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Abstract
Large Language Models (LLM) have significantly transformed vari-
ous domains, including software development. These models assist
programmers in generating code, potentially increasing productiv-
ity and efficiency. However, the environmental impact of utilising
these AI models is substantial, given their high energy consumption
during both training and inference stages. This research aims to
compare the energy consumption of manual software development
versus an LLM-assisted approach, using Codeforces as a simulation
platform for software development. The goal is to quantify the envi-
ronmental impact and propose strategies for minimising the carbon
footprint of using LLM in software development. Our results show
that the LLM-assisted code generation leads on average to 32.72
higher carbon footprint than the manual one. Moreover, there is a
significant correlation between task complexity and the difference
in the carbon footprint of the two approaches.

CCS Concepts
• Software and its engineering→ Software developmentmeth-
ods;
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1 Introduction
Large Language Models (LLM) are disrupting many sectors [20] and
providing novel ways of producing different types of content [11].
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The impact of LLM has expanded to software development and a
myriad of approaches have emerged to assist and automate various
software development tasks, such as design, implementation, and
testing [14][30]. Since their inception, there has been a genuine
concern about the environmental impact of LLM, including their
carbon footprint [15]. Several studies have raised ethical concerns
and showed that LLM use a massive amount of energy. For instance,
the end-to-end carbon footprint of GPT3 is estimated to be 554 tons
of CO2 equivalent [15]. This study aims to provide a quantitative
analysis of the environmental impact of LLM in programming tasks,
when used in an assistive mode and compare it to the traditional
manual process of coding.

To make this feasible, we focus on programming tasks for which
there are large datasets of programming effort available from public
platforms. We then run the same tasks in the LLM-based process
and compare the efficiency, correctness, and end-to-end estimated
energy consumption of the two approaches. Using these metrics,
we answer the following research questions.
(RQ1) Does LLM-based software development lead to less carbon

emissions than manual software development?
(RQ2) Is there a correlation between the complexity of the require-

ments and the difference in carbon footprint between the
LLM-based and manual approach? Here, by ‘complexity’ we
mean the difficulty level assigned by Codeforces to a given
problem and ‘requirement’ refers to the set of instructions
that define the task in a Codeforces problem statement.

The overall objectives of our study are: 1) to thoroughly analyse
the sustainability of LLM-based software development in compar-
ison to manual-based software development, and 2) to propose
strategies for the best-practice use of LLM in software develop-
ment.

The findings of this paper indicate that the end-to-end energy
consumption of the LLM-based process is an order of magnitude
larger than that of the manual process in all our sampled tasks.
Moreover, the gap between the energy consumption of the two
approaches increases significantly with the complexity of the re-
quirements. Our results indicate the necessity of a broader study in
order to find processes in which the LLM-based approaches may
have a comparable or lower energy consumption to justify their
replacement for the manual process. We provide the code we have
used to calculate the metrics as well as our full experimental data
as part of our replication package [9].
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2 Literature Review
In this section, we review the literature on the carbon footprint of
software development, with a focus on the emerging role of LLM.
We provide an overview of the key relevant studies and identify
any gaps in the current body of research.
Carbon Footprint of Software Development. There is a substan-
tial and growing interest in assessing the carbon footprint of tradi-
tional software development; we refer to surveys [16, 28], scoping-
[10, 21, 25], and mapping studies [12]. Recent work indicates a lack
of awareness and evaluation methods as major difficulties in adopt-
ing sustainable practices in software development [16, 18, 29]. We
address these by providing a basic methodology to evaluate and
compare LLM-based software development with manual develop-
ment. Moreover, we raise awareness by demonstrating significant,
and to our knowledge hitherto unknown, differences in the carbon
footprints of the two approaches.
Carbon Footprint of LLM-Assisted Software Development. To
date, there have been few studies addressing the carbon footprint
of LLM in software development. Faiz et al. explore the substantial
carbon footprint generated by LLM during training and inference
[15]. The end-to-end carbon footprint of GPT3 is estimated to be 554
tons of CO2 equivalent which indicates the high environmental cost
of LLM-assisted programming. Additionally, a recent line of work
indicates that the code generated by the LLM has a larger carbon
footprint than the human-written code [26, 27]. This line of work
differs from our work in that it focuses on the sustainability metrics
of LLM-generated code rather than evaluating the carbon footprint
of the development effort. The work by Belchev [13] is one of the
first works that investigates this direction with a focus on the LLM’s
energy consumption and efficiency in software development tasks
such as code generation, bug fixing, documentation, and testing.
However, this work does not provide a comparison to the carbon
footprint of the traditional, human-led development efforts.
Identified Research Gaps.While there is increasing interest in
studying both the carbon footprint of traditional software devel-
opment and the environmental impact of LLM, there is a notable
gap in research focused on the carbon footprint of LLM-assisted
software development and how it compares to the manual soft-
ware development. The broader context of using LLM throughout
the software development lifecycle remains underexplored. Our
research aims to fill this gap.

