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ABSTRACT
Behavioral models enable the analysis of the functionality of soft-
ware product lines (SPL), e.g., model checking and model-based
testing. Model learning aims at constructing behavioral models for
software systems in some form of a finite state machine. Due to the
commonalities among the products of an SPL, it is possible to reuse
the previously learned models during the model learning process.
In this paper, an adaptive approach (the PL∗ method) for learning
the productmodels of an SPL is presented based on thewell-known
𝐿∗ algorithm. In this method, after model learning of each product,
the sequences in the final observation table are stored in a repos-
itory which will be used to initialize the observation table of the
remaining products to be learned. The proposed algorithm is eval-
uated on two open-source SPLs and the total learning cost is mea-
sured in terms of the number of rounds, the total number of resets
and input symbols. The results show that for complex SPLs, the to-
tal learning cost for the PL∗ method is significantly lower than that
of the non-adaptive learning method in terms of all three metrics.
Furthermore, it is observed that the order in which the products
are learned affects the efficiency of the PL∗ method. Based on this
observation, we introduced a heuristic to determine an ordering
which reduces the total cost of adaptive learning in both case stud-
ies.
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1 INTRODUCTION
Models are the foundations of many rigorous analysis techniques
in engineering in general and software engineering in particular.
Behavioral models specify how a system behaves as a result of in-
teracting with its user and environment. Examples of behavioral
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models include variants of state machines and sequence diagrams.
Behavioralmodels are often non-existent or outdated and one needs
to reconstruct them from implementations in order to enable fur-
ther analysis [12]. Model learning is a mechanized approach that
comes to rescue in such situations [40].

In software product lines, model learning is challenged by vari-
ability [15, 42]: one needs to learn behavioral models over the vari-
ability space and if performed crudely, this can be practically im-
possible.The key to overcome this challenge is to reuse the learned
models and their underlying data structures while moving across
the variability space [41]. Adaptive model learning [17] is a po-
tential fit for this purpose, because its algorithms are precisely de-
signed to reuse the results of the past queries to the system, as
well as the structure of the behavioral models in the subsequent
learning process in order to improve the efficiency [11].

In this paper, we design an adaptive learning algorithm named
𝑃𝐿∗ for software product lines and evaluate its efficiency against its
non-adaptive counterparts. Two important components of a model
learning algorithm are the membership queries (checking for the
output to a given sequence of inputs) and the equivalence queries
(verifying a hypothetical model learned hitherto).Themain factors
in evaluating the efficiency of a model learning algorithm are the
number of these queries (which can be measured using the num-
ber of resets), their average length (which can be measured using
the number of query symbols) and the number of learning rounds
[2, 40]. We evaluate the efficiency of our algorithm on two sub-
ject systems using the three metrics mentioned above. Moreover,
we combine all these metrics and compare the efficiency of the
adaptive and non-adaptive algorithms based on the total number
of input symbols posed to the system under learning leading to a
correctly learned model [11, 40]. For our subject systems, we statis-
tically evaluate the outcomes of the learning methods (with 3-wise
sampling, and with different product orderings) and observe with
high statistical confidence, that the PL∗ method is more efficient
than the non-adaptive approach. Hence, we affirmatively answer
the following three research questions:

RQ1 Does adaptive learning lead to fewer learning rounds and
equivalence queries?

RQ2 Does adaptive learning lead to fewer resets?
RQ3 Does adaptive learning lead to fewer total number of input

symbols?
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In standard (non-adaptive) model learning, the order of learn-
ing the products is immaterial since no information is brought for-
ward to learning the next products. When applying our adaptive
learning method, we observed a stark difference in terms of effi-
ciency between different orders and hence, we study the effect of
product ordering on the learning efficiency. We define a heuris-
tic to provide an efficient product ordering, formalize it in terms
of a quantitative measure (that can be used to steer the sampling
process), and statistically establish a correlation between our pro-
posed ordering and efficiency of the learning algorithm (in terms
of the total number of resets and input symbols) as the answer to
our last research question:
RQ4 How does the choice of product ordering influence the effi-

ciency of the learning process?
To our knowledge, this is the first application of adaptive model

learning to software product lines (we refer to Section 2 for a more
in-depth analysis of the related work). It is a first step in this di-
rection, which will pave the way for a line of research extending
various model learning techniques and extending them to a family-
based approach. This natural extension would require parameter-
izing the data structure we use in our approach (called observation
tables [2]) with feature expressions.

