a number of case studies. These case studies range
from simple specifications of combinatorial and sequential circuits (e.g., adders, flip-flops) to
a simplified single-cycle (comprising about 1000 lines of SystemC code) MIPS processor to a
rather complicated pipelined MIPS processor (comprising 2500 lines of SystemC code).
Related Work. The authors of [11] propose a model-checking technique for a subset of
SystemC, comprising fundamental constructs of sequential circuits. Our work improves upon
[11] by treating a much larger subset of SystemC and supporting modal p-calculus as the
specification language.

In [17], a translation from SystemC to an extension of Petri Nets is defined. Their trans-
lation requires an upper bound on the size of dynamic constructs, which is not required in
our approach. However, [17] supports quantitative time, which we do not support. We plan
to extend our translation with quantitative time since it can be modeled using mCRL2.

In [19], SystemC programs are partitioned into software and hardware and are verified
separately. This separation is not necessary in our case, since we try to transform both
hardware and software parts into mCRL2 at the same time.

In [20] a special process algebra is introduced for SystemC designs. This process algebra
is used only for formalizing SystemC. For verification, the code is translated into Promela,
the input language of Spin [16]. In our approach, we benefit from the existing tool-set for
mCRL2 and thus, provide a single framework both for formal semantics and formal verification
of SystemC.

The authors of [21] have described a toolbox, called LusSy, for analyzing the transaction
level models written in SystemC. An automaton-based intermediate language (with guards,
messages and assignments on transitions) is used between SystemC and the language of the



back-end verifier tool. This language is also used for describing the scheduler. One of the
goals of LusSy is that “the user should not have to learn a timed logic”, so the properties
are expressed in terms of assertions. Although this makes the verification of safety problems
more convenient, this technique has its limitations when it comes to liveness properties. To
overcome the limitations, LusSy additionally supports some general liveness properties such
as “a process cannot terminate”. In comparison with [21], our approach has the advantage
of allowing for modal p-calculus for property specification which is more expressive and can
code other (less expressive) temporal logics such as PSL as syntactic sugar. In [28], the
intermediate language of LusSy is translated into Promela, the input language of SPIN. We
are not aware of an implementation of this translation so that we can compare its performance
with our implementation.

In [24], the authors present an approach for model-driven testing of SystemC designs.
For this purpose, the modeler formally specifies the intended specification of the system in
the AsmL [9]. The result is accompanied with another AsmL description, which explains the
discrete event semantics of the simulator. Spec Explorer [7] uses the two AsmL code to gen-
erate test cases for the system. The conformance of the test cases with the implementation is
checked subsequently. As the back-end tool supports C# programming language, an interface
is written between C# and the actual SystemC code. [24] formalizes the scheduler in AsmL
and the rest of SystemC constructs are directly called through a wrapper. In our approach,
however, we formalize the whole design in the process-algebraic formalism. Also, [24] focuses
on testing while in this paper, we focus on formal verification. Similar to [24], in [14], a trans-
lation from SystemC to AsmlL is given and PSL properties are also embedded in the same
formalism as monitors. Then the combination can be both simulated and model-checked.

In [3], a translation from SystemC to the object-based language Rebeca [25] is defined. In
order to encode SystemC constructs efficiently, the Rebeca language had to be extended (in
terms of an intermediate language) with global variables and wait statement. The generality
of process algebraic constructs in mCRL2 allowed us to do without any extension. Further-
more, we could apply existing process-algebraic analysis techniques to SystemC designs as we
illustrate in this paper, whereas in [3] a customized model checking engine is proposed.

2 Background

2.1 SystemC

In this section, we give an overview of the fundamental structures in SystemC. The basic
building block of SystemC programs are modules (SC.MODULE). The actual behavior of a
module is performed by the SystemC processes, running concurrently in a module. There
are essentially three types of processes in SystemC: methods, threads and cthreads. In the
initialization stage, all the defined processes in the program are executed once. The method
processes cannot be suspended during their execution. So, after being enabled, a method
executes its body from beginning to end. A method is reactivated again whenever an event
occurs in the system, to which the method is sensitive. Threads are activated only once, and
it is their own duty to suspend themselves on the desired points, by calling wait(). The
simulator has to implicitly save the internal state of threads, in order to use them when they
resume. Cthreads or clocked threads, are special kinds of threads, which can be sensitive to
only one edge of one clock in their sensitivity list of signals.

There is a scheduler in the model to manage the concurrent execution of the processes.