3 Programming Tasks Dataset
In this section, we describe the dataset selection process and criteria
for task inclusion.

3.1 Choice of Programming Tasks Dataset
To answer our research questions, we include programming task
datasets satisfying the following two essential criteria:

(1) Well-Defined and Diverse Tasks: We required tasks that
are clearly defined and cover a range of complexities. In
particular, every task is accompanied by clearly defined test
cases and explicit instructions, which provide concrete exam-
ples of expected functionality and performance benchmarks.
Well-defined tasks ensure that the LLM focuses on solving

the task without performance loss due to ambiguity. Addi-
tionally, incorporating tasks of varying complexity allows us
tomeasure how the carbon footprint scales with the difficulty
of the tasks, providing insights into the energy efficiency of
the LLM across different types of challenges.

(2) Comprehensive Submission Data: Beyond just the tasks,
we needed a substantial amount of data, including detailed
submission records from at least 1,000 participants who suc-
cessfully solved each task to avoid bias, account for variabil-
ity in human performance, and gain statistical confidence.
This data should include crucial metrics such as code run-
time, memory usage, and the time spent on each task. We
would prefer a platform that provides an API to facilitate the
automation of our process.

When choosing a dataset for programming tasks, multiple plat-
forms were considered, including LeetCode [6], HackerRank [4],
and Codeforces [1]. Each of these platforms hosts competitive pro-
gramming contests and provides a range of task complexities, mak-
ing them potential candidates for our research. However, the final
selection was narrowed down to Codeforces because none of the
other platforms, e.g., LeetCode and HackerRank, provide the data
needed for our study, particularly regarding the time spent on each
task. This data is essential for estimating the task complexity and
calculating the associated carbon footprint. Codeforces, however,
provides the data through an API facilitating the automation of our
measurement and comparison process.

Codeforces is one of the most popular platforms for practicing
competitive programming, attracting both novice and experienced
programmers from around the world. Below we provide some key
concepts used in the remainder of our methodology:

• Contests: Users participate in timed contests, which fea-
ture a suite of well-defined programming tasks of varying
complexity. These contests are numbered as rounds; in our
experiment, we selected rounds 1983, 1984, and 1994 for
analysis, which have sufficiently many tasks of varying com-
plexity with sufficiently many participants (12 tasks in total).

• Rating System: After participating in a contest, a user’s
rating will increase or decrease based on their performance
relative to other contestants. With a current range of ratings
from 4009 to -53, this rating system confirms that both novice
and experienced programmers actively use Codeforces.

• Editorials: After a contest has ended, the organizers release
code solutions and detailed editorials explaining how to solve
each task. These editorials were used as a part of the prompt
to the LLM.

3.2 Task Selection
Within Codeforces not all tasks had the desired number of submis-
sions or included the required data, such as code runtime ormemory
usage. We focused on tasks that met the following conditions:

(1) Each included task should be solved by at least 1,000 partici-
pants to ensure diversity and statistical significance. In our
study, we assume that the programming experience held by
the participants is normalized across participants based on
the variety of user ratings in the contest.
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(2) Each included task should provide code runtime andmemory
usage.