The rest of this paper is organized as follows. In Section 2, we re-
view the related work and position our researchwithin the broader
fields of model learning and software product lines. In Section 3,
we recall some basic concepts and definitions from the aforemen-
tioned fields. In Section 4, we present our adaptive model learn-
ing algorithm. In Section 5, we outline our empirical evaluation
methodology and describe the design of our experiments. In Sec-
tion 6, we discuss the results of our experiments and reflect on the
threat to the validity of our results. In Section 7, we conclude the
paper and present the directions of our future research. A package
containing the codes of experiments performed, models of subject
systems and test scripts is available at the following URL:

https://github.com/sh-t-20/artifacts

2 RELATEDWORK
In this section, we review the related work in three broad areas:
adaptive model learning [5, 11, 17, 21, 43, 44], machine learning in
SPLs [10, 12, 28, 31], and feature model mining [1, 20, 34].

AdaptiveModel Learning. Adaptivemodel learning [17] is an exten-
sion of traditional model learning that aims to speed up learning
by reusing information from pre-existing models. Groce, Peled &
Yannakakis [17] are among the earliest to reuse inaccurate mod-
els for achieving performance improvements in model learning
and model checking. The authors’ results suggest that adaptive
learning is especially useful when model updates are led by small
changes or limited impact on the correctness of properties model
checked [17]; our results in this paper, corroborate their observa-
tion in the setting of software product lines. Namely, we show that
higher learning efficiency is achieved when the chosen order of
products has fewer simultaneous addition of non-mandatory fea-
tures. Windmüller et. al. [43] show that adaptive learning can be
used to periodically build models from evolving complex applica-
tions. Also, they show that reusing separating sequences derived
from models of previous versions can steer the learning process to

find maintained states [43]. Huistra, Meijer, & van de Pol [21] re-
port that the performance of adaptive learning is influenced by the
SUL’s complexity, the size of its update, and the quality of suffixes.
Additionally, the authors report evidence that, if a set of reused
separating sequences has low state distinguishing capacity, then
irrelevant queries should be expected [21]. Chaki, Clarke, Shary-
gina & Sinha [5] presented an approach for efficientlymodel check-
ing software upgrades by revalidating sequences from reused ob-
servation tables. By means of experiments, the authors show that
model upgrade checking can be performed much faster than veri-
fying a SUL from scratch [5]. More recently, Damasceno et al. [11]
showed that existing adaptive learning techniques are prone to
performance issues when there are large differences between the
reused and updated model. To address this issue, they introduced
a novel adaptive learning technique that gradually revalidates and
reuses sequences and outperforms state-of-the-art adaptive learn-
ing techniques [11]. Our results crucially build upon these earlier
results and bring them to a new domain: software product lines
provide a very specific paradigm for adaptive learning, where the
choice of adaptations can be controlled by the product sampling
order. Our work differs from these by focusing on the reuse of
multiple observation tables in an observation table repository and
is to our knowledge the first attempt to lift adaptive model learn-
ing to the scope of software families. Yang et al. [44] present a way
to combine the results of passive learning (i.e., the execution logs)
with active model learning [44]. Our work differs from this piece
of work in that we consider active model learning; the combina-
tion of adaptive active and passive learning for product families is
a promising area for future work.