SC_MODULE (dff) {

sc_in<bool> din; // data input port
sc_in<bool> clk; // clock input port
sc_out<bool> dout; // data output port
sc_event e; // communication event
sc_int<16> num; // counting the changes in din
SC_CTOR(dff) { // constructor

num = 0;

SC_METHOD (get_input); //create a method

sensitive_pos << clk; //static sensitivity

SC_THREAD (count) ; //create a thread
}

void get_input() {
dout.write(din.read()); //change output
e.notify(SC_ZERO_TIME) ;

void count() {
while( true) {
wait( e); // wait on e
num = num + 1; } // increasing num
}
b

Figure 1: SystemC module for DFF

The logic of the scheduler is determined by the simulator. Processes are non-preemptive,
which means that a process, in its turn, runs a piece of code and voluntarily releases the
control. There are two different cases by which a process releases the control: when it
executes a wait statement, or when it terminates. In Figure 1, a simple SystemC model
with two processes, namely, get_input and count, is given for a D-type Flip-Flop. The first
process, i.e., get_input, is a method, and the second one, count, is a thread which has a wait
statement on an event.

Each process can be made sensitive to a set of events. When a process, which is sensitive to
a particular event, is suspended, it will be activated again as soon as that event occurs. This
mechanism helps synchronize different processes, and also it is useful in creating responsive
elements that react to the events in their environment. Sensitivity can be static or dynamic.
In static sensitivity the processes are made sensitive to a fixed set of signals at their declaration
by the keyword sensitive. Whenever a change is spotted in a signal, the corresponding event
is generated so that all the sensitive processes to that signal can be activated. Each process
can be made sensitive to the positive edge of a signal (.pos()), the negative edge (.neg()) or
both. For example get_input is sensitive to the positive edge of c1k. Whenever the value of
clk has a transition from false to true, an event is generated automatically by the system
so that if get_input is suspended, it will continue its execution. In dynamic sensitivity the
process explicitly mentions at the waiting point the event for which it is waiting. In Figure
1, count tells the scheduler that it is waiting for the event e. So, whenever another process
explicitly triggers the event by calling the method notify on e, count will be again switched
to a ready process.

The communication mechanism is based on two concepts: ports and channels. A port is a
kind of pointer to a channel. For example, clk is an input and dout is an output port. Usually



when the modules are instantiated, channels are used to interconnect the modules together.
Signal channel is a special kind of channel, which does not change its value immediately when
a new value is written to it. When all the ready processes are evaluated, the simulation enters
a new step called the update phase. In this phase the old values of the channels are updated,
the contentions are resolved and the suspended processes that have to be awaked are notified.
The evaluate-update round is usually known as the delta cycle.

Simulation Semantics. The formal semantics of simulation in SystemC is described us-
ing distributed abstract state machines in [22]. Here we overview the simple phases in the
simulation kernel. These are the steps in the simulation of the SystemC designs [23]:

1. Initialize: Execute all processes to initialize the system.

2. Fuvaluate: Execute a process that is ready to run. Iterate until all ready processes are
executed. Events occurring during the execution could add new processes to the ready
list.

3. Update: Execute any update calls made during step 2. This step is used by the signal
channels as a synchronization point. When a signal is modified during the program
execution, its current value does not change. The new value can only be observed in
the update phase. The contentions are also resolved.

4. Notify: 1If delayed notifications are pending, determine the list of ready processes and
proceed to Evaluate phase (step 2).

There is a further step in the original algorithm to advance the time and perform time-
notification, but we ignore quantitative time here. Each evaluate-update phase is called a
delta cycle in terms of simulation semantics. Notice that the number of delta cycles can
be more than one, since in the evaluate phase some events (such as notifying an event or
changing a signal) can occur that awake suspended processes. Immediate notifications are
the ones that deliver their events as soon as they occur. In contrast, delta delayed notifica-
tions deliver their events in the next delta cycle. The syntax for delta cycle notification is
notify(SC_ZERO_TIME).

Figure 2.1 shows the transition diagram of the simulation kernel, which is inspired from
[4].

2.2 mCRL2

mCRL2 is a successor to pCRL, and extends it by including features such as true concurrency
(in terms of multi-actions), real time, higher-order functions and concrete data types. uCRL,
in turn, extends the Algebra of Communicating Processes (ACP) [2] with abstract data types.
We refer to [13] for a more elaborate description of mCRL2 features. The choice of mCRL2
as our formal language is motivated by the existence of a rich set of abstract data types as
first-class entities in mCRL2. The strong tool-set also provides a powerful mechanism for
analyzing specifications. The summarized syntax of mCRL2 processes is given below.

pu=a(dy,....dn) [ 7|0 |ptp|pp|plp|7(p) |
ou(p) | Vv(p) | Tcp) | Xapplc—pop

A basic action a of a process may have a number of arguments dy, . . ., d,. These arguments
correspond to the data elements. Action 7 (which does not take any parameter) denotes the



sc_main() systemcC Simulation Kernel

.notify()
Elaborate while immediate
processes

ready

.notify(t)
timed

Figure 2: SystemC Simulation kernel ([4])

internal (unobservable) action. Process ¢ denotes the deadlocked process in which no further
transition is possible. Non-deterministic choice between two processes is denoted by the “4”
operator. Processes can be composed sequentially and in parallel by means of “” and “||”,
respectively. The abstraction operator 77(p) renames actions in [ into 7 and thus makes them
unobservable. To enforce synchronization, the encapsulation operator 0 (p) specifies the set
of actions H which are not allowed to occur. Conversely, the allow operator Vi (p) indicates
the only actions that are allowed to occur. To show possible communications in a system and
the resulting actions, communication operator I'c(p) is used. The elements of set C' are of
the form a; | ag | -+ | ap — ¢ (for n > 2), which intuitively means that action ¢ is the result
of the multi-party synchronization of actions ai, as, ..., and a,.