3.3 Justification for Python-Specific Focus
Python was chosen as the primary language for this study for
two main reasons. First, GPT-4 outputs Python by default when
generating code, making it critical to assess LLM performance in
the language it most frequently uses. Second, Python is the second
most popular language used on Codeforces, with a wide range of
participants consistently submitting solutions in Python during
contests. This popularity ensures that we have access to a large
dataset of Python submissions, providing the necessary metrics to
evaluate both runtime performance and carbon footprint.

4 LLM-Assisted Code Generation
To assess the carbon footprint of the LLM-assisted approach, we
need to simulate software development using LLMs. For this, we
have designed the following process:

(1) We provide the problem to the LLM and ask the LLM to write
the Python solution for it.

(2) We submit the code generated by the LLM to Codeforces,
and record the number of tests passed.

(3) If any of the test cases fail, we provide the LLM with the
error trace of the failing test cases and ask it to fix the code.
We repeat this step up to 4 times. This number is chosen as a
practical balance: it gives the LLM several chances to correct
its mistakes while keeping the overall process efficient, given
that improvements tend to taper off after a few iterations.

(4) If the LLM still cannot generate code that passes all test cases
after 5 queries, we assume that it is not capable of solving
this task without human support. To provide such support,
we pass the LLM the human insight provided by Codeforces
for this specific task. This insight is a short textual guide for
the programmer on how to approach the task.

(5) If the LLM still fails, we feed it the test result, keep the
human insight in the prompt and ask the LLM to fix the code.
We repeat this step for up to 3 times. Similarly, the limit
of 3 iterations in this phase is set to offer the LLM enough
opportunities to integrate the additional human guidance
while maintaining a feasible and controlled experimental
framework.

For each task, we repeat the process starting from Step 1 three
times and record the mean number for each metric. Our study uses
3 contests which have 12 valid tasks. Figure 1 demonstrates one
repetition of the experiment for one task.

The LLM we choose in this study is GPT-4. We chose this model
because we found sufficient data on training and query costs, which
are relevant to our energy estimation. For most other popular (e.g.,
programming-focused) LLM, such data is not available.

5 Carbon Footprint Estimation
In this section we introduce the key terms and formulas required
for carbon footprint estimation and discuss the values that we used
for various metrics. We then describe how we estimated the carbon
footprint for manual and LLM-assisted code generation.

5.1 Key Terminology, Formulas and Metric
Values

To provide details on carbon footprint estimation that we have
performed as part of this study, it’s essential to define key terms.
The carbon footprint (CF) represents the total greenhouse gas
emissions caused directly or indirectly by a system, typically mea-
sured in kilograms of 𝐶𝑂2 equivalent (𝑘𝑔𝐶𝑂2𝑒). In the context of
software development, this footprint is tied to the total energy con-
sumed (TTEC) during execution. The consumed energy (𝐸) is the
product of the power of a device (𝑝) and the time (𝑡 ) it runs and is
typically measured in kilowatt-hours (𝑘𝑊ℎ):

𝐸 = 𝑝 × 𝑡 (1)

Carbon intensity (CI) refers to the amount of carbon diox-
ide (𝐶𝑂2) emissions produced per unit of energy consumed, typi-
cally measured in kilograms of 𝐶𝑂2 equivalent per kilowatt-hour
(𝑘𝑔𝐶𝑂2𝑒/𝑘𝑊ℎ). The carbon intensity of an energy source is a key
factor in determining the environmental impact of energy consump-
tion because different energy sources emit different amounts of𝐶𝑂2
when generating electricity. For instance, fossil fuels have high car-
bon intensities because burning them releases a significant amount
of carbon dioxide, while renewable energy sources such as wind,
solar, or hydro have much lower carbon intensities, as they do not
produce 𝐶𝑂2 when generating electricity. It should also be noted
that the carbon intensity of energy sources is location-sensitive
and can further be refined if information about the geographical
location of energy sources is provided.

The carbon footprint (CF) of software can be calculated using
the following formula:

𝐶𝐹 = 𝐸 ×𝐶𝐼 (2)

where 𝐸 is the consumed energy and 𝐶𝐼 is the carbon intensity of
that energy.