Machine and Model Learning in SPLs. Several studies have pursued
ways to apply machine [31] and model [10, 12] learning principles
in software product lines. For an extensive literature review on
machine learning applied to SPLs, we refer the interested reader
to Pereira et al. [31]. Complementary, Lesoil [28] have recently
showed that variability can be present at multiple layers of a sys-
tem, from the hardware, over software, to the input data levels;
and raise concerns about challenges faced in the adoption of ma-
chine learning principles in variability analysis. The analysis of
variability-intensive systems can be very demanding due to the po-
tentially exponential number of valid configurations. Family-based
modeling approaches have been developed to enable efficientmodel-
based testing of SPLswithout exhaustively going through each and
every product. Nevertheless, the creation and maintenance of fam-
ily models are still difficult and time-consuming [30]. To aid these
tasks, Damasceno et al. [10, 12] introduced the concept of fam-
ily model learning as a means for building behavioural variability
models for SPLs. Using a benchmark set of 105 product models,
the authors showed that succinct family models can be learned
by matching and merging state machine models [12], particularly
when there is a high degree of reuse among the SULs [10]. Addi-
tionally, they show that feature interaction criteria (e.g., T-Wise)
can alleviate the costs of learning family model by sampling prod-
uct sets that collectively cover the behavior of product families.
These results have sparked the interest of the SPL community in
pursuing further investigations at the intersection of model learn-
ing and variability analysis [13]. This work contributes towards

https://github.com/sh-t-20/artifacts
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this research gap by exploring means to take advantage of obser-
vation tables extracted from multiple product instances. Particu-
larly, using adaptive learning techniques to attack this problem is
a novelty of our approach with respect to the earlier cited pieces
of work.

Feature Model Mining. Feature models are a key asset in variability
management and analysis [4]. Using SAT [27] or SMT [37] solvers,
feature models are prone to automated reasoning, such as detect-
ing invalid models or configurations, identifying core features, and
enumerating/quantifying all valid configurations. However, as an
SPL may also be built using extractive and reactive approaches
[3], SPL projects may initially lack feature models [20]. To address
this issue, reverse engineering concepts have been used to (semi-
)automate the construction of feature models from sets of product
configurations [1, 20, 34]. Our work complements the role of such
structural variabilitymodel learning (aka featuremodel mining) by
providing an efficient means to extract behavioral variability mod-
els through active learning experiments. The integration of these
two techniques, i.e., feature model mining and behavioral model
learning is a promising line of future research; it will pave the way
for novel automated analysis techniques of behavioral properties
of software product lines.

3 BACKGROUND
In this section, some of the terms used in this paper are described.
The software product lines are briefly explained. Some notations
formodeling an SPL and its products are defined.The non-adaptive
model learning process is explained. Some of the metrics used for
evaluating the efficiency of model learning are defined. Also in this
section, the product sampling concept is briefly described.

3.1 Software Product Lines
A software product line (SPL) is a set of software products that
have a common set of features and are designed for a specific re-
quirement [9]. An SPL is defined by a set of features 𝐹 and a feature
model [10, 12]. A feature-model [26, 35] is a structural variability
model representing the hierarchical structure of the SPL features.
Each product 𝑝 consists of a subset of the SPL features. The set
of valid product configurations is specified by the feature model.
In this representation, features are classified into mandatory and
optional types. Mandatory features are present in all valid config-
urations by default. From a group of alternative features, only one
of them can be present in each product. When a set of features are
defined using or, each product may contain one or more of them
[12, 26]. Figure 1 shows the feature model of a sample SPL. In this
figure,A and C are mandatory features and B is an optional feature.
The featuresD and E are alternatives. F,G andH form an ‘or’ group
of features. This SPL contains 28 valid product configurations.

