
A Taxonomy of Real Faults for HybridQuantum-Classical
Software Architectures.

AVNER BENSOUSSAN, King’s College London, UK
GUNEL JAHANGIROVA, King’s College London, UK
MOHAMMADREZA MOUSAVI, King’s College London, UK

With the popularity of Hybrid Quantum-Classical architectures, particularly noisy intermediate-scale quantum

(NISQ) architectures in the gate-based quantum computing paradigm, comes the need for quality assurance

methods tailored to their specific faults. In this study, we propose a taxonomy of faults in gate-based Hybrid

Quantum-Classical architectures accompanied by a dataset of real faults in the identified categories. To achieve

this, we empirically analysed open-source repositories for fixed faults. We analysed over 5000 closed issues

on GitHub and pre-selected 529 of them based on rigorously defined inclusion criteria. We selected 133

faults that we labelled around symptoms and the origin of the faults. We cross-validated the classification

and labels assigned to every fault between two of the authors. As a result, we introduced a taxonomy of

real faults in gate-based Hybrid Quantum-Classical architectures. Subsequently, we validated the taxonomy

through interviews conducted with eleven developers. The taxonomy was dynamically updated throughout

the cross-validation and interview processes. The final version was validated and discussed through surveys

conducted with an independent group of domain experts to ensure its relevance and to gain further insights.

CCS Concepts: • Software and its engineering, Computer systems organization;

Additional Key Words and Phrases: Quantum Software Engineering, Quantum Software Testing, Fault Classi-

fication, Hybrid Quantum-Classical Systems, Taxonomy of Real Faults

ACM Reference Format:
Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi. 2026. A Taxonomy of Real Faults for
Hybrid Quantum-Classical Software Architectures. . 1, 1 (January 2026), 31 pages. https://doi.org/10.

1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Quantum Computing (QC) holds the potential to enhance computational capabilities and address

certain complex domain-specific problems that are intractable for classical methods [1]. In the last

four decades, QC has evolved from theoretical concepts to real publicly available hardware and

services. However, current computers are limited in their scalability to solve real-life calculations.

While the main actors in realising the potential of QC have hitherto been physicists, computer

scientists, and in particular, software engineers, are playing an increasing role in the following

steps [2]. Current quantum hardware raises the need for specific software infrastructures and tools

to mitigate its scalability issues [3].

Authors’ addresses: Avner Bensoussan, King’s College London, London, UK, avner.bensoussan@kcl.ac.uk; Gunel Jahangirova,

King’s College London, London, UK, gunel.jahangirova@kcl.ac.uk; MohammadrezaMousavi, King’s College London, London,

UK, mohammad.mousavi@kcl.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2026 Association for Computing Machinery.

XXXX-XXXX/2026/1-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: January 2026.

HTTPS://ORCID.ORG/0009-0007-3285-9468
HTTPS://ORCID.ORG/0000-0002-1423-1083
HTTPS://ORCID.ORG/0000-0002-4869-6794
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0009-0007-3285-9468
https://orcid.org/0000-0002-1423-1083
https://orcid.org/0000-0002-4869-6794
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

For the foreseeable future, quantum systems—specifically gate-based quantum computers—are

going to be interfaced and complemented with classical computers to achieve large-scale tasks.

This has led to a wide-scale adoption of a new type of software architecture called Hybrid Quantum-
Classical architectures. In particular, the current stage of quantum computing is termed the Noisy

Intermediate-Scale Quantum (NISQ) era, where noisy quantum computation is wrapped around an

architecture involving classical optimisation. Several algorithms have been developed to exploit the

potential of current computers and are referred to as NISQ algorithms [4], which are instances of

Hybrid Quantum-Classical architectures based on the gate-model quantum computing paradigm.

Until we have access to full-scale fault-tolerant quantum computing, we expect a quantum advantage

for domain-specific NISQ algorithms [5]. However, even in the presence of fault-tolerant quantum

computing, complex Hybrid-Quantum Classical architectures are likely to remain prominent

because of the complementary nature of these two computing paradigms. The interest for Hybrid

Quantum–Classical architectures has grown significantly over the past decade, as demonstrated by

the number of related publications depicted in Figure 1. Figure 1a displays the yearly total number

of publications resulting from a search query of “Hybrid Quantum Classical” keywords using

arXiv’s tool from 2010 until today, while Figure 1b shows the same trend in peer-reviewed venues

(Springer, ACM). We observe a clear growth with a significant increasing trend, reflecting the rising

interest and investment in hybrid architectures as a promising use case of quantum computing.

This trend likely stems from a broader recognition that quantum computing will, in the near

future, be embedded within existing classical infrastructures. As the field matures, hybrid software

will play a crucial role in enabling the seamless integration of this new computational paradigm

into current systems. Such growing interest highlights the need for tailored quality-assurance

methods and tools. Indeed, Ramalho, de Souza & Chaim note “gaps ... related to ... input states

with hybrid interfaces” and call for “testing and debugging techniques that take advantage of the

unique quantum computing characteristics” [6]. Similarly, Murillo et al. [7] observe that specific

testing methods are crucial for Quantum and Hybrid Systems to scale. . These insights underscore

why hybrid-specific testing, debugging, and verification strategies are essential to understand and

classify the common fault types in hybrid architectures — a central motivation for the taxonomy

presented in the following section.

(a) Publication Trend in ArXiv from 2010 to today. (b) Publication Trend in SPRINGER (in blue) and
ACM (in orange) from 2010 to today.

Fig. 1. Comparaison of Publication Trends for Hybrid Quantum Classical in ArXiv and Peer-reviewed venues
from 2010 to today.

To respond to this need, in this study, we propose a first taxonomy of real faults in Hybrid

Quantum-Classical architectures. Although it is focusing on NISQ algorithms running on gate-

based quantum hardware, we expect our taxonomy to apply to future Hybrid Quantum-Classical

architectures, potentially including fault-tolerant quantum computing. We consider NISQ algo-

rithms, which represent an early version of Hybrid Quantum-Classical architectures, to be an

, Vol. 1, No. 1, Article . Publication date: January 2026.

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
3

interesting case study to understand the behaviour of Quantum Systems when they are embedded

in Classical Computations. To develop this taxonomy, we considered over 5000 Github issues,

preselected 529 of them using rigorously defined inclusion criteria, and analysed them between two

authors. We cross-validated our results and selected 133 real faults in Hybrid Quantum-Classical

architectures. We then structured the results into a taxonomy and further labelled the faults in each

classification with more specific descriptions of the nature of the fault. The initial version of the

taxonomy was validated and continuously updated through interviews with eleven domain experts.

The outcome of the interviews was validated once more through surveys involving a separate

group of experts.

Research questions. To our knowledge, no in-depth analysis of Hybrid Quantum-Classical

architecture faults has been conducted. Hence, quantum testing research would benefit from a

structured taxonomy of real faults. The following two research questions drive our study:

• RQ1:What are typical failure causes in Hybrid Quantum-Classical architectures?
The integration of quantum circuits into a loop of classical calculations forms the structure

of Hybrid Quantum-Classical architectures. It is natural to expect unique fault categories

associated with it, pertaining to the quantum or classical components and their interfaces.

We see similarities between such architectures and machine learning architectures, which

motivated us to consider similar efforts in that domain [8] and analyse the similarities in the

outcome of our research.

• RQ2: How can we develop a taxonomy of real faults that captures the specific structure of
Hybrid Quantum-Classical architecture?
We would like to investigate how real open-source faults (mined from repositories) can be

complemented by real faults elicited through interviews with domain experts. We would like

to see if the resulting taxonomy can be validated by independent experts and if it can lead to

further insights.

Those questions motivated our analysis of real Hybrid Quantum-Classical architectures faults.

The contributions of this paper are three-folded.

• Webenchmarked real Hybrid Quantum-Classical faults.We empirically analysed public

repositories containing Hybrid Quantum-Classical architectures. We searched 5000 fixed

issues and selected 133 real faults.

• We proposed a first taxonomy of real Hybrid Quantum-Classical architecture faults.
By analysing and categorising those real faults, we developed a taxonomy of real Hybrid

Quantum-Classical architecture faults.

• We validated this taxonomy against other available datasets and through interviews
with experienced developers working in this domain and a survey involving an
independent group of experts. To ensure the validity of our results, we compared them to

previous works and presented them to experienced Hybrid Quantum-Classical architecture

developers and researchers. Their feedback was incorporated into our results to create the

final taxonomy, validate the outcome, and provide reflective insights on the final results.

Structure of the paper. Section 2 introduces quantum computing and key concepts to understand

Hybrid Quantum-Classical architectures. In Section 3, we review the related work, both in classical

and quantum software engineering. Section 4 reviews the methodology of this study before pre-

senting our results in Section 5 and discussing them in Section 6. We state threads to the validity of

our study in Section 7 before concluding in Section 8 and suggest some avenues for future work.

2 BACKGROUND
This section briefly introduces Quantum Computing and Hybrid Quantum-Classical architectures.

, Vol. 1, No. 1, Article . Publication date: January 2026.

4 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

2.1 Quantum Computing
Quantum computing (QC) was conceptualised to simulate quantum phenomena based on the

postulates of quantum mechanics [9]. It was later found to have potential applications that could

offer significant speed-up over its classical counterpart. The resulting potential speed-up is often

referred to as "quantum supremacy" [10]. However, demonstrating quantum supremacy on real

hardware remains a long-standing challenge, especially at a scale where it would solve real-life

calculations. Most agree this stage of QC will likely last for the next few years if not decades, and

refer to it as the NISQ era [11]. Regardless of the trajectory to large-scale fault-tolerant computing,

quantum computers will have a different type of strength than classical computers and are going to

be complemented by classical computers in Hybrid architectures. NISQ algorithms are a prominent

example that Hybrid architecture combining small quantum circuits with classical computations

could present some computational advantages [4]. Variational Quantum Algorithms (VQA) are the

most common example of an efficient combination of a reduced quantum circuit inside a classical

optimisation loop [12]. We present VQA as an example of Hybrid Quantum-Classical architecture

in more detail at the end of this section.

Different paradigms. In the landscape of quantum computing paradigms, gate-based quantum

computing stands out as the most widely adopted and a general-purpose model. It relies on the

manipulation of qubits through a sequence of quantum gates, analogous to logic gates in classical

computing, and forms the foundation for most current quantum algorithms, including hybrid

approaches such as Variational Quantum Algorithms (VQAs). In contrast, quantum annealing is a

specialized model primarily designed for solving combinatorial optimization problems by leveraging

quantum fluctuations to explore low-energy states of a system. Commercial implementations, such

as those from D-Wave Systems, are based on this paradigm but are not universal and are limited

in their applicability beyond specific problem classes. Another alternative is measurement-based

quantum computing (MBQC), which executes computations by performing a series of measurements

on a highly entangled initial resource state (typically a cluster state), rather than applying gates

directly. While MBQC provides a theoretically equivalent model to gate-based systems, it is less

mature in terms of hardware support and algorithmic development. Given the broader applicability

and better compatibility with near-term hardware, gate-based quantum computing remains the

dominant framework, particularly for NISQ-era hybrid algorithms.

2.2 Quantum Circuits
The core of a Hybrid Quantum-Classical architecture is a Quantum circuit. A quantum circuit

comprises quantum gates operating on qubits, the quantum analogue to classical bits. Two distinctive

features of qubits are that they may feature a superposition of states, represented by a linear

combination of states, and entanglement, where several qubits form a composite system such that

measurement on one determines the state of the other.

Composition of a circuit. A quantum circuit used in a Hybrid Quantum-Classical architecture

typically begins with the initialisation of qubits and ends with their measurement, where the

information is translated into classical bits. The purpose of a quantum circuit is to harness the prin-

ciples of quantum mechanics, such as superposition and entanglement, to perform computational

tasks that would be infeasible or significantly slower for “quantum parallelism”, i.e., “evaluating a

function on many different values simultaneously” [13].

Quantum Gates. Quantum circuits are constructed using quantum gates, which are unitary

operations acting on one or more qubits. These gates manipulate the quantum state by exploiting

quantum phenomena. Common single-qubit gates include the Hadamard (H) gate, which creates

, Vol. 1, No. 1, Article . Publication date: January 2026.