As the approximation for carbon intensity, in this study we use
the data provided by the 2023 report from Nowtricity [2]. This
report estimates emissions based on the life cycle 𝐶𝑂2 equivalent
for each energy source. Nowtricity uses methods and data defined in
UNECE [7] and IPCC [3] reports, including not just direct emissions
but also those from infrastructure and the supply chain. Based on
all this data, Nowtricity reports the average emissions of 217g 𝐶𝑂2
per 𝑘𝑊ℎ which is the number we use in all of our calculations.

As Formula 1 indicates, to compute energy consumption, we
need to know the values for power (𝑝). In our study, we assume
that the code generation is performed using a standard laptop.
We distinguish between the power the laptop consumes during
regular use for coding activities (𝑝laptop) and the power it draws
when running the code (𝑝runtime). As the value for 𝑝laptop we use
the 4.075W, the average between the values of 3.59W (reported by
Asus [8]) and of 4.62W (reported by Dell [5]).

We define 𝑝runtime as the combined power of the CPU (𝑝cpu) and
RAM (𝑝ram), adjusted by the memory usage percentage (𝑢):

𝑝runtime = 𝑝cpu + 𝑝ram × 𝑢 (3)

In our study, we assume that a RAM of 16 GB is being used, and
therefore estimate 𝑢 as the used RAM divided by 16. We measure
𝑝cpu and 𝑝ram using the Python library CodeCarbon [23] by running
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Figure 1: One Iteration of the LLM Experiment

the code locally. However, it was observed that the CPU power
usage remained consistent and was capped at the Thermal Design
Power (TDP) of the processor. Similarly, runtime RAM power is
also capped to a certain value.

5.2 Carbon Footprint for Manual Approach
In this subsection, our goal is to estimate the carbon footprint of
the manual code generation for each task. We calculate the total
energy consumption as the sum of three distinct parts: Coding Energy
Consumption (CEC), Debugging Energy Consumption (DEC) and
Testing Energy Consumption (TEC).
Coding Energy Consumption (CEC): This metric refers to the
energy consumed by an average laptop during the coding process,
excluding energy used for testing and debugging. We calculated it
using the Formula 1 and 𝑝𝑙𝑎𝑝𝑡𝑜𝑝 value for the power.

To calculate the mean time spent (MTS) on coding for each task
denoted by 𝑡 , we used the relative submission time provided by
Codeforces. The relative submission time is the timestamp of when
a participant submitted a solution for a task, measured from the
start of the contest. Since Codeforces only provides this relative
submission time (rather than the actual time spent on each task),
we had to take a number of measures explained below to ensure
accuracy.

First, to ensure that we could accurately estimate the time spent
on each task, we filtered out participants who did not complete the
tasks sequentially. This is because, for participants who completed
tasks in a different order, it is unclear how much time they spent
on each specific task. Sequential completion means the participant
worked on the tasks in the order they were presented in the contest,
allowing us to infer more accurate task-level time estimates.

Second, we applied standard methods to exclude outliers. Given
that we assume the skills of participants are normally distributed,
we used the common statistical technique of excluding data points
that are more than two standard deviations from the mean.
Debugging Energy Consumption (DEC): This metric quantifies
the energy consumed during the time spent running code in the
debugging phase.

First, we calculate the additional power consumed during debug-
ging by calculating the runtime power (3) and excluding 𝑝laptop

(which is already accounted for in the Coding Energy Consumption
metric). The formula becomes:

𝑝debug = 𝑝runtime − 𝑝laptop

To estimate how long the code runs during debugging, we rely on
existing studies. According to Stripe [24], developers spend about
42% of their total development time on debugging. Ko et al. [17]
found that, on average, only 10% of the debugging time is spent
actually running the code. Therefore, the time spent running code
during debugging is calculated as:

𝑡debug = Mean Time Spent × 0.42 × 0.1

Testing Energy Consumption (TEC): We estimated the energy
consumption during testing based on the code’s runtime. Similarly
to CEC, we use Formula 1 to calculate the testing energy consump-
tion. However, as the value of power we use 𝑝runtime, as during the
testing process we need to actually run the code.

To estimate the time the testing process takes, we need to know
how much time one run of the tests takes and how many times
the tests were run. For the former, we use the run time data and
calculate the average across all participants for each task. For the
latter, we use the mean of the number of times a user submits their
code. The values for both these metrics are provided by Codeforces
and we accessed them using Codeforces API.