There are a number of built-in data types in mCRL2, such as integers, reals, lists, sets
and functions which are quite useful for our implementation.

An mCRL2 specification contains a set of definitions; each of them are prefixed with a
keyword determining their purpose. By a sort definition one can define a new data type.
The constructors of a data type are given by cons (for constructor) and struct declarations.
Constructors defined using struct get their equality and inequality axioms generated for free.
A data type can equipped with maps, which are user-defined mappings for manipulating data.
A set of equations (eqn) can be defined to specify the definition of a mapping. A new process
is declared by proc. The initial process is designated with keyword init.

The mCRL2 tool-set contains tools for state space generation, reduction, simulation, vi-
sualization and model-checking. Furthermore, it can be smoothly integrated with the CADP
tool-set [8].

3 Kernel Data Types

There is a generic pattern of specification which is repeated in each translation from SystemC
to mCRL2. This pattern concerns the definition of common data types, e.g., for variable
names, signal names, process names, bits and vectors, and the kernel processes for the simu-
lation semantics of SystemC. In this section, we illustrate the generic definition of data types
and the simulation kernel processes of SystemC are described in Section 4.



The set of data types that are commonly used in all translations from SystemC to mCRL2
are summarized in Figure 3. For the sake of brevity, we only describe the data type mappings
and do not present the specification of the equations manipulating the data types here. The
interested reader may find the complete implementation in [27]. The first part of the defini-
tions, given in Figure 3 - Part 1, represents the identifiers and names used in the program.
These identifiers and names are extracted from the program code by the tool. Six sorts are
defined for this purpose, ID: the unique identifers which are assigned to processes (cf. Section
5), SigName: the names of the signals used in the program, PortName: different names which
are used as ports, VarName: the names of variables, EviName: the names of events, and
ModuleIns: module instance names.

We assign a natural number to each delta cycle, which helps us differentiate delta cycles;
this number is called round in our model. So, if we are in the delta cycle i, a process which is
ready in the delta cycle i + 1 cannot be executed at the moment. Round is defined in Figure
3 - Part 2.

Following the above-explained definitions, there are three groups of data type definitions:
variables, signals and process information. In Figure 3 - Part 3, a list of variables (VarList)
is defined, which offers two maps for changing and finding the value of a variable. For each
variable, other than its name, value, and bit width, a scope discriminator is also designated
to distinguish the variables in different scopes. A scope of a variable is the place where the
variable is defined, and can be local to a process or field of a module.

Generic data type definitions for signals are given in Figure 3 - Part 4. There are two
values for each signal, one for the current and one for its new value. The map changeSig can be
used to give a new value to a signal. This map is used in translating the regular assignments
to signals in the SystemC code. The signal does not get the new value immediately after
this call, only by calling updateSig the new value is copied to the current one. This is due to
the special treatment of signal modifications in SystemC. The only use of updateSig is in the
update phase, where the signals get their new values. The map findChangedSig returns the
signals of which the current and the new values are different.

In Figure 3 - Part 5, a list data type (ProcQueue) for process-related information is declared.
For each process in this list, three facts are recorded: ID, status and the sensitivity list. ID
is a unique identifier, which is used to differentiate between processes. The status can be
finished, ready, or suspended. Ready has an argument which shows the current round. For
the sensitivity to a signal, it should also be specified if the sensitivity is to a positive edge, a
negative edge or to any changes in the signal. There are several maps declared for changing
the status of a process, notifying an event, and gathering information from the queue.

4 Kernel Processes

In this section, we present the generic mCRL2 processes which implement the simulation
semantics of SystemC. A summary of these processes is given in Figure 4. The first three
processes which are prefixed with “Handler” are containers for the variables, signals and
process information lists. The lists are kept in the arguments of the process. Apart from
usual actions for retrieving and setting the values from/to the list, the following actions are
provided by processes. In the variable handler, the action r_changeVar is used for changing
the value of a variable. SigHandler offers two actions for changing and updating the values of
a signal: r_changeSig and r_updateSig. There are actions for changing the status of a process



%— Part 1 - Program definitions

sort
ID = struct - - - ; % process names
SigName = struct -- - ; % signal names
PortName = struct --- ; % port names
EvnName = struct --- ; % event names
VarName = struct --- ; % variable names
Modulelns = struct --- ; % module names

%— Part 2 - Rounds
sort Rnd = Nat;

%— Part 3 - Variables

sort
Scope = struct local(getProc:ID)| field(getModule:Modulelns);
Value = struct boolean(getValBool:Bool)?isBool|
integer(getVallnt:Int,getIntSize:Nat)) ?isInt|
array(getValArray:Array)?isArray|NullVal?isNull;
Var = struct variable(getVarName:VarName, getVal:Value,getScope:Scope);
VarList = List(Var);

map
changeVar:VarList X Var — VarList;
findVarVal:VarList x VarName X Scope — Value;