3.2 Finite State Machines
Afinite statemachine (FSM) [16] is a widely used behavioral model
which is defined as the tuple𝑀 = ⟨𝑆, 𝑠0, 𝐼 ,𝑂, 𝛿, 𝜆⟩. In this definition,
𝑆 is the set of states and 𝑠0 is the initial state (𝑠0 ∈ 𝑆). The set of
input alphabet is represented by 𝐼 and the set of outputs is denoted
by 𝑂 . The transition function 𝛿 determines the next state, 𝑠2 ∈ 𝑆 ,
assuming that the FSM is in state 𝑠1 ∈ 𝑆 and the input 𝑎 ∈ 𝐼 is

Figure 1: The feature model of a sample SPL

presented (𝛿 (𝑠1, 𝑎) = 𝑠2). The output function is represented by
𝜆 which is a mapping from a pair of a state and an input to an
output. The state machines learned by the existing model learning
methods are deterministic FSMs. In a deterministic FSM, for each
state and input alphabet, there is at most one transition and one
output [11, 40].

3.3 Model Learning
Model learning [40] is a method used to construct the behavioral
model of a software system in the form of a state machine. Model
learning is classified into two types: passive and active. In pas-
sive learning, different runs of software (e.g., log files) are used
for learning a behavioral model of the software. In active learn-
ing, however, a model is learned by interacting with the system
under learning (SUL) through various types of queries and observ-
ing the resulting outputs. The 𝐿∗ algorithm [2] proposed by Dana
Angluin, is a seminal example of active model learning, where two
types of queries are used: a membership query (MQ) is used to de-
termine the output sequence for a given input sequence. An equiv-
alence query (EQ) is used to ask if the constructed hypothesis 𝐻 is
language-equivalent to the SUL. The query results are stored in an
observation table (described below), and the learning is performed
in rounds, in each of which a hypothesis is constructed [2, 11, 40].

3.3.1 Observation Table. Anobservation table is defined as a triple
OT = (𝑆, 𝐸,𝑇 ), where 𝑆 ⊆ 𝐼∗ is a finite prefix-closed set of prefixes
(transfer sequences); 𝐸 ⊆ 𝐼+ is a finite set of suffixes (separating
sequences) and 𝑇 : 𝐼+ × 𝐼+ → 𝐼+ is a function such that for each
𝑠 ∈ 𝑆 ∪ 𝑆.𝐼 and 𝑒 ∈ 𝐸, 𝑇 (𝑠, 𝑒) is the SUL’s output suffix of size
|𝑒 | for the 𝑠 .𝑒 input sequence. An observation table can be repre-
sented as a 2-dimensional array, where each row is a subset of 𝑆.𝐼
with a representative 𝑠 ∈ 𝑆.𝐼 , and each column is a sequence 𝑒 ∈ 𝐸.
An observation table is closed if for all 𝑠1 ∈ 𝑆.𝐼 , there exists a pre-
fix 𝑠2 ∈ 𝑆 such that row(𝑠1) equals row(𝑠2). An observation table is
consistent if for all 𝑠1, 𝑠2 ∈ 𝑆 such that row(𝑠1) = row(𝑠2), row(𝑠1 .𝑣)
equals row(𝑠2 .𝑣) for all 𝑣 ∈ 𝐼 [2, 11, 40].

3.3.2 The 𝐿∗ Algorithm. In this section, Angluin’s 𝐿∗ algorithm
[2] is described. At the beginning of this algorithm, sets 𝑆 and 𝐸
are initialized to {𝜖} and the initial𝑇 values are obtained by posing
MQs. The following steps are repeated until the observation table
is consistent and closed:

• If the observation table is not consistent, the algorithm finds
𝑠1, 𝑠2 ∈ 𝑆 , 𝑣 ∈ 𝐼 and 𝑒1 ∈ 𝐸 such that row(𝑠1) = row(𝑠2) and
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𝑇 (𝑠1 .𝑣, 𝑒1) ≠ 𝑇 (𝑠2 .𝑣, 𝑒1).Then, 𝑣 .𝑒1 is added to 𝐸 and the new
values of 𝑇 are calculated by posing MQs.