5.3 Carbon Footprint for LLM-Assisted
Approach

To calculate the total energy consumption (TTEC) for the LLM-
assisted approach we need to account for multiple components.
The first one is the energy consumption associated with sending
queries to an LLM (𝐸query). The second component is related to
the fact that a human insight is part of our LLM-assisted approach
(Step 4). Therefore, we need to calculate the energy consumption
associated with this step by estimating the time it takes to produce
the human insight (𝑡insight). Lastly, the process we have explained
in the previous subsection does not always produce a solution that
passes all test cases. Therefore, there is a need for the developer to
understand the solution generated by the LLM and add the missing
functionalities. This makes for our third component to estimate
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which we need to know the time spent on adding missing function-
alities (𝑡add_functionalities).

When accounting for all the mentioned components, our formula
for total energy consumption becomes:

𝐸total = 𝐸query + (𝑡insight + 𝑡add_functionalities) × 𝑝laptop

Query Energy Consumption (QEC). To estimate the overall
query energy consumption we need to account for all queries we
pass to the LLM and estimate the energy consumption of a single
query. For the latter, we use the finding by Ludvigsen [19] that
the energy consumption for each inference (query) is estimated to
be 0.0022 kWh, based on the findings. In addition to the inference
energy cost, we also account for the energy consumed during the
training phase of the Large Language Model (LLM). To estimate the
training energy cost per query, we divided the total training energy
consumption (50 GWh) by the estimated number of queries that
the LLM will handle over its lifecycle (5.68 Giga queries). Based on
available data, we estimate the energy consumption per query for
training to be 0.0088 kWh. Therefore, the total energy consumption
per query, including both inference and training, is 0.011 (0.0022 +
0.0088) kwh.

It should be noted that these numbers are estimated using known
hardware specifications and general data. No actual energy profiling
tools or power meters were used to measure the precise energy
consumption. We will discuss this limitation in more detail in the
limitations section.
Estimated Time Spent on Producing the Insight (ETHI): This
metric accounts for the time a human spends understanding the
task and providing insight to the LLM. According to a study by
Minelli et al. [22], developers typically spend 38% of their total time
understanding a task.

Since the LLM already generates a partial solution, we adjust
this time by considering the percentage of test cases passed by the
LLM before receiving human insight. The idea is that the more the
LLM succeeds initially, the less time the human needs to spend
understanding and solving the remaining parts of the task.

The formula for estimating the time spent on producing the
insight is:

𝑡insight = 𝑡 × 0.38 × (1 −𝑇𝐶passed)
Where:
• 𝑡 is the total average time a developer would typically spend
on the task,

• 0.38 is the fraction of time developers typically spend on
task understanding [22],

• 𝑇𝐶passed is the percentage of test cases passed before human
insight, and (1−𝑇𝐶passed) represents the remaining portion
of the task that needs human intervention.

Estimated Time to Add Missing Functionalities (ETAF): This
metric estimates the time required to manually add any missing
functionalities when the LLM fails to fully complete the task, even
after human insight is provided. The total time is a combination of
the time spent on reading and extending the code, plus the time
required to implement the remaining unsolved parts of the task. We
exclude the time producing the insight as it means the developer
already understands the task.

The formula for estimating the time is:

𝑡add = 𝑡read_extend + (1 −𝑇𝐶after_insight) × 𝑡 − 𝑡insight

Where:
• 𝑡read_extend is the estimated time spent on reading and ex-
tending the code,

• 𝑇𝐶after_insight is the percentage of test cases passed after
human insight has been given, (1−𝑇𝐶after_insight) represents
the missing percentage of functionalities,

• 𝑡 is the total average time a developer spends on the task,
• 𝑡insight is the time spent on producing the human insight.

To calculate 𝑡read_extend we rely on the study by Ko et al. [17],
which reports that developers typically spend about 20% of their
debugging time reading code and another 20% editing (extending)
code. Thus, we estimate the time spent on reading and extending
as a portion of the total debugging time.