%— Part 4 - Signals

sort
Sig = struct sig(getName:SigName,
getCurVal:Value,getNewVal:Value);
SigList = List(Sig);

map
findCurSigVal:SigList x SigName — Value;
changeSig:SigList X SigName X Value — SigList;
updateSig:SigList x SigName x Value — SigList;
findChangedSigs:SigList — SigList;

%— Part 5 - SystemC process information

sort
Evn = struct event(getEvnName:EvnName,
getModulelns:Modulelns);
Stat = struct finished?is_finished | ready(getRnd:Rnd)
?is_ready | suspended(getEvn:Evn)?is_suspended;
SensType = struct both | none | negedge | posedge;
SigSens = struct sigsens(getName:SigName,get Type:SensType);
SigSensList = List(SigSens);
ProcInf = struct procInf(getID:ID,getStat:Stat,getSensitiveList:SigSensList)|Nulllnf;
ProcQueue = List(ProcInf);

map
changeStat:ProcQueue x ID X Stat — ProcQueue;
notifyEvn:ProcQueue X Evn x Rnd — ProcQueue;
findSensType:SigSensList x SigName— SensType;
notifySigChange:ProcQueue x SigName x Rnd X SensType—ProcQueue;
getFirstReady:ProcQueue X Rnd — Proclnf;
isAnyReady:ProcQueue — Bool;

Figure 3: Generic data types used in the translated mCRL2 specifications




(r_changeStat) and notifying an event (r_notifyEvn) or a change in a signal (r_notifySigChange)
in the process ProcQueueHandler. Other than the three handlers, the process Evaluate and
the translated processes of the model are initiated at the beginning. Each of the threads or
methods that are defined in the model is mapped into one mCRL2 process. This mapping is
described in more detail in the following section.

The process Evaluate is the central process of the system. It has an argument showing
the current round. The major work of Evaluate is to choose a ready process from the process
information list. The selected process should be ready in the current delta cycle. Then it
commands the corresponding mCRL2 process to commence. This is performed by the action
s_start. As the scheduling is non-preemptive, Evaluate has to wait until s_finish is issued by the
recently started mCRL2 process. This means that the running process has finished its work,
and another process can be initiated. Before a process finishes, it should change its state to
suspended or finished in its corresponding entry in the process information list. The evaluate
phase will be repeated till no more processes are ready in the current delta cycle. At this
moment, the process Evaluate will convert to another process, Update. This process recursively
checks all the signals to see if there is a signal, of which the current value is different from the
new value. If so, it updates the signal and also notifies the lists, so that if a process is waiting
for a signal change, it will be converted to ready for the next delta cycle. The condition in
this process is to check the changed signal to see if it is Boolean and also if there is a positive
edge occurring in it. If so, it passes a posedge argument with the s_notifySigChange in order to
awake the processes which are only sensitive to a positive edge of the signal. Otherwise, the
argument is negedge. The s notifySigChange message is received by the queue handler which
then marks all processes waiting on the corresponding signal (signal edge) as ready.

At the end of Update, the queue of processes is checked to see if any ready process is
remaining. If so, another round of evaluation (with an increased round number) is begun.
When all the processes are finished, the process Validate is run to check the system for another
set of inputs. This is explained in more details in Section 6.

5 From SystemC to mCRL2 Processes

Generic definitions given in Sections 3 and 4 form the basis for our translation from SystemC
to mCRL2. To translate specific SystemC code, it only remains to translate their specific
processes and statements therein. In this section, we give an overview of this translation
scheme.

Each specific SystemC process is mapped into an mCRL2 process. Each such mCRL2
process has two arguments: the first one is the ID of the process which differentiates it from
others. The second one is the module instance that contains this process. The reason for
differentiating among processes in such a manner is that a module can be instantiated more
than once in a program, and a SystemC process can be instantiated more than once in a
module. The translation of the body of the process goes in between the start and the finish
actions. Figure 5 shows the mCRL2 translation of the SystemC processes in Figure 1.

As it can be seen in the translation of the processes, the translated processes are basically
sequences of different actions for communicating with the kernel processes. These include
modifications to the signals and variables. The map signalConnect, used in the description
of the process get_input, is a mapping of the form PortName X Modulelns — SigName. It
determines the signal to which a port of a module instance is connected. As the process