• If the observation table is not closed, the algorithm finds
𝑠1 ∈ 𝑆 and 𝑣 ∈ 𝐼 such that row(𝑠1 .𝑣) ≠ row(𝑠) for all 𝑠 ∈ 𝑆 .
Then, 𝑠1 .𝑣 is added to 𝑆 and the new values of𝑇 are obtained
using MQs.

When the observation table is closed and consistent, the algorithm
constructs a hypothesis 𝐻 and poses an EQ to verify it. If 𝐻 is cor-
rect, the learning algorithm terminates. If the hypothesis 𝐻 is not
correct, a counterexample is provided. A counterexample is an in-
put sequence in which the result of𝐻 is different from the result of
the SUL [2, 11, 40]. Then, the counterexample is used to update the
observation table by adding prefixes or suffixes (for which several
heuristics have been proposed) [23].

The 𝐿∗𝑀 [36] is an active model learning algorithm for learning
mealy machines using the settings of 𝐿∗. In 𝐿∗𝑀 , the observation
table is defined asOT = {𝑆𝑀 , 𝐸𝑀 ,𝑇𝑀 } and is initialized using 𝑆𝑀 =
{𝜖} and 𝐸𝑀 = 𝐼 [36]. In this paper, the 𝐿∗𝑀 algorithm is used to
perform the experiments.

3.4 Product Sampling
Product-based behavioral analysis of an SPL, can be costly due
to the exponential number of valid configurations. Using sample-
based approaches may result in increasing the efficiency of the SPL
analysis. In these approaches, a subset of valid products is used
to cover the behavior of an SPL. Products whose behavior has al-
ready been covered by other products are not included in the sam-
ple [38]. The T-wise [24] method is one of the sampling techniques
applicable in the SPL context. In this method, valid combinations
of T-features are used to cover the T-wise interactions of features
in the SPL [12, 24, 32].

4 THE PL* ALGORITHM
In adaptive model learning, the transfer sequences and the separat-
ing sequences in the observation tables of the existing models are
reused to initialize the observation table of the new model [11]. In
our approach, we build upon an adaptive learning algorithm [11],
and apply to learn the FSM models of a set of products sampled
from an SPL. Assume Sample = (𝑝1, 𝑝2, . . . , 𝑝𝑛) is a sequence of 𝑛
products sampled from an SPL.

In this algorithm, otRepository is defined as a set of observation
tables learned from earlier products. To refer to these observation
tables, we use the notation OT 𝑖 = (𝑆𝑖 , 𝐸𝑖 ,𝑇𝑖 ) for the observation
table of product 𝑖 . At the beginning of the learning process, the
otRepository is empty. The PL∗ algorithm consists of the following
steps:

(1) First, the FSM of 𝑝1 is learned using a non-adaptive learning
method (e.g., using the 𝐿∗𝑀 algorithm).We only deviate from
𝐿∗ by initialising the initial set of suffixes (i.e., 𝐸1) with the
alphabet of the product 𝑝1. (We do the same for all other
subsequent products, as well, i.e., we add their alphabet to
their initial set of suffixes.)

(2) Once the 𝐿∗𝑀 algorithm successfully terminates, the result-
ing observation tableOT1 is added to the otRepository.There-
fore, otRepository equals {OT1}.

For each 𝑖 ∈ {2, . . . , 𝑛}, the following steps are iteratively
repeated:

(3) Themodel of product 𝑝𝑖 is learned using adaptive 𝐿∗𝑀 . In this
step, the observation table of 𝑝𝑖 is initialized using otRepository =
(OT1, . . . ,OT 𝑖−1). A sequence is “defined in the alphabet of
𝑝𝑖 ” if it solely comprises input symbols in the alphabet of 𝑝𝑖 .
To initialize the OT 𝑖 , the set of sequences in

∪
𝑗 ∈{1,...,𝑖−1} 𝑆 𝑗

which are defined in the alphabet of 𝑝𝑖 , is considered as the
initial value of 𝑆𝑖 . The set of sequences in

∪
𝑗 ∈{1,...,𝑖−1} 𝐸 𝑗

which are defined in the alphabet of 𝑝𝑖 , are added to 𝐸𝑖 (note
that the alphabet of 𝑝𝑖 is initially added to 𝐸𝑖 by default).