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
5

superposition, the Pauli-X gate, which acts like a classical NOT, and phase-shift gates such as

S and T. Multi-qubit gates, such as the Controlled-NOT (CNOT) gate, are essential for creating

entanglement between qubits. Together, these gates form a universal set capable of implementing

any quantum computation when combined in appropriate sequences.

Example of a quantum circuit. Fig. 2 represents a simple quantum circuit, creating a three-qubit

Greenberger-Horne-Zeilinger (GHZ) state, which is a specific entangled quantum state of three

qubits. The GHZ state signifies that the three qubits are entangled in such a way that if the state of

one qubit is measured, the states of the other two qubits are also determined. Input variables 𝑞 [0],
𝑞 [1], and𝑞 [2] represent the 3 input qubits. The horizontal line represents time, the square and round

elements are quantum logic gates, and the final boxes and arrow elements represent measurements,

where the qubit is observed and its state is extracted into classical bits. The maximum number of

gates along all horizontal lines in a circuit is called depth. Fig. 2 represents a circuit of depth 3.

Fig. 2. SimpleQuantum circuit creating a GHZ state.

Quantum Noise. There are different sources of noise in quantum computing, including unwanted

entanglement among particles and imperfection in gates. Noise accumulates throughout the quan-

tum circuit [14]. Any quantum system suffers decoherence, induced by the interactions with

its environment, causing it to lose its quantum behaviour over time [4]. Hence, current Hybrid

Quantum-Classical architectures, e.g., NISQ algorithms, aim to reduce the number of qubits and

the gate depth of the circuit to keep the noise level manageable.

2.3 HybridQuantum-Classical Architectures
In this section, we take a closer look at NISQ algorithms as prominent examples of Hybrid Quantum-

Classical architectures currently in use, particularly, in open-source repositories for quantum

computing.

Structure of Hybrid Quantum-Classical Architectures. The general workflow consists of four main

phases:

(1) Classical pre-processing. The problem of interest (e.g., optimisation, simulation, or classifica-

tion) ismapped into a quantum-compatible representation. This typically involves formulating

a cost function and encoding it into a parameterised quantum circuit, known as an Ansatz.

Initial parameters are chosen—often heuristically or randomly—and qubits are prepared in a

standard reference state such as |0⟩⊗𝑛 .

, Vol. 1, No. 1, Article . Publication date: January 2026.

6 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

(2) Quantum circuit execution. A parameterised quantum circuit is executed with the current

parameter values. The circuit consists of layers of single-qubit rotations and entangling gates

and is typically kept shallow to mitigate noise. This is the core of a Hybrid Architecture. It

typically has a low gate depth and few qubits to manage the noise level. Current Hybrid

architectures utilise around 50 qubits, and 1000 gates at maximum, with an average gate

depth of 20 [4]. The circuit is run multiple times (shots) to generate measurement statistics.

(3) Classical optimisation loop. Measurement outcomes are used to estimate the value of the

cost function, which is then fed into a classical optimiser that updates the parameters. This

process iterates, forming a hybrid feedback loop until a convergence criterion is met.

(4) Classical post-processing. Once a sufficiently good solution is found, the output—such as

optimised parameters or low-energy states—is further processed or interpreted using classical

resources, depending on the application.

Variational Quantum Algorithms (VQAs). VQAs are among the most promising examples of NISQ

algorithms [12]. The main goal of a VQA is to find the optimal parameters for a parameterized

quantum circuit, leading to a solution for a given computational problem. We provide an overview

of the structure and functioning of a VQA. This structure is typical of Hybrid Architecture. Future

Fault-Tolerant Quantum Computing could replace current noisy hardware.

1. Problem Definition. The first step involves defining a computational problem that can benefit

from quantum computing and translating it into an objective or cost function. In most

applications, it consists of a Hamiltonian representation (a matrix representing system state

evolution), connecting the problem domain to the energy level of a quantum system.

2. Optimisation Process. A parameterized quantum circuit, known as the variational Ansatz, is

designed. This circuit contains gates with adjustable parameters, denoted as 𝜃 . It is initialised

with an input 𝜃0. A quantum state |𝜓 (𝜃)⟩ is measured, and the outcomes are used to compute

the expectation value of the objective function 𝑂 (𝜃, {⟨𝐻 ⟩𝑈 (𝜃) }).
3–4. Convergence Check and Output. The optimization process continues until a convergence

criterion is met, indicating that further iterations are unlikely to significantly improve the

solution. This convergence check ensures that the algorithm has reached a stable and poten-

tially optimal solution. The final set of optimized parameters 𝜃𝑜𝑝𝑡 represents the solution to

the quantum problem. This solution can be used for further analysis or as the output of the

VQA.

An in-depth explanation and a detailing figure can be found in the work of Bharti et al. [15].

Fig. 3 [12] is a diagrammatic representation of a VQA in which each of the described steps can be

found.

3 RELATEDWORK
This section positions our study within the broader context of software engineering and quantum

computing research. We begin by reviewing established practices in classical software engineering,

including the construction of real fault benchmarks and the development of taxonomies for fault

classification. We then examine existing efforts in quantum software testing, with a particular focus

on real faults in quantum and Hybrid Quantum-Classical architectures. Finally, we compare our

study to the most closely related work in this area. A summary of these contributions and their

limitations is presented in Table 1, highlighting the novelty and gap addressed by our work.

, Vol. 1, No. 1, Article . Publication date: January 2026.

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
7

Fig. 3. Detailed structure of a VQA [15]

3.1 Classical Computing
Bug Benchmarks. Building datasets of reproducible real faults is a common and valuable practice

in classical software engineering. These datasets offer a more realistic and eclectic base for software

testing research on artificially generated faults. Noticeably, Defects4J gathers reproducible real

faults in Java [16]. It was used in several studies, for instance, to inform the design of testing

frameworks [17] and to experiment with software engineering techniques [18]. We expect our

study could similarly benefit research in Hybrid Quantum-Classical architectures and serve as an

experimentation base for future studies.

Use of Taxonomy in Software Engineering. In science and engineering, systematically organising

and classifying knowledge advances the field by providing a common discourse; it facilitates knowl-

edge sharing, clarifies relationships between concepts, identifies knowledge gaps, and supports

decision-making. This classification helps researchers and practitioners generalise, communicate,

and apply findings effectively. As stated in Usman et al.’s systematic mapping study of Taxonomies

in Software Engineering (SE) [19], SE being a broad and diverse field, it relies heavily on taxonomies

structured classification schemes that describe terms and their relationships to organise its exten-

sive knowledge base. In summary, taxonomies contribute to both theoretical clarity and practical

applicability in the software engineering discipline.

Real Faults Taxonomy. Taxonomies being a common way to propose a structured overview of a

given problem in software engineering [20], a study that inspired our work proposes a taxonomy

of real faults in deep learning systems [8]. They analysed GitHub commits and issues for popular

DL frameworks and related Stack Overflow posts to propose a taxonomy of real DL faults. They

validated their work by interviewing 20 developers and integrating feedback received to their

results. Our work follows a similar methodology applied to Hybrid Quantum-Classical architecture.

Building a fault dataset and a taxonomy is a process that can be transferred to a different branch

of software engineering since the data available online is similar. Also, the developers’ interview

structure can be easily adapted to another specialty.

, Vol. 1, No. 1, Article . Publication date: January 2026.

8 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

3.2 Quantum Computing
Real Faults in Quantum and Hybrid architectures. Quantum software testing is challenging. Several

studies point to a growing need for developing testing and debugging tools specific to quantum

programs [2][21][22][23][24]. Some benchmarks of quantum bugs and bug fixes are available in the

literature [25][26][27], as well as a low-level Quantum Benchmark Suite, QASMBench, focusing on

NISQ Evaluation and Simulation [28]. Zhao et al. [29] identified some bug patterns in Quantum

Programs after an in-depth analysis of Qiskit programs. In our study, we used one of them, namely,

the Bugs4Q dataset [25] to validate our search process. Although Bugs4Q has a broad scope and

does not focus on Hybrid Quantum-Classical architectures, it contains one NISQ bug. In their

systematic literature review, Gill et al. [23] briefly mention Hybrid Quantum-Classical architectures

as a priority research area, without mentioning testing techniques for them. To our knowledge,

real faults in Hybrid Quantum-Classical architectures, such as NISQ algorithms, have not been

investigated yet. The closest study to ours concerns faults in Quantum Machine Learning, which is

a special case of a NISQ algorithm [30]. We used both datasets to validate our search query and

process. We notice a growing interest in recent literature in Quantum testing and quality assurance,

and very recently some studies have started to emphasise their investigation around NISQ and

Hybrid Quantum-Classical architectures.

Other taxonomy. Parallel to our work, Zappin et al. [31] recently released a comprehensive study

characterizing Hybrid Quantum-Classical issues discussed in Developer Forums, which represents

the closest work to ours to date. However, they solely investigated discussions available on Xanadu

Discussion Forums and on QC Stack Exchange. The issues they used do not originate from GitHub

and do not follow the strict inclusion criteria we used as described in Section 4, hence there is no

overlap between our two works. Their study gave an overview of current causes of issues in a

software engineering perspective, gathering them around the following categories: Software Faults,

Hardware/Simulator issues, Configuration issues, Developper Errors, Library and Plateform Issues.

Our study characterises faults in Hybrid Quantum-Classical architectures around their structuring

components, and identify their typical weaknesses, aiming to further understand their nature

and stay relevant to future versions of such architectures. These two taxonomies are therefore

complementary. They were conducted in parallel, without consulting one another, which highlights

once more the relevance of such a work.

3.3 Comparative Analysis of Our Study
Data Source. A key strength of our study lies in the diversity and rigor of its data sources. While

most previous datasets either focus exclusively on synthetic benchmarks such as QASMBench [27,

28], on general-purpose quantum software like Bugs4Q [25] and QBugs [26], or on community-

reported developer issues without validation such as the recent work by Zappin et al. [31], our study

draws on real-world Hybrid Quantum–Classical architectures faults mined directly from GitHub

repositories verified and fixed by developers. We complemented this empirical evidence with

curated expert knowledge obtained through targeted interviews and surveys. This multi-pronged

data collection strategy allows our taxonomy to be grounded in both reproducible faults and

practical insights from developers and researchers actively engaged in Hybrid Quantum-Classical

architectures design and deployment.

Focus. Prior studies have focused on specific domains such as classical software engineering

(e.g., Defects4J [16]), deep learning systems (e.g., Humbatova et al. [8]; Thomas et al. [32]), or

specialised subfields such as Quantum Machine Learning (e.g., Zhao et al. [30]). In contrast, our

work targets the emerging domain of Hybrid Quantum–Classical architectures, where quantum

, Vol. 1, No. 1, Article . Publication date: January 2026.

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
9

and classical components interact within the same computational workflow. This focus reveals

new categories of faults that cannot be adequately captured by existing taxonomies developed

for purely classical or purely quantum contexts. By centring on real Hybrid architectures, our

taxonomy captures the distinctive fault patterns and interaction failures characteristic of hybrid

systems, providing researchers and practitioners with a timely and practically relevant foundation

for advancing testing and debugging methodologies in Hybrid architectures engineering.

Validation. A defining strength of our work lies in its rigorous validation methodology. Whereas

prior studies have typically relied on manual curation (e.g., Bugs4Q [25]; QBugs [26]) or literature-

based triangulation (e.g., Gill et al. [23]), our approach introduces a more systematic, multi-stage

validation pipeline. This pipeline combines cross-validation with existing datasets, triangulation

across heterogeneous sources—including GitHub issue reports, developer interviews, and targeted

surveys—and expert assessment obtained through both interviews and a dedicated round of valida-

tion surveys. This methodological depth ensures that our taxonomy is empirically grounded and

verified for accuracy and practical relevance by a diverse set of practitioners and researchers across

multiple quantum-computing subfields. To reduce false positives (i.e., issues that do not correspond

to actual faults), we restricted our dataset to closed issues, guaranteeing that each entry reflects a

confirmed and resolved fault. This choice enhances the reliability and reproducibility of our results

and aligns with best practices adopted in previous peer-reviewed software-fault datasets (Zhao

et al., 2021 [25]; Campos et al., 2021 [26]; Luo et al., 2022 [27]; Li et al., 2023 [28]; Zappin et al.,

2024 [31]).