proc VarHandler(vl:VarList)=
v:varr-changeVar(v).
VarHandler(changeVar(vl,v)) +
n:VarName Z s:Scopel-getValue(n, findVarVal(vl,n,s),s). VarHandler(vl) +
r_getVarList(vl).VarHandler(vl);
proc SigHandler(sl:SigList)=
Z n:SigName Z v:Valuel-changeSig(n,v).SigHandler(changeSig(sl,n,v)) +
Z n:SigName E v:Valuer-updateSig(n,v).SigHandler(updateSig(sl,n,v)) +
r_getSigList(sl).SigHandler(sl);
proc ProcQueueHandler(pq:ProcQueue)=
Z i:ID Z s:StatI‘fChangeStat (ivs)'
ProcQueueHandler(changeStat(pq,i,s))+
Z e:Evn Z r:RnerlOtinyvn(eJ)'
ProcQueueHandler(notifyEvn(pq,e,r))+
Z n:SigName E r:Rnd st:SensType
r_notifySigChange(n,r,st).
ProcQueueHandler (notifySigChange(pg,n,r,st) )+
r_getQueue(pq).ProcQueueHandler(pq);
proc Evaluate(round:Rnd)=
Z pq:ProcQueuesfgetQueue(pq)-
(getFirstReady(pg,round)#Nulllnf)—
(s_start(getID(getFirstReady(pq,round)),round).
r_finish(getID(getFirstReady(pq,round))).
Evaluate(round))o
(Z sl:SigListngetSigLiSt ().
Update(round,findChangedSigs(sl)));
proc Update(round:Rnd,sl:SigList)= (sl#[])—
(s_updateSig(getName(head(sl)),getNewVal(head(sl))).
((isBool(getNewVal(head(sl))) A
getValBool(getNewVal(head(sl))) == false A
getValBool(getCurVal(head(sl))) == true) —
s_notifySigChange(getName(head(sl)),round + 1,negedge)o
s_notifySigChange(getName(head(sl)),round + 1,posedge))
.Update(round,tail(sl)))o
(Z pq:ProcQueuesfgetQueue(pQ) .
(isAnyReady(pq)—Evaluate( round+1)oValidate));

Figure 4: The kernel mCRL2 processes

proc get_input(pID:ID,container:Modulelns)=
Z ro:Rnd .rjtart(pID,ro).E sl:SigList -S-getSigList(sl).
s_changeSig(signalConnect(dout,container),
boolean(getValBool(findCurSigVal

(sl,signalConnect(din,container))))).

s_notifyEvn( event( e, container), ro).
s_changeStat( pID, suspended( event( NullEvn,container))).
s_finish(pID).get_input( pID, container);

proc count(pID:ID,container:Modulelns)=
Z ro:Rnd -T-start(pID,ro).loop1(pID,container).
s_changeStat(pID,finished).s_finish(pID);

proc loopl(pID:ID,container:ModuleIns)=
s_changeStat(pID,suspended(event(e,container))).
s_finish(pID).
Z ro:Rnd ‘rﬁtart(pID,ro).E vl:VarList ~ngetvarLiSt(V1)'
s_changeVar(variable(num,integer(get Vallnt(
findVarVal(vl,num,field(container)))+1,16),field(container))).
loop1(pID,container);

Figure 5: Translation of the proc. in Fig. 1
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proc Validate = Zfo:Bool.s,changeSig(clk,sig, boolean(fp)).
Zfl:Bool.s,changeSig(dinsig,boolean(fl)).Evaluate(O);

Figure 6: Verification proc. for Fig. 1

get_input is a method, in its termination it changes its state to wait on a dummy event. This
will also occur when a thread executes the command wait (). This means that the process
has ended but can be reactivated when one of the events in its sensitivity list occurs.
Statements. By interacting with the kernel processes, the values of signals and variables can
be obtained and changed. This makes the translation of assignments and similar statements
straightforward. In hardware modeling normally bitwise operations are frequently used, which
are not supported in mCRL2. For this purpose we implemented the required functions for
converting a value to its binary form and also perform bitwise operations. Further details can
be consulted from the code in [27].

Concerning the mapping for control flow statements, the conditional statements such as
if-then-else and switch-case are mapped to mCRL2 conditionals. Loops are translated into
recursive processes guarded by their conditions, if any.

6 Model checking the code

In order to perform model-checking on a model, all the possible values for the signals form
the environment have to be examined. We add a particular process to the system in order to
generate all these possibilities. In the remainder of this section, we first describe this process
and then illustrate our approach by model-checking a small example.

6.1 Process Validate

To verify a SystemC module in our model, we include the process Validate in the mCRL2
code. This process generates all the possible inputs for the module. For example, Figure 6
shows this process for the SystemC module in Figure 1. The signal din_sig is connected to the
port din and clk_sig is connected to clk. If one of the inputs of the module is an integer, we
should also specify the range of the variable in generating different values for the input. In
addition to this approach, we use an alternative approach in Section 8.2 (inspired by [5]) in
order to verify the data semantics of a pipelined architecture.

6.2 Example

We take four modules of the D Flip-Flop (as described in Figure 1, without the count method)
to build a simple shift register. The design is depicted in Figure 6.2.