The formula for estimating the time is:

𝑡read_extend = 𝑡 × 0.42 × (0.2 + 0.2)
Where:
• 𝑡 is the total average time spent on the task,
• 0.42 is the proportion of the total time spent on debug-
ging [24]

• 0.2 is the fraction of debugging time spent on reading code,
• Another 0.2 represents the fraction of debugging time spent
on editing (extending) the code.

6 Results and Discussion
In this section, we present and analyse the results obtained from
our study. The analysis is structured around our two main research
questions.

6.1 RQ1: LLM-based vs. manual software
development

To answer RQ1, we need to compare the carbon footprint of the
manual approach (based on the Codeforces contest data) to the
carbon footprint of the LLM-based approach. Table 1 presents the
data for the manual process for the selected 12 tasks from 3 contests.
Table 2 presents the same data for the LLM-assisted approach. In
each table we report data for three different contest that consist of
5, 4 and 3 tasks correspondingly. In the first column we list metrics
associated with the calculation of the carbon footprint with their
units indicated in the brackets. As Table 1 shows, the mean time
spent (row "MTS") on each task varies on average between 444 to
2487 seconds, indicating the different level of effort the tasks take.

In Table 2 the row "NQBH" reports the number of queries sent
to LLM before the human insight during the LLM-assisted software
development. As the values in this row indicate, for only 3 tasks
out of 12, the maximum number of 5 queries was not reached,
indicating that LLMs were not able to solve the task (such that all
provided test cases pass) without the support from human. The
row "NHIQ" reports the number of human insight queries passed to
LLM. We can see that for 4 tasks out of 12, this number also reached
its maximum value of 3. The row "TPAH" reports the percentage of
the test cases that passed after the human insight. This number is
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Table 1: Manual Carbon Footprint Estimation for the selected contest rounds: each column represents a distinct task within a
specific contest. For each task, the table reports Mean Time Spent (MTS), Coding Energy Consumption (CEC), Testing Energy
Consumption (TEC), Debugging Energy Consumption (DEC), Total Energy Consumption (TTEC), and the resulting Carbon
Footprint (CF). The measurement unit for each reported metric is indicated in brackets.

Contest 1983 Contest 1984 Contest 1994
A B C D E A B C D A B C

MTS (s) 444 2216 2361 2018 2487 805 1437 1803 2146 748 1300 1783
CEC
(kwh)

5.03E-04 2.51E-03 2.67E-03 2.28E-03 2.82E-03 9.11E-04 1.63E-03 2.04E-03 2.43E-03 8.47E-04 1.47E-03 2.02E-03

TEC
(kwh)

3.37E-07 1.46E-06 3.49E-06 3.35E-06 9.64E-06 6.82E-07 1.37E-06 2.59E-06 4.02E-06 8.41E-07 1.03E-06 2.26E-06

DEC
(kwh)

5.14E-05 2.57E-04 2.74E-04 2.34E-04 2.88E-04 9.32E-05 1.66E-04 2.09E-04 2.49E-04 8.66E-05 1.51E-04 2.07E-04

TTEC
(kwh)

5.54E-04 2.77E-03 2.95E-03 2.52E-03 3.11E-03 1.01E-03 1.79E-03 2.25E-03 2.68E-03 9.34E-04 1.62E-03 2.23E-03

CF (g) 0.120 0.600 0.640 0.547 0.676 0.218 0.389 0.489 0.582 0.203 0.352 0.483

Table 2: LLM-assisted Carbon Footprint Estimation for the selected contest rounds: each column represents a distinct task
within a specific contest. For each task, the table reports Number of Queries Before the Human insight (NQBH), Number
of Human Insight Queries (NHIQ), Percentage of the Test cases that Passed after the Human insight (TPAH), Query Energy
Consumption (QEC), Estimated Time Spent on Producing the Insight (ETHI), Estimated Time to Add Missing Functionalities
(ETAF), Total Energy Consumption (TTEC) and the resulting Carbon Footprint (CF). The measurement unit for each reported
metric is indicated in brackets.