Limitation. Despite these strengths, we acknowledge that our taxonomy, while broad and empir-

ically grounded, is inherently shaped by the current state of hybrid quantum-classical technologies

and the faults that have been reported and documented to date. As quantum hardware, software

frameworks, and hybrid orchestration techniques evolve, new classes of faults will inevitably

emerge. This limitation underscores the importance of designing our taxonomy to be extensible

and adaptable to future architectures — a design choice that we have explicitly prioritised to ensure

its long-term relevance and usefulness to the research and development community.

Conclusion. In summary, compared to prior datasets and taxonomies (as outlined in Table 1),

our study distinguishes itself through its diverse and reliable data sources, its focused attention

on hybrid architectures, and its rigorous validation process that integrates expert perspectives

with empirical evidence. By addressing the current gap in hybrid fault taxonomies and providing a

reproducible dataset enriched by expert insight, our work lays a foundational basis for advancing

testing strategies and improving the robustness of Hybrid quantum-classical software systems. We

further detail the practical applications and future directions of our taxonomy in Section 6.5.

4 METHODOLOGY
Fig. 4 presents an overview of our methodology to construct the final taxonomy. To ensure the

scientific rigour of our process, we incorporated several validation steps. These included a compre-

hensive cross-validation of our fault dataset by the two independent authors; expert interviews to

diversify the origins of our dataset, with transcripts analysed separately and then discussed jointly

by the authors; and a separate survey with an independent group of experts, used solely as a final

validation layer. The two authors involved in the cross-validation are a P.h.D. student specialising in

Quantum Computing and a Lecturer with expertise in Machine Learning and Software Engineering.

They came from different institutions and have distinct backgrounds, ensuring their independence.

Each validation step was carefully documented and is fully accessible in the replication package.

We detail the methodology in the remainder of this section based on the steps depicted in Fig. 4.

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/10.5281/zenodo.18172880

10 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

Table 1. Summary of Related Work and Positioning of Our Study

Study / Dataset Data Source Focus Validation Steps Gap / Limitation
Defects4J [16] Java GitHub Reposito-

ries

Real faults dataset for test-

ing and debugging

Extensive dataset curation and

cross-validation with multiple Java

projects

Not applicable to quantum or Hybrid ar-

chitectures

Humbatova et al. [8], Thomas

et al. [32]

GitHub, Stack Overflow Taxonomy of real faults in

deep learning applications

Expert-based evaluation of taxon-

omy; empirical validation on DL

repositories

Does not cover quantum or Hybrid soft-

ware architectures

Zhao et al. (Bugs4Q) [25] GitHub (Qiskit) Benchmark of bugs in

quantum programs

Manual curation of issues and

patches from Qiskit repositories

Contains only a single hybrid-related bug;

not tailored to Hybrid architectures

Campos et al. (QBugs) [26] GitHub (Qiskit, etc.) Catalog of quantum soft-

ware bugs

Validation through comparison

with prior datasets and literature

review

Focuses on general quantum software;

lacks hybrid specificity

Zappin et al. [31] Developer Forums

(e.g., Xanadu, StackEx-

change)

Developer-reported issues

and discussions

Descriptive qualitative validation

via discussion analysis; no system-

atic cross-validation

Lacks GitHub-based empirical faults; no

validation or fault taxonomy

Gill et al. [23] Literature Review Research priorities in quan-

tum software engineering

Literature triangulation and expert

interpretation

Mentions Hybrid architectures, but lacks

empirical fault analysis and testing focus

Zhao et al. [30] GitHub (QML Frame-

works)

Empirical analysis of quan-

tum machine learning soft-

ware faults

Manual inspection of commits and

issue reports; triangulation with lit-

erature

Concentrated onQML; not representative

of general hybrid algorithms

Miranskyy et al., Paltenghi et

al., Metwalli et al., Pontolillo

et al. [2, 21, 22, 24]

Various (Literature,

Tools)

Highlight challenges in

quantum software testing

Conceptual validation through ex-

pert discussions and case studies in

prior literature

Do not address real-world faults or

hybrid-specific taxonomies

Luo et al., Li et al. (QASM-

Bench) [27, 28]

GitHub, Benchmarks Dataset of quantum bugs

and low-level NISQ bench-

mark suite

Benchmark validation against stan-

dard quantum workloads and re-

producibility studies

Focus on bug benchmarking and circuit-

level simulation; not hybrid-focused

Our Study GitHub + Manual Cu-
ration + Interviews
and Survey

Taxonomy of real faults
in Hybrid architectures

Cross-validation, validation
with other datasets, expert
interviews, and expert survey-
based validation

First empirical taxonomy based on
real hybrid faults; grounded in cur-
rent implementations and extensible
to future architectures

Fig. 4. Overview of the 6 steps that led to the construction of our Final Taxonomy.

Step 1. ManualQuery Refinement
In this step, we define the inclusion/exclusion criteria (1.1), identify the sources of real and open

code bases with available bugs (1.2), design our search query (1.3), and analyse the initial search

results to refine the search query (1.4).

, Vol. 1, No. 1, Article . Publication date: January 2026.

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
11

1.1. Inclusion Criteria. We define our inclusion criteria, based on our research questions, as follows.

A fault is included in our dataset if it:

(1) Occurs in an implementation of a Hybrid Quantum-Classical architectures (e.g., NISQ algo-

rithms) (RQ1).

(2) Includes a suitable description of the fault and the code associated with it (RQ1 and RQ2).

(3) Includes a suitable description of the fix and the code associated with it (RQ1).

(4) Includes a description of the problem and its solution in English (RQ1 and RQ2).

We aim to comply with ACM guidelines for reproducibility [33], which means a different team

should be able to reproduce these faults using the same setup.

1.2. Analysing Available Resources. Quantum computing is a young field. Access to quantum

simulators and real computing platforms has been available for only a few years. Hence, the amount

of open software and associated data available online is limited. We first analysed the typical web

resources for such software and data: we searched Github, StackOverflow, StackExchange, and

quantum-specific forums such as Pennylane and TensorFlow Quantum forums. We found results of

interest for this study only on GitHub. At the time of the study, StackOverflow and StackExchange

had very few discussions regarding Hybrid Quantum-Classical architectures. Those discussions

were exclusively theoretical, with no code provided, or questions related to installing or import-

ing software. Due to the inclusion criteria number 2 and 3, we excluded them. Some discussions

reported faults in quantum circuits that we excluded following criteria 1 since we found only

quantum faults and not Hybrid Quantum-Classical architecture faults. GitHub was, hence, the only

available public source featuring source code and data satisfying our inclusion criteria. We also de-

cided to focus on the main repositories containing Hybrid Quantum-Classical issues. This includes

four famous quantum simulation platforms - Qiskit, Tensorflow Quantum, PennyLaneAI, NVIDIA

Cuda-Quantum, and four independent established repositories from universities and companies -

qiboteam, AgnostiqHQ, cuda-tum, goodchemistryco. This variety of fault sources aims to provide an

eclectic overview of Hybrid Quantum-Classical architecture faults to answer our research questions.

1.3. Designing a Search Query. We used GitHub search API to find Hybrid Quantum-Classical

architecture faults and manually assess them. After an initial manual search investigation, we

discovered that NISQ algorithms are the only Hybrid Quantum-Classical architecture for which

there are examples of public faults and bug fixes satisfying our criteria. We first searched ’NISQ’

and ’Noisy intermediate-Scale Quantum’. We found these keywords to be too generic. They mostly

led to discussion around research papers, or theoretical questions about the nature of NISQ, with a

vast majority of results not written in English. All the 718 results were directly excluded by at least

one of our criteria, and often all four of them. Hence, we decided to search for specific algorithms

designed for Hybrid Quantum-Classical architectures.

Most implementations require importing a package named after the algorithms. For example,

in qiskit, we import a class named VQE to implement VQEs. Any source code including such an

import, or any discussion mentioning the searched algorithms will be identified by this method. We,

therefore, used the following keywords, which are the available algorithms according to a recent

survey [15]: VQE, VQA, Variational Quantum eigensolvers, Variational Quantum algorithm, Quantum
Annealing, Gaussian boson sampling,Analog quantum simulation,Digital-analog quantum simulation
and computation, Iterative quantum assisted eigensolver, Quantum Approximative Optimisation
Algorithms, QAOA, Quantum Machine Learning, QML, Tensorflow Quantum, and TFQ.

, Vol. 1, No. 1, Article . Publication date: January 2026.

12 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

Step 2. GitHub Search, Filtration, and Validation
In this step, we performed the search and stored the results (2.1); applied our inclusion/exclusion

criteria and performed first the manual filtration of the results by one author and then their labelling

by two authors. Table 2 provides an overview of the number of issues from our initial search process

(in the column marked Initial) and after each stage of cross-validation (columns marked "Filtration"

and "Labelling").

2.1. Organising the Search Process. To ensure the reproducibility of our results, we implemented a

script that automatically extracts all results of a GitHub search, with the issue’s title and link, into

an Excel spreadsheet. The script is flexible and can easily be adapted to other queries. The results

of each query are extracted into a separate sheet. Since GitHub search can only display up to 1000

results, our script automatically divides a search into sub-searches if more than 1000 results are

found, and gathers all of them. As shown in Table 2, the script extracted 5072 issues.

2.2. Manual Filtration. We then excluded any issue that does not comply with one or more of our

criteria: it does not concern a Hybrid Quantum-Classical architecture, it does not provide code or

fix, or it is not in the English language. The manual filtration process was carried out by the first

author, who opened and examined each of the 5072 issues extracted by the script individually. For

each issue, the author read the title, body, and available code snippets (if any), and excluded any

issue that clearly violated one or more of the inclusion criteria—such as being unrelated to Hybrid

Quantum-Classical programming, lacking technical content, or being written in a non-English

language. This step aimed to discard only obviously irrelevant issues, so as to preserve sensitivity.

In cases where there was any ambiguity or doubt regarding the relevance of an issue, it was retained

for further discussion and validation during the cross-review process between both authors in

the next stage. As a result of applying the inclusion criteria, 529 faults remained in the dataset, as

reported in column "Filtered" in Table 2.

We note that this filtration followed a conservative benchmarking principle: exclude only those

issues that were clearly non-qualifying, and defer ambiguous cases to the second-stage validation.

The results of manual filtration show that ‘QML’ resulted in a high number of false positives. The

reason behind this is that ‘QML’ stands not only for ’Quantum Machine Learning’, but also for

’QT Modeling Language’, which typically uses a file type ‘.qml’. Out of the obtained 2861 results,

only 62 were related to quantum programming, and only 6 were about Hybrid Quantum-Classical

architectures. Pennylane, which is a common framework for quantum machine learning, is often

imported using ‘import pennylane as qml’ as advised in their official documentation. Any program

using this import without implementing a Hybrid Quantum-Classical architecture is caught by

searching ‘QML’. Also, all remaining 6 issues were caught by other keywords.

Our results also indicate that the abbreviations such as VQA instead of Variational Quantum

Algorithms lead to fewer false positives, as using the full names of algorithms typically leads to

issues the majority of which lack any source code.

Step 3: Labelling
In this step, we first perform a pilot review of the faults to define a structure for coding more

information about them (3.1); we use this structure to code information about each fault, including

their type, symptoms, and potential causes (3.2); then we perform a cross-validation of the labels

(3.3).

Independence of the two authors. To mitigate potential bias arising from shared research affiliation,

we implemented several measures to ensure independence and objectivity in the fault classifica-

tion process. The two authors involved came from distinct disciplinary backgrounds (software

, Vol. 1, No. 1, Article . Publication date: January 2026.

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
13

Table 2. Number of identified results after each stage: “Initial” refers to the initial number of results obtained
through GitHub search, “Filtered” refers to the number of issues that satisfy the inclusion criteria, “Labelled”
refers to the number of issues that were decided to be relevant during the manual labelling process by two
authors.

Query Initial Filtered Labelled
VQE 792 162 28

VQA 1886 0 0

QAOA 466 87 27

QML 2861 6 0

TFQ 226 36 19

Quantum Machine Learning 1038 164 20

Variational Quantum algorithm 100 10 1

TensorFlow Quantum 433 66 22

Other Queries 131 4 16

TOTAL 5072 529 133

engineering and quantum computing), had no prior working relationship at the time of the study,

and conducted independent reviews and labelling of fault instances before resolving discrepancies

through structured discussion. The classification task was inherently technical and systematic,

with predefined labels and coding schemes, minimizing subjective interpretation. Furthermore,

the resulting taxonomy underwent external validation through expert interviews and a follow-up

survey, providing additional layers of triangulation and verification.