There are two input signals from the environment to this circuit: trigger and input. By
altering the values of these signals in the Validate process, various executions are possible.
The state space of this system contains 2248 states and 2440 transitions. A visualization
of the state space using the visualization tool ltsview (included in the mCRL2 toolset) is
depicted in Figure 6.2 . We also use the p-calculus model-checker of mCRL2, called 1ps2pbes
and pbestool, to verify the correctness of the system. The correctness requirement for the
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Figure 7: A simple shift register

Figure 8: A visualization for the state space of 6.2

shift register is that the value of the input should be communicated after four clock cycles
(positive edges of trigger signal) to the output signal. This can be expressed in p-calculus in
terms of the following formula:
Vb : Bool.[(truex).changeSig(din, boolean(b)).
(—updateSig(trigger, boolean(true)) A —changeSig(din, boolean(—b))) * .
updateSig(trigger, boolean(true)).
—updateSig(trigger, boolean(true))) x .updateSig(trigger, boolean(true)).
—updateSig(trigger, boolean(true))) * .updateSig(trigger, boolean(true)).
—updateSig(trigger, boolean(true))) = .updateSig(trigger, boolean(true)).
—updateSig(trigger, boolean(true)) A ~changeSig(out, boolean(b))) * .
updateSig(trigger, boolean(true))] false
The above property states that whenever a change is spotted in the signal din which lasts
till the first positive edge of trigger, it should be propagated in the shift register in such a way
that after four positive edges of trigger, it reaches the out signal (changeSig(out, boolean(b))).
The positive edges in trigger are identified here by the action updateSig(trigger, boolean(true))),
which is issued only when the value of trigger is modified from false to true.

(
(
(
(
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6.3 Tool

We have implemented a tool for automatically translating the SystemC code into mCRL2. It
supports a reasonable subset of SystemC including the features described above. This includes
most of the constructs which are necessary in an RTL design. In the C++ related features, we
support different kinds of loops, conditionals and assignments. From the SystemC constructs
we support modules, processes, ports and the primitive channels. The tool is written using
the Java programming language and the ANTLR compiler generator.

7 Non-determinism in delta-cycles

Non-determinism is not allowed for synthesizable hardware. Hence, many existing SystemC
simulators pre-assume that the specification does not include non-determinism, i.e., race
conditions, and thus schedule the ready processes in a deterministic manner, usually according
to their order of definition in the original code. For example in the initial phase and at each
clock cycle of the system in Section 6.2, there are different orders in which the D Flip-Flops
propagate their inputs to the output. However, a typical SystemC simulator only considers
one path of execution.

Considering only one path of execution sweeps possible race conditions under the carpet.
The modeler cannot see whether/when the system has a form of non-determinism and thus
different orders of scheduling result in observably different states. An initial attempt to detect
such pathological situations is to replace the Evaluate process of Figure 4 with that of Figure
12. The latter Evaluate process chooses the next ready process non-deterministically and thus
generates all possible orders of scheduling. Applying this approach to the example of Section
6.2, results in a state-space with 6670 states and 7423 transitions.

The state space of this problem does not show the (ver much expected) drastic increase in
its size after introducing non-determinism in delta cycles. There are mainly three factors in
this system responsible for this incident. First of all, notice that the system has a sequential
behavior: only after a process writes on its output signal, the next process is notified to
get the data. Thus, after the initialization phase in which all the processes are ready, the
value written on the input signal advances step by step in the processes. Secondly, the only
shared signal between the processes, which can influence the readiness of all processes, is the
trigger signal. This signal cannot awake the processes more than four times, since after four
positive edges of trigger the input reaches the output. Finally, this circuit has an important
characteristic, called confluence. This means that different orderings in delta cycles always
end in a single state. Therefore different branching in a delta cycle cannot affect the branching
in the next delta cycle.

In most practical cases, however, different interleavings of actions lead to immensely huge
state spaces. This is an incarnation of the well-known state-space explosion problem. For
instance, with 15 enabled processes the number of all schedules goes beyond one thousand
billion. Process algebraic reduction techniques, implemented in the mCRL2 tool-set, can
mitigate this problem. By first abstracting from unobservable action, i.e., actions that do
not change variables, one can check whether different schedules are confluent (using the tool
Ipsconfcheck) before attempting to generate the state space. After finding the confluent paths,
the state-space generation can be done by only generating one instance among confluent
paths. After generating the state-space, the state-space can be reduced, e.g., modulo weak
trace equivalence. The result is usually a small state-space, which can be examined using the
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visualization or the model-checking tools.

To better illustrating this technique, we analyze a rather straightforward case study. (Note
that we use a smaller case study to show the actual state-space; the combination of reduction
and model-checking technique explained in the remainder of this section, however, scales up to
much larger case studies.) Consider a two-bit shift register, similar to the four-bit counterpart
of Section 6.2. This shift register consists of merely two D Flip-Flop modules, as depicted in
Figure 9. In order to distinguish between different delta cycles better in the final state space,
we use two specific actions in the model to show the start and the end of a delta cycle, called
str(xz) and fin(zx), for the start and the end of delta-cycle z, respectively. The beginning of
a delta cycle can be marked in the process Evaluate, after the condition that tests if there are
any processes ready in the process queue. The finish of a delta cycle can be best identified
when the process Validate is initiated, since at this position we can ensure that all the possible
execution paths have been finished.