Contest 1983 Contest 1984 Contest 1994
A B C D E A B C D A B C

NQBH 1 5 5 5 5 4 5 5 5 1.67 5 5
NHIQ 0.00 1.33 3.00 1.67 3.00 0.00 2.00 3.00 3.00 0.00 1.00 2.33
TPAH 100% 100% 0% 69% 0% 100% 100% 73% 69% 100% 100% 33%
QEC
(Kwh)

0.011 0.070 0.088 0.073 0.088 0.044 0.077 0.088 0.088 0.018 0.066 0.081

ETHI (s) 0 842 897 767 945 0 546 685 748 0 494 678
ETAF (s) 0 0 1860 1459 1960 0 0 109 282 0 0 817
TTEC
(kwh)

0.011 0.071 0.091 0.074 0.091 0.044 0.078 0.089 0.089 0.018 0.067 0.082

CF (g) 2.39 15.32 19.77 16.15 19.81 9.55 16.84 19.29 19.35 3.99 14.44 17.86

Table 3: Ratio Difference between LLM and Manual Approach: each column represents a distinct task within a specific contest.
The mean and standard deviation are reported across all tasks.

Contest 1983 Contest 1984 Contest 1994
A B C D E A B C D A B C

ratio 19.92 25.53 30.89 29.52 29.30 43.81 43.29 39.45 33.25 19.66 41.02 36.98
Mean: 32.72 Standard deviation: 8.41

below 100% for 6 tasks, i.e. for half of the tasks the LLM-assisted
approach could not fully solve the task.

When it comes to the overall carbon footprint, as it is clear
from the results shown in Tables 1 and 2, the LLM-assisted soft-
ware development leads to a significantly higher carbon footprint
compared to manual software development. Focusing on the total
energy consumption and carbon footprint (last two rows of Tables
1 and 2), the LLM-based approach has at least 19.92 times and at
most 43.81 times more carbon footprint (resp. energy consumption)

than the manual approach (mean: 32.72, standard deviation: 8.41)
The comparison of the two approaches is summarised in Table 3.

A closer look into the carbon footprint for the manual code gen-
eration shows that across 12 tasks the coding process accounts
on average for 90.61% of the carbon footprint, while testing and
debugging account for 9.28% and 0.11% correspondingly. For LLM-
assisted code generation, 98.68% of the carbon footprint is due to
querying the LLM. The remaining 0.77% comes from generating hu-
man insights that support the LLM, while 0.56% is due to developers
adding missing functionalities. This suggests that optimizing LLM
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queries or incorporating more efficient models could significantly
reduce the environmental impact of LLM-assisted development
workflows.

6.2 RQ2: The Impact of Task Complexity
To address RQ2, i.e., to investigate the correlation between task
complexity and the difference in carbon footprints between the
manual and LLM-assisted approaches, we first present a scatter
plot 2a showing the relationship between task complexity (approx-
imated by mean time spent) and the direct difference in carbon
footprints between the manual and LLM-assisted approaches.

From our visual inspection of the scatter plot, it appears that as
task complexity increases, the direct difference in the carbon foot-
print between LLM-assisted and manual approaches also increases.
The plot 2b illustrates our expected pattern. We anticipate a rela-
tionship resembling a tanh function, where the direct difference in
carbon footprint has lower and upper limits because of the number
of maximum (8) and minimum (1) queries we set in our experiment.

To quantitatively assess the strength and significance of this rela-
tionship, we conducted two statistical tests: the Pearson correlation
test and the Spearman rank correlation test with significance level
(𝛼) at 0.05. We tested the following hypotheses:

• Null Hypothesis (𝐻0): There is no correlation between task
complexity and the direct difference in carbon footprints
between manual and LLM-assisted approaches.

• Alternative Hypothesis (𝐻𝐴): There is a significant cor-
relation between task complexity and the direct difference
in carbon footprints between manual and LLM-assisted ap-
proaches.

The results of our statistical tests are as follows:

• Pearson Correlation Test: The Pearson correlation coeffi-
cient was 0.890, with a p-value of 0.00011. Since the p-value
is less than the significance level of 0.05, we reject the null
hypothesis and conclude that there is a statistically signifi-
cant positive linear correlation between task complexity and
the direct difference in carbon footprints.