3.1. Pilot Fault Review. Each included fault was analysed by two different authors to identify its

type, i.e., its place in the Hybrid Quantum-Classical architecture, its symptoms, and its possible

root causes (indicated by the fix). We labelled the faults between two different authors to reduce

the risk of manual error and individual bias.

For this pilot, we selected 30 bugs. Once each author completed the labelling process, we

conducted a consensus meeting. During this pilot study, 20 conflicts emerged and were resolved

through discussion.

3.2. Individual Labelling. During the discussion, we also defined high-level categories along

which we decided to classify the bugs we analysed:

• Parametrisation. Fault related to the parameters of the circuit or the tensors.

• Ansatz. Issues arising during the design of the Ansatz. Initially, this category was thought

of as a sub-category of Quantum Circuits, but we decided to gather all faults specific to the

Ansatz design since it is a crucial part of Hybrid architectures.

• Quantum Circuit. Faults occurring within the quantum circuit. This gathers all quantum

faults not directly linked to the Ansatz.

• Optimisation. Faults encountered during the optimization loop.

• Measurement. Faults occurring during a measurement or a sequence of measurements.

• GPU integration. Issues related to GPU integration.

These categories correspond to the main components of the workflow of a Hybrid Quantum-

Classical architecture development. We used them only for guidance and added new categories and

their subcategories when necessary. A more detailed description of the final list of these categories

and subcategories is provided in Section 2.3.

, Vol. 1, No. 1, Article . Publication date: January 2026.

14 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

For each bug, we extracted information on whether it is relevant to the scope of our study or

not, assuring they follow our inclusion criteria. Particularly, we evaluate if the fault was indeed

reflecting an aspect of a Hybrid architecture. If it is relevant, we then identified whether this bug

takes place inside a library designed to be used when building an architecture (for example, a bug

inside Qiskit libraries), or whether the bug happens due to a developer error when using the library.

We differentiate between these scenarios because when the issue lies within the library, it suggests

a need for fixing or improving the library code. In contrast, if the issue is due to a developer error,

then the fix should take place in the developer code. Getting an insight on which scenario takes

place more often, can guide the future efforts required to prevent them.

Lastly, for each bug, we identify its symptom (such as crash, failure, slow performance, wrong

output) and create a short label that summarises its root cause (for example, "suboptimal kernel

building"). During the labelling procedure, we kept the list of already generated labels available to

enable their reuse when necessary. We have labelled the 529 bugs in 8 rounds (targeting on average

60 bugs per round) and had a conflict resolution meeting after each round. We carefully tracked all

conflicts (108 in total) and how they were resolved.

Step 4. Expert Interviews
There are limited public and open-source resources available for Hybrid Quantum-Classical archi-

tecture at the moment. While many frameworks are open-source, the data available about them and

the instances of programs using them are scarce. We therefore decided to conduct expert interviews

to enrich and validate our dataset. This step is organised into the following sub-steps: selecting the

participants (4.1); designing the interviews (4.2); and conducting and processing the interviews

(4.3). The result of the latter step is fed into a further survey (Step 5) and is incorporated into the

final taxonomy (Step 6).

4.1. Selecting Interviewees. To ensure diversity in our panel of experts, especially between in-

dustry and academia, we selected and contacted experts working on Hybrid Quantum-Classical

architectures at several leading quantum computing companies such as Quantum IBM, Quasar

USA Quantum Blockchain Technologies, Google Quantum, and ClassicQ. We approached them

through e-mail, as well as LinkedIn and ResearchGate’s private messaging systems. We received

three positive responses and managed to secure another industry interview (a total of four) through

personal contacts. One of the interviewees from the industry was identified by us due to their

active participation in fixing several of the GitHub issues in our dataset, and we contacted them

on the LinkedIn platform.The remaining selected experts (seven in total) are active in academia.

Two of them have a strong connection with the industry. Academic profiles vary from PhD student

to Professor, both from Computer Science and Physics Departments, with significant experience

in Quantum Computing and especially in Hybrid Quantum-Classical architectures.To ensure a

structured analysis, all experts were explicitly categorised based on their academic vs. industrial

affiliation and disciplinary background. We directly asked participants about their expertise, current

role, and experience during the interviews, as can be verified in the transcripts provided in our

replication package (see the “Interview” folder). This categorisation allowed us to contextualise their

feedback appropriately and ensured that insights from both academic and industrial perspectives

were incorporated into the taxonomy refinement process.

4.2. Designing the Interview Structure. We opted for a semi-structured interview to have a flexible

and adaptive structure to elicit as much information from the experts as possible [34]. After

establishing the scope of the study, and defining the key terms as advised in the pilot interviews,

we opened with a broad question, namely, ’What kind of problems have you experienced developing
Hybrid Quantum-Classical architectures?’. We tried to adapt the questions to the interviewees and

, Vol. 1, No. 1, Article . Publication date: January 2026.

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
15

re-direct the discussion to lead them to share the faults they have experienced. We prepared a script,

available in the replication package, to ensure consistency in the content of each interview while

being adaptive to elicit most information where the interviewee had more experience. When the

interviewee mentioned any fault during the interview, we asked additional questions to identify all

the characteristics required for our collection (in the library or not, symptoms, etc.)

4.3. Processing the Interviews. We conducted 11 interviews with interviewees from different

academic and industrial profiles. To validate the structure of the interview, we conducted them

in two rounds: a pilot round and a final round. The first two pilot interviews were held by two of

the authors. We asked for the feedback of the interviewees to improve the interview process. The

two comments received were to better define the context of the study, start the interview with a

formal definition of Hybrid Quantum-Classical architectures and faults, and send the questions in

advance. Both the interviews and the feedback discussions were transcribed and are available in

the replication package. Once we ensured the final interview structure, the remaining 9 interviews

were held by the first author only. Each interview was transcribed once the consent from the

interviewee has been obtained. Two of the authors analysed the transcription and extracted the

faults mentioned in it independently, to later cross-validate the results through a consensus meeting.

The highlighted new faults or categories were extracted to be incorporated into the dataset. In

these cases, all relevant passages of the transcripts were highlighted, and each fault extracted is

associated with an exact timestamp in the transcription.

Step 5. Final Validations
5.1. Search Validation. We explored other quantum bug benchmarks [25][30] and selected all

bugs that satisfied our inclusion criteria. Given that those benchmarks include fixed bugs, they all

comply with criteria 2 to 4, which means we selected all bugs that occurred in Hybrid Quantum

Classical architectures. We verified that all these bugs were included also in our dataset. Bugs4Q

[25] included only 3 bugs with a noise simulation, and none were Hybrid Quantum-Classical

architecture faults. The second study [30] focused on Quantum Machine Learning bugs. To validate

our dataset, we checked all benchmark faults complying with our four criteria in the benchmark

repositories and ensured our dataset included them. We selected 71 bugs in their repository, all of

which were indeed already captured in our results.

5.2. Validation Surveys. We created a validation survey to ensure the relevance of our taxonomy.

The expert participants for validation were recruited through our personal contacts and project

partners. This survey was sent to an independent group of 25 researchers and industrial experts

who did not participate in our interviews, of which 7 answered. After gathering their background,

the participants were asked if they had encountered faults/problems in each of the categories of

our final taxonomy. A final open question checked whether the participant had encountered faults

that did not fall into our categories to validate the soundness of our taxonomy. The survey’s results

can be found in the next section, and more details are available in the replication package.

Step 6. Final Taxonomy Construction
Once the final dataset was compiled, two of the authors analysed the categories and sub-categories

separately and made the labels consistent (in terminology and style). This stage aimed to harmonise

the results and find common patterns in the labels that could be gathered as a category or a sub-

category. Our starting point for the main categories was the general architectural components

identified in Step 3 (3.2), but we updated them by considering the outputs of the interviews. As a

result, a category was removed and another was added at this stage. The resulting taxonomy is

, Vol. 1, No. 1, Article . Publication date: January 2026.

16 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

depicted in Fig. 5 and are further elaborated in the replication package. We reflect upon this result

in the remainder of this paper, as well.

5 RESULTS
In this section, we provide an overview of the various results obtained in the process of gathering,

structuring, and validating our dataset of real faults, including the dataset itself, the taxonomy, and

the reflections based on the dataset, interviews and surveys leading to answers to our research

questions.

5.1 Faults Dataset
Our datasets consist of 133 real faults from GitHub issues and 52 from the interviews. The interviews

resulted in adding a full category of “Conceptualisation” that was not captured by the GitHub

mining. After the interviews, we decided to merge the “Ansatz Creation” category as a sub-category

of Quantum Circuits, because they pertain to the same components of the architecture. Moreover,

we gathered all API-related faults into a new category. As a result, we finally ended up with seven

top-level categories: Parametrisation, Conceptualisation, API, Optimisation, Quantum Circuit,

Measurement and GPU. Table 3 gives an overview of the partition of the dataset in our final

categories. The numbers separated by a plus sign represent the faults from the GitHub mining and

the interviews respectively. 35% of GitHub faults produce a wrong output, 3% performance issues,

and the remaining cause different crashes. Interviewees mentioned, however, that over 75 % of

faults led to wrong outputs, 8% causing performance issues, and the remaining producing different

crashes. Further labelling (of symptoms and causes) and a description and link to each fault are

available in the replication package.

Table 3. Overview of the final result of faults included in the dataset: “Level” is the fault location in the Hybrid
architecture; “Faults” is the total number of faults, differentiating betw. GitHub- and interview-sourced faults
(GitHub+Interviews); “In Lib.” denotes the faults in the libraries and “Not in Lib.” are those in the code using
the libraries (both differentiating Github- + Interview-sourced faults).

Level Faults In Lib. Not in Lib. Sub-Categories
Parametrisation 22+8 10+2 12+6 8

Conceptual 0+17 0+0 0+17 6

API 30+6 5+4 25+2 3

Optimisation 34+11 24+3 10+8 12

Quantum Circuit 24+3 21+1 3+2 8

Measurement 15+7 13+5 2+2 6

GPU 8+0 8+0 0+0 4

TOTAL 133+52 81+15 52+37 47

5.2 Final Taxonomy
The final taxonomy, displayed in Fig. 5, is organised based on seven top-level categories, further

divided into sub-categories. We decided to organise the taxonomy around categories representing

the location of the fault, and sub-categories corresponding to the cause of this fault, to make sure it

is relevant to both fault detection and fault localisation. For each category and sub-category, we

report the number of found real bugs; as before, the numbers are separated by a plus sign between

the number of faults originating from the GitHub mining and those originating from the interviews,

respectively. As these numbers indicate, each subcategory contains multiple fault types. We have

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/10.5281/zenodo.18172880

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
17

established 125 unique labels overall. However, due to space limitations, we could not demonstrate

all of them in the taxonomy figure. In what follows next, we concisely present all categories and

sub-categories.

Parametrisation. Parametrisation issues consist of all faults that occur at the initial phase of

parametrisation of the quantum circuit and the optimiser, divided into 8 sub-categories listed in

Table 4. This category of faults was equally represented in GitHub and interviews, accounting for

ca. 15% of faults in both sources. Faults in this category are usually caused by a wrong data type

for parameters or a wrong initialisation and would result in both wrong outputs or crashes.

An example of a fault of this type is a GitHub issue in which a pennylane.numpy.tensor type
sequence is initialised as a parameter gate at the parametrisation phase, causing a Runtime Error.

The key-words arguments are assumed to be non differentiable by default, which causes a crash

with certain devices that are not capable of supporting the application of a gate taking this type of

argument. It was fixed by ensuring the arguments are marked as differentiable when passed to a

QNode as a keyword argument. This fault has been placed in the Tensors sub-category and was

marked as a fault inside a library.

Table 4. Faults happening at the parametrisation phase of the system, divided into 8 sub-categories. Typical
cause is the most used label in this category, Nb is the number of faults from online resources and interviews
respectively.