Since the changes in the values of the signals are of interest for us, we hide all the actions
except for the ones that assign a new value to a signal. Also we keep the actions that are
added to the system for designating the delta cycles. Under these conditions, the state space
of the problem after branching bisimulation reduction is shown in Figure 10. The states
in which non-deterministically a ready process is chosen are represented with a darker color.
These states form a confluent (i.e., a diamond) structure in the state space. Thus, the order of
executions do not matter and we can minimize the diamonds using tau-confluence reduction.
This has been done in Figure 11.

] . out
Ldm dout] din doutt——

DFF DFF

> >

trig

Figure 9: A two bit shift register

In the case of a two-bit shift register, the absence of race condition can be checked manually
by examining the reduced state space. However, for larger designs, the above technique must
be combined with model-checking to detect race-conditions. The model-checking problem
is about checking a temporal formula to the effect that no two conflicting assignments to a
signal or variable are performed (in two paths) during a delta cycle. The following formula
shows the p-calculus property which has been used in our shifter example.
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Figure 10: The state space of Figure 9 after branching bisimulation reduction

[true % .str(z)](

[
(mstr(x) A = fin(x)) = . changeSig(out, boolean( false)).
(—changeSig(out, boolean( false)) A

—changeSig(out, boolean(true)) A —fin(zx)) * .

fin(z)

|false

V

(=str(z) A =fin(x)) = . changeSig(out, boolean(true)).
(—changeSig(out, boolean(false)) A
—changeSig(out, boolean(true)) A —fin(z)) * .
fin(z)
|false
The above formula states that at any point, if the start of delta cycle x is observed then

both of the actions changeSig(out, boolean(true)) and changeSig(out, boolean(false)) cannot
be seen.

8 Case Study

We considered both single-cycle and pipelined specification of mMIPS (mini MIPS) which
is the generic basis for MIPS processors. With some extensions for incorporating network
facilities, mMIPS is used in MiniNoC, a Network-On-Chip based multi-processor SoC. We
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Figure 11: The state space of Figure 9 after tau-confluence reduction

proc Evaluate(round:Rnd) = Z pa:ProcQueue-
s_getQueue(pq). (getFirstReady(pq,round)#Nulllnf) —
x:ProcInf’(X in getReadyLiSt(pquound) )_)
s_start(getID(x),round).r_finish(getID(x)).Evaluate(round))
o (Z sl:SigList -5-getSigList (s]). Update( round, findChangedSigs(sl)));

Figure 12: Evaluate for the non-deterministic scheduling
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Figure 13: A Schematic View of the Single-Cylce mMIPS Design

analyzed both simplified single-cycle version of the mMIPS processor (comprising about 1000
lines of SystemC code) as well as its pipelined version (comprising about 2500 lines of SystemC
code), which are explained in the coming subsections.

8.1 Single-Cycle mMIPS

The overall design of the single-cycle MIPS processor is depicted in Figure 13. It is a simplified
SystemC implementation of a classic single-cycle MIPS processor as described in [15].

To deal with its complexity, we partitioned the system into subsystems, and for each part
we separately translated the described components into mCRL2 using our tool and analyzed it
for different properties. The subsystems are the data path for controlling the program counter,
arithmetic (R-type) instructions, and memory unit. The rationale behind this separation is
avoiding state space explosion. In Figure 13, the program counter datapath and memory unit
components are shown. To verify arithmetic instructions part, we had to exclude the data
memory sub-component (denoted by “dmem” in Figure 13) from our selected components.

We verified the system with a computational program. In order to verify the system, we
used processes for monitoring the actions of the system for each temporal property. These
process synchronize with the actions in the system in the order specified by the temporal
property. If these synchronizations cannot take place, then a deadlock is reported in the state
space generation. In the first subsystem, the monitor synchronizes itself with the changes
in the program counter (pc) signal and after each non-jump operation, checks them to be
incrementing. In the second subsystem, it checks the inputs and also the output of the ALU.
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Figure 14: Burch and Dill’s Commuting Diagram

For the memory part, the changes of the memory signals are watched; in the PC subsystem,
we were able to find a minor bug (due to an inappropriate type definition in the SystemC
code) leading to deadlock. The mistake was happening in the model because of declaring a
signed variable for the program counter. When half of the expected interval is enumerated by
the counter, because it is signed, its value will wrap around. This will make the simulation
erroneously.

The following table shows the size of the state-space generated for each subsystem.

Subsystem || Memory | ALU PC Datapath
States 130601 | 230757 | 6838
Trans. 138726 | 256009 | 7836

8.2 Pipelined mMIPS

The pipelined mMIPS processor substantially extends the instruction sets of the single-cycle
processor and implements the classic pipelined architecture of [15]. It supports about thirty
instructions from the MIPS instruction set (about 5 times as many as the single-cycle design),
and is used in the design of a Network-on-Chip (NoC) multi-processor system (MiniNoC). In
this section, we first describe the generic verification technique and afterwards, we explain
the application of the technique to our case study.