• Spearman Rank Correlation Test: The Spearman corre-
lation coefficient was 0.840, with a p-value of 0.0006. This
result also shows a significant monotonic relationship.

Based on these analyses, we conclude that there is a significant
linear correlation between task complexity and the difference in
carbon footprint of the two approaches. This finding emphasizes
the potential drawbacks of using LLM for more complex tasks.

6.3 Best Practices for Green Coding with LLM
In this section, we provide some recommendations that can inform
future best practices for using LLM in green coding to achieve
efficiency and minimal carbon footprint. To optimize the use of
LLM in green software development, we recommend investigating
the following approaches:

• For complex tasks, decomposing them into smaller, manage-
able sub-tasks can mitigate the significant energy use gap
(up to 30% based on our observed data). This decomposition
could be done manually or automatically, but the carbon

footprint of the decomposition itself needs to be further
investigated.

• We recommend assessing task complexity and adjusting the
development process around it to minimise environmental
impact. Depending on the task complexity we can deter-
mine the level of human involvement / autonomy in code
generation. Other parameters such as the LLM-type and the
resources used for training the LLM can further be used in
fine-tuning the process once more data is made available
about the public and open-source LLM, their training, and
their carbon footprint.

These practices can guide developers in making more informed
decisions when using LLM in software development, balancing the
benefits of LLM with the need to reduce environmental impact.

7 Threats to Validity
We acknowledge several threats to the validity of our results and
its generalisation. These limitations primarily arise from the lim-
ited data available to date and limited background research and
methodologies.
Scope of Analysis: Our study focuses solely on the implemen-
tation, testing, and debugging phases of software development,
excluding other stages such as planning and design. This limita-
tion is due to the availability of data at the time of our research,
and thus, our findings may not fully represent the entire software
development life cycle.
Assumptions about Hardware: We assumed a specific machine
configuration for the manual coding side of the study. Variations in
the Thermal Design Power (TDP) of different machines could result
in different energy consumption metrics. However, our conclusion
on the statistical test should remain the same as our metrics in LLM
also consider the manual effort.
LLM and Prompting Limitations: Our study is limited to the use
of a single LLM, and as such, our findings may not be generalisable
to other models with different architectures or training data. Addi-
tionally, we employed very simple zero-shot prompts—providing
only the task description and asking the model to generate code
without further guidance. While this reduces prompt-related bias,
it may not reflect the full potential of LLMs under more sophisti-
cated prompting strategies. Due to space constraints, the full set of
prompts used is provided in our replication package [9].
Limited Data Points: While our analysis would benefit from more
data points, including a broader range of tasks with different com-
plexity, the limitations in the number of queries allowed with GPT-4
made it time-consuming to conduct the LLM experiments.
Estimation of Energy Consumption: Many of the metrics, such
as query energy consumption, are estimated using available hard-
ware specifications of the LLM rather than precise energy profiling
tools or power meters. Likewise, the total number of queries GPT-4
will handle over its lifetime is unknown but we estimated it using
the lifetime of GPT-3.
Competitive Programming Environment: The tasks selected
for our study are drawn from a competitive programming environ-
ment, which may not fully reflect real-world software development
processes. As a result, the findings from this studymight not directly
translate to typical software development scenarios.
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(a) Task Complexity vs. Direct Difference of
LLM and Manual Carbon Footprint

(b) Task Complexity vs. Direct Difference of
LLM and Manual Carbon Footprint with Ex-
pected pattern

(c) Task Complexity vs. Direct Difference of
LLM and Manual Carbon Footprint with Best-
Fit Line

Figure 2: Comparison of Task Complexity and Carbon Footprint

8 Conclusions
In conclusion, we have shown that using an LLM-based approach
to software engineering results in higher carbon emissions than a
manual approach, with the gap increasing linearly as task complex-
ity grows. Our work presents opportunities for a more in-depth
analysis. For instance, we could delve into the reasons behind the
difference in carbon emissions by conducting a detailed examina-
tion of LLM. This could involve studying the lifetime of an LLM or
the training process, and investigating the impact of these variables.
Such a comprehensive analysis could pave the way for making AI
models, particularly LLM, more sustainable and energy efficient.
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