Sub-Categories Typical cause Nb
Tensors Wrong input type for tensors 2+0

Gradients Wrong initialisation type for the gradients 3+0

Parametric initialisation Wrong initial point 8+6

Model Size Suboptimal depth size for the model 3+0

Operation Pool Suboptimal number of operators in the pool 0+1

Circuit Declaration Wrong qubit register declaration 4+1

Register Length Wrong initialisation of the register 1+0

Seed Settings Global seed is not set 1+0

Conceptual. This category emerged from the interviews and accounts for 33% of the faults

mentioned by experts as shown in Table 3. It consists of the conceptual mistakes made while

translating the domain knowledge into an instance of a Hybrid Quantum-Classical architecture.

This translation process is far from trivial and several faults that may be introduced in the translation

process are listed in Table 5. In Section 2.3, we have introduced the key concepts used in this category,

such as Hamiltonians, which is the representation of a quantum system and corresponds to a specific

electronic structure. During the iteration process, this electronic structure corresponding to the

represented system can be broken, leading to erroneous behaviours. More details can be found in

Tilly et al.’s detailed review of VQE [12].

For instance, four experts mentioned Conceptual faults introduced by suboptimal Ansatz design

as discussed in Interview 5. A poor Ansatz design can significantly affect the optimisation process:

it will lead to performance issues and wrong outputs. It can be the root cause of Barren plateaus

issues. Yet, finding an optimal Ansatz design is very challenging even for domain experts, it is

problem-specific, and still an active area of research [12].

API. API issues pertain to either the usage of an API or an internal problem in the API itself. We

found API misuse to be very common, representing over 20% of the GitHub faults and 10% of the

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://github.com/PennyLaneAI/pennylane/issues/900

18 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

Fig. 5. The final taxonomy, organised into 7 top-level categories in darker colours, divided into 47 sub-
categories in lighter shades of the same colour.

, Vol. 1, No. 1, Article . Publication date: January 2026.

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
19

Table 5. Faults happening at the conceptualisation phase, comprising 6 sub-categories. Typical cause is the
most used label in this category, Nb is the number of faults from online resources and interviews respectively.

Sub-Categories Typical cause Nb
Hamiltonian Incorrect physical to qubit Hamiltonian transformation 0+4

Electronic Structure Broken electronic symmetries 0+3

Cost Function Suboptimal cost function definition 0+3

Model Size Suboptimal model size 0+2

Ansatz Suboptimal Ansatz design 0+4

Data Processing Mismatch between training data and parametric data 0+1

interview faults as shown in Table 3. This can be due both to the complexity of the frameworks and

the lack of proper documentation for advanced features. The latter was mentioned several times

during the interviews as a challenge in Hybrid Quantum-Classical architectures. Frameworks to

implement customised Hybrid Quantum-Classical architectures are rare. Developers often need to

integrate machine learning frameworks such as Tensorflow or PyTorch into quantum simulators

such as Qiskit or Cirq. Faults in such an integration introduce crashes, failures, wrong behaviours,

and performance issues. This category was initially a sub-category in several categories and was

later consolidated into a coherent category, divided into 3 sub-categories listed in Table 6.

A common example of API issues is the use of Deprecated API as in the following example.

The simulators commonly used are constantly being refactored, and the documentation available

online do not always lead to the latest version available. As a result, programs have a very short

life expectancy and developpers constently need to adapt their code to the latest versions.

Table 6. Faults happening at the API level of the system, divided into 3 sub-categories. Typical cause is the
most used label in this category, Nb is the number of faults from online resources and interviews respectively.

Sub-Categories Typical cause Nb
API Misuse Developer Error 24+0

Deprecated API Calling old function 4+1

Suboptimal API integration Integration between frameworks 2+5

Optimisation. This category concerns the faults occurring in the classical code for optimisation.

We initially named this category Training, refering to Humbatova et al.’s Taxonomy of Real Faults

in Deep Learning Systems [8]. However, we realised at a later stage that Optimisation defines better

this category in the context of Hybrid Quantum-Classical architectures. This category is still labelled

as Training in the replication package to acknowledge the evolution of our study. It is the biggest

category of our taxonomy, both in the numbers of faults and of sub-categories, accounting for about

25% of GitHub faults and 20% of interviews‘ faults, divided into 12 sub-categories, listed in Table

7. The large number and diversity of faults in this category are motivated by the corresponding

complexity and size of the code: due to the noise in the current architectures, the amount of classical

code for optimisation dominates the complexity and size of the quantum circuit. At each iteration,

the measurements of the quantum circuit are stored as intermediate results, the cost function is

updated, and the coefficients of each parametric gate and the weights of the Ansatz’s layers are

updated for the next iterations. A more detailed explanation is available in Tilly et al.’s review of

VQE [12].

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://github.com/Qiskit/qiskit-aer/issues/1595
https://doi.org/10.5281/zenodo.18172880

20 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

An example of an optimisation fault from the Tensors sub-category is a GitHub issue in which a

fault occurs during the optimisation process where the data passed between each epoch do not

have the same batch size. The fault was diagnosed by slowly building up the model and ensuring

the shape inputs behave properly. It was fixed by setting a batch size appropriate to the training

data.

Table 7. Faults happening at the optimisation phase of the system, divided into 12 sub-categories. Typical
cause is the most used label in this category, Nb is the number of faults from online resources and interviews
respectively.

Sub-Categories Typical cause Nb
Coefficients Wrong handling of unshifted coefficients 1+0

Handling of interme-

diate results

Wrong calculation of intermediate operators 1+0

Iteration problems Wrong handling of weights 14+4

Matrix Calculation Mismatching ordering method for results matrices 2+2

Memory Suboptimal memory consumption calculation 1+0

Model Size Inefficient memory handling 2+1

Parameter Shift Wrong handling of parameterized gates 2+0

Randomisation Suboptimal random generation mechanism 1+0

Sorting Mechanism Mismatch between sorting mechanism and associated

probabilities

1+0

Tensors Wrong input type passed to the tensors 8+0

Objective Functions Suboptimal objective function interaction with tensors 1+0

Barren Plateaus Suboptimal Ansatz structure / Noisy Measurements 0+4

Quantum Circuit. In this category, elaborated in Table 8, we gather the faults in the quantum

circuit, divided into 8 sub-categories. These bugs are specific to the design of a quantum circuit and

are caused by the incorrect design of the Ansatz, its parametric nature, or the iteration over the

circuit.

For instance, this fault, categorised as Ansatz Creation, was introduced by the developer who

did not place a Hadamard Gates Wall in the Ansatz before the model circuit, which broke the link

between the input tensor and to the sample layer and led to incorrect outputs. The Ansatz was

conceptualised properly, but wrongly implemented. This issue was found by debugging the outputs

behaviour when modifying the Ansatz, until the origin of the wrong behaviour was found.

Measurement. In this category, listed in Table 9, the issues related to the measurement phase are

classified. They represent about 11% of both GitHub and interview faults. Measurement is a crucial

phase since it represents the transition from quantum information into classical information and

many faults occur due to inappropriate choice of measurement (e.g., in grouping the observables)

or transformation and storage of classical results (e.g., floating point operations or storing the

variables).

In this issue, a measurement imprecision accumulates with the circuit’s size, leading to a wrong

output. This is due to a sub-optimal extraction of the measurements introduced by the qsim version

used when iterating over the qubits; hence it was labelled as an In Library fault. It was fixed by

updating the iteration process ensuring the C++ version of qsim used and the referenced version

do not mismatch.

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://github.com/tensorflow/quantum/issues/321
https://github.com/tensorflow/quantum/issues/176
https://github.com/tensorflow/quantum/issues/235

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
21

Table 8. Faults originating from the quantum circuit, divided into 8 sub-categories. Typical cause is the most
used label in this category, and Nb is the number of faults from online resources and interviews, respectively.

Sub-Categories Typical cause Nb
Circuit decomposition Suboptimal handling of redundant qubits 3+0

Gates Wrong handling of custom gates 4+1

Initialisation Suboptimal kernel building 2+2

Operators Suboptimal qubit reduction 7+0

Pauli Sums Suboptimal handeling of PauliSum Operator 0+1

Phase Wrong handling of global phases 1+0

Register Mapping Incorrect handling of unusual types by register mapping 2+0

Ansatz Creation Wrong input type passed to the layers 3+0

Table 9. Faults originating from the measurements, divided into 6 sub-categories. Typical cause is the most
used label in this category, Nb is the number of faults from online resources and interviews respectively.

Sub-Categories Typical cause Nb
Expectation Value Suboptimal observables grouping strategy 5+0

Precision Wrong handling of floating points 1+1

Observables Suboptimal measurement process 3+0

Noise High noise level 0+6

Storing results Suboptimal type for storing results 3+0

Memory use Memory handling 3+0

GPU. The issues related to the use of a GPU in the architecture are listed in Table 10.

This Segmentation Error example, categorised as Memory Allocation, is due to a Unitary matrix

larger than the matrix buffer allocated to GPU. We expect this category to become more significant

in the future since much work aims to further integrate GPUs into Hybrid Quantum-Classical

architecture and quantum simulators.

Table 10. Faults originating from the GPU integration, divided into 4 sub-categories. Typical cause is the
most used label in this category, Nb is the number of faults from online resources and interviews respectively.

Sub-Categories Typical cause Nb
Memory Allocation Wrong memory allocation for GPU when the model is big 2+0

GPU not supported Suboptimal GPU integration 3+0

Memory handling Memory Leak 1+0

Running on CPU Implementation using CPU instead of GPU 2+0

5.3 Validation Results
Table 11 displays the results of the validation survey. One of the seven participants answered "No"

to the opening question ’Have you experienced Hybrid Quantum-Classical architecture faults’, so

we decided to exclude their contribution as it did not fit the required expertise - they only had some

high-level theoretical knowledge of Hybrid Quantum-Classical architectures. Not all participants

filled every sub-question about the severity and effort to solve per category; the answers received

are summarised in Table 11. 4 participants declared having a Computer Science background, 2

came from Physics education, and one from Mathematics.

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://github.com/Qiskit/qiskit-aer/issues/1647

22 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

The results of the survey generally support the findings of the Github mining and the interviews:

the identified categories of faults were experienced by at least 50% of the participants, with 4

categories experienced by 83% of them. All but one participant experienced at least half of the

categories of faults. The aforementioned remaining participant has experienced 3 out of 7. When

asked if they have encountered faults not present in the survey, two mentioned noise-induced

errors - present as a sub-category of Measurements, and one mentioned a specific API problem that

would fall into our API Misuse sub-category. The rest of the participants answered negatively. The

survey provided additional insights that can be further used when developing testing, debugging,

and repair techniques for these faults: critical faults seem to be concentrated in API, GPU, and

measurement components. As we report below, our manual analysis also corroborates that the

interfaces of components, particularly across the quantum and classical boundary are most prone

to severe faults. The survey indicates that API faults are not only critical but difficult to resolve,

while conceptualisation faults, which are mostly minor issues, are also very difficult to resolve

due to the deep insight needed both in the domain and in the translation to quantum concepts.

We acknowledge that the relatively small sample size of the survey limits its statistical power and

generalisability. Recruiting experts in the highly specialised field of Hybrid Quantum-Classical

computing remains a significant challenge, especially as survey participants were independent

from the interviewees. Therefore, the survey is intended primarily as a qualitative validation to

confirm consistency with findings from empirical analysis and expert interviews, rather than to

support formal statistical conclusions. The following section details further our findings.

Table 11. Validation Survey Results. In each category, the “Answer” column indicates if the experts have
encountered any such faults before. For those who have identified the faults in the category a further
indication of the “Severity” (minor, major, or critical) of and the “Effort to Resolve” (low, medium, or high) the
encountered fault are provided in the corresponding columns.

Categories Answers Severity Effort to Solve
Yes No Min. Maj. Crit.Low Med High

Parametris. 3 3 1 0 0 1 0 0

Conceptual 5 1 3 0 0 0 2 1

Measurement 4 2 2 0 3 1 2 0

Optimisation 5 1 2 0 1 1 2 1

Quantum Circ. 3 3 1 0 1 1 0 1

API 5 1 1 0 3 0 1 2

GPU 5 1 1 0 2 0 2 0

5.4 ResearchQuestions
RQ1. Typical failure causes in Hybrid Quantum-Classical architectures. Although Hybrid architec-

tures are prone to regular quantum and classical faults, some faults are specific to this architecture.