In their seminal paper [5], Burch and Dill put forward an efficient approach to the veri-
fication of the pipelined execution of instructions. This method has been widely considered
as a fundamental way to formally prove the correctness of processors, and has been used in
many case studies such as [29, 6, 26]. The verification scheme is depicted in the commuting
diagram of Figure 14.

The state of the processor is defined at two different abstraction levels: ISA (Instruction
Set Architecture) and MA (Micro Architecture). In ISA, only those parts of the system are
considered which are visible to the user: register file, data memory and program counter.
In MA, the actual state of the system is considered, containing all the intermediate storages
which are also important to the actual implementation of the pipeline processor. The functions
Frmpr and Fspe. are the transition functions for implementation and specification. A transition
function gets the current state as well as the inputs and gives the next state.

The key idea of Burch and Dill’s approach is to use the flushed state of the MA level,
in the sense that only those states are investigated in which the processor is stalled for a
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sufficient number of cycles. In the flushed states, no partially executed instruction remains in
the pipeline. The processor is said to be correct if any arbitrary sequence of execution at the
MA level has the same effect as its ISA counterpart on the observable components, as long as
the comparison is done in the flushed states. The function A is an abstraction function that
maps an MA state to its corresponding ISA state by stripping off all but the programmer
visible parts of the implementation state.

We translated the SystemC specification of the pipelined mMIPS to mCRL2. In order to
observe the result of a single instruction, we put it at the beginning of the pipeline, i.e., the
output signal from the instructions ROM. As we seek the finite state space representing this
instruction, we prevent the program counter adder to increase unboundedly. With each edge
of the clock, the instruction advances one stage in the pipe, and since no new instruction is
allowed to come into the system, after quite a number of steps the state space generation is
stopped. On average, after about 5000 states (in the mCRL2 specification) an instruction
traverses all through the pipeline. Notice that the Burch and Dill approach cannot be directly
applied to the above state space, since in our case, we have to deal with labeled transition
systems in which all the information is reflected on the labels. In the original approach, two
paths of specification and implementation were checked to see that the user-visible components
of the state are modified similarly or not. Similarly here, we have to check whether the actions
that are in charge of changing the contents of the user-visible components are matching. For
this purpose, we use the mCRL2 abstraction operator to hide all the uninteresting actions
which do not have any effects on these components. By applying tau-confluence reduction
to eliminate all the confluent internal actions (i.e., the abstraction function in the Burch and
Dill approach) , the result can be compared with the specification to see if the actions are
issued correctly. As an example, consider the R-type instructions, that is, arithmetic and logic
operations with all operands in registers. For this kind of instructions, what is important is
the result from the ALU, which is written back to the memory in the write-back stage of the
pipeline. Similarly for the store instructions, the main actions are those that write the actual
value into the memory in the memory stage of the pipeline. We considered different types of
instructions of the system (about 15 different types), and investigated the exposed behavior
to be the same as the desired behavior of the processor.

During our analysis, we discovered a flaw in the semantics of the arithmetic shift instruc-
tion. In the different flavors of the shift right instructions in the previous implementation,
the sign bit of the register was not shifted inside. Instead the processor used to introduce
zeros in the register. Although this is reasonable for unsigned number, but when the negative
numbers are taken into account, the situation differs. For negative numbers the shifted bit
should be one. This error was reported to the designers and corrected in the new version of
the code.

9 Conclusions

In this paper, we presented a formalization of SystemC code in the process algebra mCRL2.
The formalization is implemented in a tool and this enables automatic translation and formal
verification of SystemC code in the mCRL2 tool-set. The mCRL2 code can be analyzed in
different aspects. A useful application is to prove output determinism, which is ensuring
that different orderings in a delta cycle does not affects the final outcome. We showed two
systematic ways for this purpose: model-checking and confluence checking.
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Using the implemented tool, we analyzed several case studies including a single-cycle and
a pipelined MIPS processor. We plan to extend our work by providing support for more
advanced features of SystemC, such as quantitative timing and transaction level modeling
(TLM). In particular, we believe that our approach is very suitable for the verification of TLM
designs due to its algebraic natures. Namely, one can verify the computation components
separately and once locally proven correct, they can be replaced by abstract specification
processes in order to verify the overall behavior of the TLM design. Furthermore, we think
that tailor-made reduction techniques are yet to be developed for the process graphs resulting
from hardware designs, in general, and SystemC designs, in particular.

As for the particular case of the mMIPS pipelined design, we did not investigate matters
related to control hazards and instruction dependencies. This mainly results from the fact
that we only allowed one instruction to go through the pipe that then closed it for the other
instructions entrance. There is a possibility that if particular sequences of instructions are
put in the pipe some undetected problems occur because of the inconsistencies between them.
In order to tackle these issues, we are working to find an upper bound on the length of the
sequence of instructions which has to be checked to guarantee that in general, no such problem
may take place in the system.
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