The iterative nature of such algorithms introduces further domain-specific challenges.

For example, imprecision in measurements accumulates over time and may cause wrong outputs

that are difficult to detect. We observed that in the currently available frameworks for Hybrid

Quantum-Classical architectures, several type errors can be inadvertently introduced; these include

simple type mismatches and rounding imprecision. Such type conversion and mismatch errors are

significant in the interfaces of the different components in the architecture. They particularly prone

to happen in the optimisation process while handling measurements, and passing intermediate

results between Tensors.

, Vol. 1, No. 1, Article . Publication date: January 2026.

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
23

The iterative nature of the architecture is resistant to noise to some extent and noise can even be

exploited in such architecture to provide diversity in sampling. Noise-induced barren plateaus are,

however, a common fault representing about 25% of conceptual faults. Ansatz’s structure affects

the optimisation in different ways: poor Ansatz design can lead to performance issues as well as

wrong outputs.

There are similar patterns of faults, mostly in parameterisation and optimisation, between ML

and Hybrid Quantum-Classical architectures. However, the introduction of quantum noise gives

the classical optimisation process in Hybrid architecture (and its interface with the quantum circuit)

a unique nature, constituting 50% of the faults mentioned in experts’ interviews.

Answer to RQ1: Over 40% of faults in Hybrid Quantum-Classical architecture happen

at the Parametrisation and Optimisation phase. Over 50% of the faults mentioned in

the expert interviews concern the classical optimisation component and its interface

with the classical circuit. A significant part of the novel faults contributed by the expert

interviews concerns the conceptualisation of the problem from the domain knowledge

into the Hybrid architecture.

The results of the survey and our manual analysis of the real fault dataset both indicate

that the interfaces between structural components of the architecture are the most

fault-prone. We found noticeably input types mismatches, and version integration

between the different components of the algorithms to be problematic.

5.5 RQ2. Contribution to the Taxonomy
GitHub faults and faults mentioned in interviews complement each other nicely. Although GitHub

issues typically gave insight into implementation issues, from the library itself or developer issues,

interviews focused on a higher level of abstraction and comprehension errors.

Answer to RQ2: Our taxonomy was developed iteratively through a combination of

empirical mining and expert validation. The initial structure emerged from a detailed

analysis of GitHub issues, where faults were manually labeled based on their symp-

toms and technical origin. Expert interviews then played a crucial role in refining

the categories, reorganising them to better reflect the practical understanding of fault

causes.

For instance, an issue that would initially have been labelled as a “Structural” fault

happening at the Ansatz level was reclassified during interviews as a conceptual error
in Ansatz design, drawing attention to deeper modelling challenges that are specific

to Hybrid Quantum-Classical architectures. This shift highlighted the importance of

differentiating between surface-level symptoms and root causes—an insight made

possible by expert feedback. Moreover, the interviews revealed disciplinary nuances,

such as computer scientists struggling more on conceptual faults and physicists on

optimisation challenges, which helped balance the taxonomy to better capture the

interdisciplinary nature of the field.

Importantly, the interviews also helped counterbalance the overrepresentation of com-

puter science perspectives typically observed in online resources such as GitHub.

Several interviewees, particularly from physics and mathematics backgrounds, explic-

itly mentioned not publishing or publicly reporting encountered faults—a bias that

would otherwise limit the generalisability of the dataset. These qualitative insights

ensured a more comprehensive and representative taxonomy.

The final taxonomy structure organises faults by their location (e.g., classical opti-

misation, quantum circuit, API layer) and further subcategorises them by cause (e.g.,

, Vol. 1, No. 1, Article . Publication date: January 2026.

24 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

memory issue, circuit decomposition, suboptimal API integration). This approach en-

sures the taxonomy is both empirically grounded and practically relevant, supporting

fault detection, localisation, and future adaptability to evolving Hybrid architectures.

6 DISCUSSION
In this section, we discuss some additional meta-observations from the interviews and surveys that

did not fit in our taxonomy structure.

6.1 HybridQuantum-Classical faults vs. Faults in Deep Learning Systems
Hybrid Quantum-Classical systems bear some similarities to deep learning systems [35][36]; thus,

it is natural to compare our taxonomy with similar work in machine learning [8]. While several

categoriesmay seem similar at first, noticeably Optimisation, API, andGPU, the parallel is superficial:

the root causes in those categories remain different in Hybrid Quantum-Classical architectures.

Other categories are unique to the Hybrid Quantum-Classical architectures. More specifically, for

quantum machine learning (QML), although the optimisation process of the parametric gates is

similar to training in deep learning, the encoding of the dataset into qubits is specific to QML and

thus, the faults introduced in this architecture cannot be directly related to faults in deep learning.

6.2 Computer Science vs. Physics Expertise
Quantum computing is inherently a multi-disciplinary field. While computer scientists and physi-

cists often use the same Hybrid Quantum-Classical architectures, their approaches and the types

of problems they encounter can differ significantly. This difference is clearly reflected in our in-

terviews. Computer scientists tend to struggle more with conceptualisation-related faults, such

as designing the Ansatz or effectively mapping a problem to a Hamiltonian, where the physical

properties and noise characteristics of quantum hardware play a critical role. Physicists, on the

other hand, often face more challenges during the optimisation phase, which requires abstract

reasoning about algorithms and software design.

These disciplinary differences also influence how faults are documented and shared within the

community. Our interviews revealed that computer scientists are generally more likely to publish

faults and open issues on public platforms like GitHub, which is reflected in the dominance of

computer science perspectives in data mined from such sources. Conversely, experts from physics,

chemistry, and mathematics backgrounds often do not publish faults or open issues publicly, either

due to the sensitive nature of experimental setups or different cultural norms in their fields. This

discrepancy was crucial to uncover through expert interviews, as it highlighted the limitations

of relying solely on public datasets for taxonomy development and motivated our inclusion of

a conceptualisation category based on the unique insights from these interviews. Overall, this

underlines the importance of combining empirical mining with expert consultation to capture a

fuller, more balanced picture of the fault landscape in Hybrid Quantum-Classical architectures.

6.3 Manual Debugging Methods
Two approaches were mentioned to investigate and resolve the identified faults: one focusing

on the optimisation process, and another on the problem conceptualisation. In the first method,

the developer detects non-convergence, and first focuses on debugging the implementation and

behaviour of the gradients. They would manually debug each gradient at every iteration to check

if the results are correctly passed and to detect where the error may originate from. The second

approach is more problem-specific andwasmentioned by several experts with a Physics background.

In case of a wrong behaviour of the system, they would first focus on their problem definition and

manually ensure that the Hamiltonian properly represents the problem. The next step would be to

, Vol. 1, No. 1, Article . Publication date: January 2026.

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
25

manually ensure that the Hamiltonian is correctly mapped into qubits. Mapping a Hamiltonian into

qubits is not trivial, and finding an efficient mapping is an open question [12]. They would then

focus on the structure of the Ansatz, and ensure no electronic symmetry is broken (see Section 5.2).

Only then, if no bugs are found in the previous steps, they would proceed to similar steps as the

first approach. In Interview 5, the expert gives a detailed explanation of such a procedure. Many of

these steps could be automated in the future.

6.4 Common Problems
The semi-structured interviews led us to discuss experts’ problems beyond our taxonomy. A topic

mentioned frequently was the lack of accurate and up-to-date documentation. Quantum platforms

tend to mostly document their basic functionalities, leaving advanced features undocumented.

Moreover, experts miss a flexible Hybrid Quantum-Classical architecture to experiment on. Ten-

sorflow Quantum [37] was introduced with this purpose, but stopped being maintained. Several

interviewees mentioned having to implement their connections between machine learning frame-

works and quantum simulators, which often introduce compatibility errors and performance issues.

With the growing interest in Hybrid architecture, researchers and developers would benefit from a

dedicated platform that would strongly integrate all components of such architectures and ensure

robust and reliable implementations, particularly where quantum and classical parts interact. Al-

though common platforms such as Qiskit and Pennylane allow some support for common NISQ

algorithms, such as VQA, experts lack more flexible architecture and templates for various compo-

nents - typically Ansatz and Optimisation, with clear guidelines for the potential applications and

customisations.

6.5 Practical Applications and Guidelines for Use
Hybrid Quantum-Classical architectures are an emerging area of research with increasing prac-

tical significance. However, prior studies have yet to empirically capture the specific nature and

limitations of faults in such architectures. Our work addresses this gap by introducing the first

structured taxonomy of real-world faults in Hybrid Quantum-Classical architectures, grounded in

actual implementations and validated through expert feedback. This constitutes a novel theoretical

contribution to the field of quantum software engineering, offering a foundational understanding

of fault landscapes in Hybrid architectures.

Beyond its theoretical value, our taxonomy is supported by a curated dataset of 133 empirically

observed faults, enabling several practical applications:

• Grounding testing and debugging tools in real-world hybrid faults, thus aligning tool

development with the actual challenges faced by developers.

• Enabling fault injection and simulation using empirically derived fault patterns to

benchmark the effectiveness of quality assurance techniques.

• Supporting education and documentation by illustrating recurring pitfalls in hybrid

program implementation, thereby aiding onboarding and training.

• Guiding future empirical studies through a reusable and extensible classification frame-

work, facilitating comparative analysis across platforms and toolchains.

We plan to integrate this taxonomy and dataset into a toolbox for generating faulty implemen-

tations of Hybrid architectures. This resource will support the empirical evaluation of testing,

debugging, and automated repair techniques. We are conducting a comprehensive analysis of our

findings, derived from both the dataset and the interviews, to develop testing oracles capable of

identifying incorrect behaviours that do not result in crashes for the different fault types by classi-

fying their symptoms. These oracles constitute a critical step toward advancing the understanding

, Vol. 1, No. 1, Article . Publication date: January 2026.

26 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

of hybrid faults and provide a foundation for future research in Quantum Software Testing, both at

the theoretical and empirical levels. By making both the taxonomy and dataset publicly available,

we aim to promote reproducibility and accelerate the advancement of robust, testable Hybrid

Quantum-Classical architectures.

Furthermore, this field is inherently interdisciplinary, drawing on deep expertise from both

quantum physics and software engineering. As such, our taxonomy and dataset can serve as a bridge

between communities: helping researchers with physics backgrounds gain insight into practical

software engineering challenges, and conversely, assisting software engineers in understanding

the fundamental constraints and behaviours of quantum systems when embedded into classical

computations.

The expert interviews conducted as part of this study also provide valuable qualitative data,

offering diverse perspectives on how Hybrid Quantum-Classical architectures are developed and

maintained in practice. These interviews can serve as a resource for researchers and practitioners

seeking a deeper understanding of the ecosystem, tooling gaps, and fault patterns encountered by

different categories of users.

Practical Guidelines. To support both practitioners and researchers working with Hybrid Quan-

tum–Classical architectures, we propose four main use cases for our taxonomy and dataset. These

use cases illustrate how structured knowledge of causes (faults) and their effects (symptoms and

failures) can drive improved system design, testing, and debugging practices.

(1) Categorising Faults in Hybrid Architectures and Analysing Cause (Fault) — Effect
(Symptom/Failure) Relationships: The taxonomy organises common failure causes across

the life cycle of hybrid architectures, from parametrisation and conceptualisation to API, op-

timisation, and circuit implementation. For example, at the parametrisation stage, developers

often introduce faults such as wrong input types for tensors or incorrect initial points in

parametric initialisation; in the conceptualisation stage, faults caused by suboptimal Ansatz

design or broken electronic symmetries can arise. By linking these causes to their typical

effects (symptoms and failures), researchers can study relationships between specific mistakes

and the effects they trigger. This knowledge can inform the design of better development

practices, guide education efforts, and support future cause-prediction or fault-prediction

models.

(2) Developing Specialised Oracles to Trigger Effects Caused by Faults: The dataset sup-
ports the design of test oracles aimed at detecting causes that lead to silent but incorrect

behaviours — that is, faults that do not cause program crashes. For instance, a fault in Ansatz

design can produce a barren plateau that silently degrades optimisation performance, while

high noise in measurement processes can cause biased outcomes without explicit error

messages, and violations of physical constraints, such as particle number or spin, may go un-

noticed. By implementing oracles that monitor gradient magnitudes, symmetry preservation,

and statistical properties of outputs, and integrating them into continuous testing pipelines,

silent failures can be detected early. These oracles improve reliability and provide actionable

feedback for hybrid developers.

(3) Test Case Generation Techniques: Insights from the taxonomy guide the development of

input generation methods and test suite optimisation. Strategies include:

• Parametric Variation: systematically vary initial tensor parameters, circuit depths, or opti-

mizer hyperparameters to expose faults in parametrisation and optimisation phases.

• Circuit Structure Manipulation: explore alternative Ansatz, qubit mappings, or distributed

circuit decompositions to uncover implementation and parallelisation faults, including

inconsistencies when recombining subcircuits.

, Vol. 1, No. 1, Article . Publication date: January 2026.

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
27

• Constraint Violation Probes: generate states that intentionally challenge physical constraints
(e.g., particle number, spin, symmetry) to test the sensitivity and effectiveness of physics-

consistency oracles.

• Noise Stress Testing: inject controlled stochastic gate errors or simulate decoherence to

quantify robustness and identify brittle components.

• HybridWorkflow Coverage: design sequences that combine classical preprocessing, quantum

execution, and classical postprocessing in varied configurations to expose integration or

optimizer-induced failures.

Linking test generation strategies to cause categories enables practitioners to focus on

the most fault-prone aspects of hybrid architectures and produce efficient, targeted, and

reproducible test suites that go beyond naïve random sampling.

(4) Automatic Fault Localisation and Repair: The structured mapping from faults to effects

supports automated debugging tools. Observed failure patterns can be traced back to likely

root causes. For example, a fault in parameter-shift rule implementation during optimisation

often manifests as low-fidelity outputs, while memory-handling causes — such as improper

GPU allocation — may cause performance degradation. Combined with specialised oracles

and targeted test cases, this information supports semi-automatic or fully automated repair

strategies, such as suggesting alternative Ansatz, modifying circuit decomposition strate-

gies, or adjusting optimizer settings. This approach can shorten debugging cycles, improve

reproducibility, and enhance software reliability in large-scale hybrid architectures.

Potential Application Areas. The proposed taxonomy and dataset are broadly applicable across

key domains that rely on Hybrid Quantum–Classical architectures. These include: (i) quantum
chemistry, where variational algorithms such as VQE are used to approximate molecular energies; (ii)

drug discovery and repurposing, where hybrid workflows optimise quantum–classical pipelines for

molecular similarity and binding prediction; (iii) optimisation and operations research, encompassing

quantum approximate optimisation algorithms (QAOA) and hybrid solvers used for scheduling,

routing, and resource allocation. In these contexts, systematic understanding of faults and their

effects can improve robustness, reproducibility, and the interpretability of hybrid computational

outcomes.

7 THREATS TO VALIDITY
Internal Threats. An internal threat to validity are the potential biases in data processing. To

mitigate it, we cross-validated the results between two authors, as well as with two independent

groups of domain experts through interviews and a validation survey, respectively. The interview

questions remained general to avoid leading the interviewees towards our taxonomy. We insisted

on balancing the profiles of interviewees to represent diverse views. We decided to represent

our dataset in a structural taxonomy. However, different representations may be considered, for

instance around the symptoms and common patterns in the labels, creating a multi-view taxonomy

in the future.

External Threats. Hybrid Quantum-Classical architectures are relatively new, and their implemen-

tations undergo constant revisions. It is challenging to capture structural faults not solely caused by

the evolving implementations. It is also challenging to know to what extent our taxonomy can be

generalised to future architectures. While we expect that noise-related problems may be mitigated,

other faults in this taxonomy inherent to the Hybrid Quantum-Classical architecture should remain

relevant. Recent algorithmic paradigms such as the realisation of a quantum neural network using

repeat-until-success circuits in a superconducting quantum processor [38], exemplify the pace at

which the field evolves. While these approaches introduce new design patterns, we believe that

, Vol. 1, No. 1, Article . Publication date: January 2026.

28 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

several fault types we documented—such as parameterization faults, quantum circuit design errors,

and API misuse—are likely to remain relevant for such emerging models. Furthermore, similar

fault types already appear in our dataset, particularly in contexts related to quantum machine

learning. This suggests that certain structural weaknesses in Hybrid Quantum-Classical software

development persist across algorithmic generations. Even though specific faults from these new

paradigms were not directly observed during our study period, our taxonomy provides a principled

framework that can help identify, classify, and reason about faults in these evolving algorithmic

models.

8 CONCLUSIONS
We performed a structured study of real faults reported in open-source Hybrid Quantum-Classical

architectures. Current instances of such architectures are concentrated around NISQ algorithms

such as Variational Quantum Eigensolvers and Quantum Approximation Optimization Algorithms.

We designed and validated a search query and defined rigorous inclusion/exclusion criteria. We

analysed 5000 closed issues on GitHub and selected 529 of them. We validated the results externally

in two rounds with two independent groups of experts through semi-structured interviews and

surveys, respectively. These led to updates and additions to the documented faults and their

classification.

We plan to incorporate our dataset into a toolbox for generating faulty implementations of

Hybrid Quantum-Classical architectures. This will serve as a means for evaluating future tech-

niques for testing, quality assurance, and repair of such architectures, which is a direction of our

ongoing research. We would like to further investigate other views that can be used to classify

our dataset of real faults. As future work, we aim to build on these findings—both from the fault

dataset and the interviews—to develop testing oracles capable of detecting incorrect behaviours

that do not result in crashes. Such oracles, directly informed by this taxonomy, will represent

an important step toward more reliable and robust Hybrid Quantum–Classical architectures.

Replication Package All the data used to build our taxonomy is available in the following repository.

Acknowledgments. Avner Bensoussan is partially supported by the EPSRC project on Verified

Simulation for Large Quantum Systems (VSL-Q), grant reference EP/Y005244/1 and by the project

on Robust and Reliable Quantum Computing (RoaRQ), Investigation 009. Also, King’s Quantum

grants provided by King’s College London are gratefully acknowledged.

REFERENCES
[1] Ilie-Daniel Gheorghe-Pop et al. “Quantum DevOps: Towards Reliable and Applicable NISQ

Quantum Computing”. en. In: 2020 IEEE Globecom Workshops (GC Wkshps. Taipei, Taiwan:
IEEE, Dec. 2020, pp. 1–6. isbn: 978-1-72817-307-8. doi: 10.1109/GCWkshps50303.2020.9367411.

url: https://ieeexplore.ieee.org/document/9367411/ (visited on 06/05/2023).

[2] Andriy Miranskyy and Lei Zhang. “On Testing Quantum Programs”. In: 2019 IEEE/ACM 41st
International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER).
May 2019, pp. 57–60. doi: 10.1109/ICSE-NIER.2019.00023. url: https://dl.acm.org/doi/10.

1109/ICSE-NIER.2019.00023 (visited on 06/03/2023).

[3] Felix Greiwe, Tom Krüger, and Wolfgang Mauerer. Effects of Imperfections on Quantum
Algorithms: A Software Engineering Perspective. Aug. 2023. url: https://ieeexplore.ieee.org/
document/10234233 (visited on 10/18/2023).

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/10.5281/zenodo.18172880
https://doi.org/10.1109/GCWkshps50303.2020.9367411
https://ieeexplore.ieee.org/document/9367411/
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://dl.acm.org/doi/10.1109/ICSE-NIER.2019.00023
https://dl.acm.org/doi/10.1109/ICSE-NIER.2019.00023
https://ieeexplore.ieee.org/document/10234233
https://ieeexplore.ieee.org/document/10234233

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
29

[4] Jonathan Wei Zhong Lau et al. “NISQ computing: where are we and where do we go?” en. In:

AAPPS Bulletin 32.1 (Sept. 2022), p. 27. issn: 2309-4710. doi: 10.1007/s43673-022-00058-z.

url: https://doi.org/10.1007/s43673-022-00058-z (visited on 06/04/2023).

[5] Nils Herrmann et al. “Quantum utility – definition and assessment of a practical quantum

advantage”. en. In: 2023 IEEE International Conference on Quantum Software (QSW). July 2023,
pp. 162–174. doi: 10.1109/QSW59989.2023.00028. url: https://www.computer.org/csdl/

proceedings-article/qsw/2023/047900a162/1Q5oILPFd7i (visited on 04/26/2024).

[6] Neilson C. L. Ramalho, Higor A. de Souza, and Marcos Lordello Chaim. “Testing and Debug-

ging Quantum Programs: The Road to 2030”. In: ACM Transactions on Software Engineering
and Methodology 34.5 (2024), Article 154. doi: 10.1145/3712002. url: https://dl.acm.org/doi/

10.1145/3712002.

[7] JuanManuelMurillo et al. “Quantum Software Engineering: Roadmap and Challenges Ahead”.

In: ACM Transactions on Software Engineering and Methodology 34.5 (2025), Article 154. doi:

10.1145/3712002. url: https://dl.acm.org/doi/10.1145/3712002.

[8] Nargiz Humbatova et al. Taxonomy of Real Faults in Deep Learning Systems. Nov. 2019. url:
https://dl.acm.org/doi/10.1145/3377811.3380395 (visited on 12/12/2023).

[9] Richard P. Feynman. “Simulating physics with computers”. In: International Journal of The-
oretical Physics 21.6 (June 1, 1982), pp. 467–488. issn: 1572-9575. doi: 10.1007/BF02650179.
url: https://doi.org/10.1007/BF02650179 (visited on 02/12/2025).

[10] Frank Arute et al. “Quantum supremacy using a programmable superconducting processor”.

en. In: Nature 574.7779 (Oct. 2019). Number: 7779 Publisher: Nature Publishing Group,

pp. 505–510. issn: 1476-4687. doi: 10.1038/s41586-019-1666-5. url: https://www.nature.com/

articles/s41586-019-1666-5 (visited on 01/17/2024).

[11] John Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum 2 (Aug. 2018).

arXiv:1801.00862 [cond-mat, physics:quant-ph], p. 79. issn: 2521-327X. doi: 10.22331/q-2018-

08-06-79. url: http://arxiv.org/abs/1801.00862 (visited on 06/04/2023).

[12] Jules Tilly et al. “The Variational Quantum Eigensolver: a review of methods and best prac-

tices”. In: Physics Reports 986 (Nov. 2022), pp. 1–128. issn: 03701573. doi: 10.1016/j.physrep.
2022.08.003. url: https://www.sciencedirect.com/science/article/pii/S0370157322003118?

via%3Dihub (visited on 06/16/2023).

[13] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information
(10th Anniversary edition). Cambridge University Press, 2010. isbn: 978-1-10-700217-3.

[14] Aashish Clerk et al. “Introduction to Quantum Noise, Measurement and Amplification”.

In: Reviews of Modern Physics 82.2 (Apr. 2010). arXiv:0810.4729 [cond-mat, physics:quant-

ph], pp. 1155–1208. issn: 0034-6861, 1539-0756. doi: 10.1103/RevModPhys.82.1155. url:

http://arxiv.org/abs/0810.4729 (visited on 01/17/2024).

[15] Kishor Bharti et al. “Noisy intermediate-scale quantum (NISQ) algorithms”. In: Reviews
of Modern Physics 94.1 (Feb. 2022), p. 015004. issn: 0034-6861, 1539-0756. doi: 10 . 1103 /

RevModPhys.94.015004. url: https://www.computer.org/csdl/proceedings-article/qsw/2023/

047900a162/1Q5oILPFd7i (visited on 06/05/2023).

[16] René Just, Darioush Jalali, and Michael D. Ernst. “Defects4J: a database of existing faults

to enable controlled testing studies for Java programs”. en. In: Proceedings of the 2014 In-
ternational Symposium on Software Testing and Analysis. San Jose CA USA: ACM, July

2014, pp. 437–440. isbn: 978-1-4503-2645-2. doi: 10 . 1145 / 2610384 . 2628055. url: https :

//dl.acm.org/doi/10.1145/2610384.2628055 (visited on 10/16/2023).

[17] Matias Martinez et al. “Automatic Repair of Real Bugs in Java: A Large-Scale Experiment on

theDefects4J Dataset”. en. In: Empirical Software Engineering 22.4 (Aug. 2017). arXiv:1811.02429

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/10.1007/s43673-022-00058-z
https://doi.org/10.1007/s43673-022-00058-z
https://doi.org/10.1109/QSW59989.2023.00028
https://www.computer.org/csdl/proceedings-article/qsw/2023/047900a162/1Q5oILPFd7i
https://www.computer.org/csdl/proceedings-article/qsw/2023/047900a162/1Q5oILPFd7i
https://doi.org/10.1145/3712002
https://dl.acm.org/doi/10.1145/3712002
https://dl.acm.org/doi/10.1145/3712002
https://doi.org/10.1145/3712002
https://dl.acm.org/doi/10.1145/3712002
https://dl.acm.org/doi/10.1145/3377811.3380395
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1038/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-019-1666-5
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
http://arxiv.org/abs/1801.00862
https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1016/j.physrep.2022.08.003
https://www.sciencedirect.com/science/article/pii/S0370157322003118?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0370157322003118?via%3Dihub
https://doi.org/10.1103/RevModPhys.82.1155
http://arxiv.org/abs/0810.4729
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1103/RevModPhys.94.015004
https://www.computer.org/csdl/proceedings-article/qsw/2023/047900a162/1Q5oILPFd7i
https://www.computer.org/csdl/proceedings-article/qsw/2023/047900a162/1Q5oILPFd7i
https://doi.org/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055
https://dl.acm.org/doi/10.1145/2610384.2628055

30 Avner Bensoussan, Gunel Jahangirova, and Mohammadreza Mousavi

[cs], pp. 1936–1964. issn: 1382-3256, 1573-7616. doi: 10.1007/s10664-016-9470-4. url: http:

//arxiv.org/abs/1811.02429 (visited on 04/26/2024).

[18] Gregory Gay and René Just. “Defects4J as a Challenge Case for the Search-Based Software

Engineering Community”. en. In: Search-Based Software Engineering. Ed. by Aldeida Aleti

and Annibale Panichella. Vol. 12420. Series Title: Lecture Notes in Computer Science. Cham:

Springer International Publishing, 2020, pp. 255–261. isbn: 978-3-030-59761-0 978-3-030-

59762-7. doi: 10.1007/978-3-030-59762-7_19. url: http://link.springer.com/10.1007/978-3-

030-59762-7_19 (visited on 01/17/2024).

[19] Muhammad Usman et al. “Taxonomies in software engineering: A Systematic mapping study

and a revised taxonomy development method”. In: Information and Software Technology 91

(2017), pp. 16–34. doi: 10.1016/j.infsof.2017.01.006. url: https://doi.org/10.1016/j.infsof.2017.

01.006.

[20] Muhammad Usman et al. “Taxonomies in software engineering: A Systematic mapping study

and a revised taxonomy development method”. In: Information and Software Technology 85

(2017), pp. 43–59. issn: 0950-5849. doi: https://doi.org/10.1016/j.infsof.2017.01.006. url:

https://www.sciencedirect.com/science/article/pii/S0950584917300472.

[21] Matteo Paltenghi and Michael Pradel. “Bugs in Quantum computing platforms: an empirical

study”. en. In: Proceedings of the ACM on Programming Languages 6.OOPSLA1 (Apr. 2022),
pp. 1–27. issn: 2475-1421. doi: 10.1145/3527330. url: https://dl.acm.org/doi/10.1145/3527330

(visited on 06/15/2023).

[22] Sara Ayman Metwalli and Rodney Van Meter. A Tool For Debugging Quantum Circuits. May

2022. url: https://www.computer.org/csdl/proceedings- article/qce/2022/911300a624/

1IvLZRlty80v (visited on 06/03/2023).

[23] Sukhpal Singh Gill et al. “Quantum computing: A taxonomy, systematic review and future

directions”. In: Software: Practice and Experience 52.1 (Jan. 2022), pp. 66–114. issn: 0038-0644,
1097-024X. doi: 10.1002/spe.3039. url: https://onlinelibrary.wiley.com/doi/10.1002/spe.3039

(visited on 10/19/2024).

[24] Gabriel Pontolillo and Mohammad Reza Mousavi. “A multi-lingual benchmark for property-

based testing of quantum programs”. In: Proceedings of the 3rd International Workshop on
Quantum Software Engineering. Q-SE ’22. New York, NY, USA: Association for Computing

Machinery, Feb. 1, 2023, pp. 1–7. isbn: 978-1-4503-9335-5. doi: 10.1145/3528230.3528395. url:

https://doi.org/10.1145/3528230.3528395 (visited on 01/22/2025).

[25] Pengzhan Zhao et al. Bugs4Q: A Benchmark of Real Bugs for Quantum Programs. arXiv:2108.09744
[cs]. Sept. 2021. url: http://arxiv.org/abs/2108.09744 (visited on 10/16/2023).

[26] José Campos and André Souto. QBugs: A Collection of Reproducible Bugs in Quantum Algo-
rithms and a Supporting Infrastructure to Enable Controlled Quantum Software Testing and
Debugging Experiments. en. arXiv:2103.16968 [cs]. Mar. 2021. url: http://arxiv.org/abs/2103.

16968 (visited on 11/27/2023).

[27] Junjie Luo et al. A Comprehensive Study of Bug Fixes in Quantum Programs. Jan. 21, 2022. url:
https://www.computer.org/csdl/proceedings-article/saner/2022/378600b239/1FbT6n3hGaA

(visited on 10/19/2024).

[28] Ang Li et al. “QASMBench: A Low-Level Quantum Benchmark Suite for NISQ Evaluation

and Simulation”. In: ACM Transactions on Quantum Computing 4.2 (Feb. 24, 2023), 10:1–10:26.

doi: 10.1145/3550488. url: https://doi.org/10.1145/3550488 (visited on 01/22/2025).

[29] Pengzhan Zhao, Jianjun Zhao, and Lei Ma. Identifying Bug Patterns in Quantum Programs.
Mar. 16, 2021. doi: 10.48550/arXiv.2103.09069. arXiv: 2103.09069[cs]. url: http://arxiv.org/

abs/2103.09069 (visited on 01/22/2025).

, Vol. 1, No. 1, Article . Publication date: January 2026.

https://doi.org/10.1007/s10664-016-9470-4
http://arxiv.org/abs/1811.02429
http://arxiv.org/abs/1811.02429
https://doi.org/10.1007/978-3-030-59762-7_19
http://link.springer.com/10.1007/978-3-030-59762-7_19
http://link.springer.com/10.1007/978-3-030-59762-7_19
https://doi.org/10.1016/j.infsof.2017.01.006
https://doi.org/10.1016/j.infsof.2017.01.006
https://doi.org/10.1016/j.infsof.2017.01.006
https://doi.org/https://doi.org/10.1016/j.infsof.2017.01.006
https://www.sciencedirect.com/science/article/pii/S0950584917300472
https://doi.org/10.1145/3527330
https://dl.acm.org/doi/10.1145/3527330
https://www.computer.org/csdl/proceedings-article/qce/2022/911300a624/1IvLZRlty80v
https://www.computer.org/csdl/proceedings-article/qce/2022/911300a624/1IvLZRlty80v
https://doi.org/10.1002/spe.3039
https://onlinelibrary.wiley.com/doi/10.1002/spe.3039
https://doi.org/10.1145/3528230.3528395
https://doi.org/10.1145/3528230.3528395
http://arxiv.org/abs/2108.09744
http://arxiv.org/abs/2103.16968
http://arxiv.org/abs/2103.16968
https://www.computer.org/csdl/proceedings-article/saner/2022/378600b239/1FbT6n3hGaA
https://doi.org/10.1145/3550488
https://doi.org/10.1145/3550488
https://doi.org/10.48550/arXiv.2103.09069
https://arxiv.org/abs/2103.09069 [cs]
http://arxiv.org/abs/2103.09069
http://arxiv.org/abs/2103.09069

A Taxonomy of Real Faults for HybridQuantum-Classical Software Architectures.
31

[30] Pengzhan Zhao et al. An Empirical Study of Bugs in Quantum Machine Learning Frameworks.
en. arXiv:2306.06369 [cs]. June 2023. url: http : / /arxiv.org /abs /2306 .06369 (visited on

11/22/2023).

[31] Jake Zappin et al. When Quantum Meets Classical: Characterizing Hybrid Quantum-Classical
Issues Discussed in Developer Forums. version: 1. Nov. 25, 2024. doi: 10.48550/arXiv.2411.16884.
arXiv: 2411.16884[cs]. url: http://arxiv.org/abs/2411.16884 (visited on 02/10/2025).

[32] Deepak-George Thomas et al. “muPRL: A Mutation Testing Pipeline for Deep Reinforcement

Learning based on Real Faults”. In: Proceedings of the ACM/IEEE 47th International Conference
on Software Engineering. 2025.

[33] Artifact Review and Badging - Current. en. url: https://www.acm.org/publications/policies/

artifact-review-and-badging-current (visited on 01/19/2024).

[34] Carolyn B. Seaman. “Qualitative methods in empirical studies of software engineering”. en.

In: IEEE Transactions on Software Engineering 25.4 (Aug. 1999), pp. 557–572. issn: 00985589.

doi: 10.1109/32.799955. url: http:// ieeexplore. ieee.org/document/799955/ (visited on

07/26/2024).

[35] Hans-Martin Rieser, Frank Köster, and Arne Peter Raulf. “Tensor networks for quantum

machine learning”. In: Proceedings of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences 479.2275 (July 2023), p. 20230218. issn: 1364-5021, 1471-2946. doi: 10.1098/

rspa.2023.0218. arXiv: 2303.11735[quant-ph]. url: http://arxiv.org/abs/2303.11735 (visited on

10/20/2024).

[36] Kerstin Beer et al. “Training deep quantum neural networks”. In: Nature Communications
11.1 (Feb. 10, 2020). Publisher: Nature Publishing Group, p. 808. issn: 2041-1723. doi: 10.1038/

s41467-020-14454-2. url: https://www.nature.com/articles/s41467-020-14454-2 (visited on

10/20/2024).

[37] Michael Broughton et al. TensorFlow Quantum: A Software Framework for Quantum Machine
Learning. en. arXiv:2003.02989 [cond-mat, physics:quant-ph]. Aug. 2021. url: http://arxiv.

org/abs/2003.02989 (visited on 07/30/2024).

[38] M. S. Moreira et al. “Realization of a quantum neural network using repeat-until-success

circuits in a superconducting quantum processor”. In: npj Quantum Information 9.1 (2023),

p. 118. doi: 10.1038/s41534-023-00779-5. url: https://doi.org/10.1038/s41534-023-00779-5.

, Vol. 1, No. 1, Article . Publication date: January 2026.

http://arxiv.org/abs/2306.06369
https://doi.org/10.48550/arXiv.2411.16884
https://arxiv.org/abs/2411.16884 [cs]
http://arxiv.org/abs/2411.16884
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1109/32.799955
http://ieeexplore.ieee.org/document/799955/
https://doi.org/10.1098/rspa.2023.0218
https://doi.org/10.1098/rspa.2023.0218
https://arxiv.org/abs/2303.11735 [quant-ph]
http://arxiv.org/abs/2303.11735
https://doi.org/10.1038/s41467-020-14454-2
https://doi.org/10.1038/s41467-020-14454-2
https://www.nature.com/articles/s41467-020-14454-2
http://arxiv.org/abs/2003.02989
http://arxiv.org/abs/2003.02989
https://doi.org/10.1038/s41534-023-00779-5
https://doi.org/10.1038/s41534-023-00779-5

	Abstract
	1 Introduction
	2 Background
	2.1 Quantum Computing
	2.2 Quantum Circuits
	2.3 Hybrid Quantum-Classical Architectures

	3 Related work
	3.1 Classical Computing
	3.2 Quantum Computing
	3.3 Comparative Analysis of Our Study

	4 Methodology
	5 Results
	5.1 Faults Dataset
	5.2 Final Taxonomy
	5.3 Validation Results
	5.4 Research Questions
	5.5 RQ2. Contribution to the Taxonomy

	6 Discussion
	6.1 Hybrid Quantum-Classical faults vs. Faults in Deep Learning Systems
	6.2 Computer Science vs. Physics Expertise
	6.3 Manual Debugging Methods
	6.4 Common Problems
	6.5 Practical Applications and Guidelines for Use

	7 Threats to validity
	8 Conclusions