(4) Once adaptive𝐿∗𝑀 terminates,OT 𝑖 is added to the otRepository
and at the end of this step, otRepository equals (OT1, . . . ,OT 𝑖 ).

A schematic representation of the proposed adaptive learning
method is shown in Figure 2. In this figure,𝑀𝑖 is the model learned
for the 𝑖-th product (𝑝𝑖 ). In this figure, arrows from PL∗ processes
to the observation table repository show that the observation ta-
ble of the recently learned product is stored in the repository. The
arrows starting from the repository show the sets of sequences
in the repository which are used to initialize the observation ta-
ble of the new products. After learning the model of each product,
the learned model is incorporated into a family model (a feature-
annotated behavioral model of the software product line [14]). The
two processes of learning the product models and updating the
family model can be performed concurrently.

Figure 2: A schematic representation of the proposed adap-
tive learning method

Based on the results of the experiment described in Section 6.1,
we observed that the product learning order can affect the effi-
ciency of the PL∗ method. The product learning order can be ran-
dom or it can be determined using heuristic methods. To find a
good learning order, it is necessary to determine which character-
istics of a learning order result in increasing the efficiency. Based
on the results of the experiments (Section 6.1) and observing learn-
ing orders with high, medium, and low efficiency, a heuristic is
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presented to determine the desired learning orders. In the experi-
ments, we observed that when the number of new non-mandatory
features that are added by each product is small, the efficiency of
the PL∗ method increases. Using this observation, we present a
heuristic to provide an ordering which decreases the total cost of
learning.

Suppose the number of non-mandatory features of an SPL is 𝐹
and a sample of size 𝑛 from this SPL is available for learning. The
product learning order𝑂 = ⟨𝑝1, 𝑝2, ..., 𝑝𝑛⟩ is a sequence of products
in this sample. If 𝑖 is smaller than 𝑗 , the FSM of 𝑝𝑖 must be learned
earlier than the FSM of 𝑝 𝑗 . The parameter 𝐷 is defined as follows.

𝐷 =

{
0, if 𝐹𝑖 = 0∑𝑛
𝑖=1

1
𝐹𝑖
, if 𝐹𝑖 ≠ 0

(1)

In Equation 1, 𝐹𝑖 is the number of new non-mandatory features
added by 𝑝𝑖 , i.e., the number of non-mandatory features in 𝑝𝑖 not
present in any product 𝑝 𝑗 , where 1 ≤ 𝑗 < 𝑖 . The reason for using
1
𝐹𝑖

in this formula is that the added cost of learning decreases as
the number of new non-mandatory features increases (i.e., the dif-
ference between 1 and 1

2 is larger than the difference between 1
4

and 1
5 ).

5 EMPIRICAL EVALUATION METHODOLOGY
To evaluate the efficiency of the proposed adaptive learningmethod,
a set of experiments is performed. These experiments are designed
to answer the following questions by comparing the quantitative
metrics between the PL∗ method and the non-adaptive learning
method:

RQ1 Does adaptive learning lead to fewer total number of rounds
and equivalence queries?

RQ2 Does adaptive learning lead to fewer resets?
RQ3 Does adaptive learning lead to fewer total number of input

symbols?

These quantitative metrics arise from the way model learning al-
gorithms operate: MQs are the simple and basic building blocks
to build a hypothesis about the system under learning and hence,
their total number is indicative of how long it takes before the
hypotheses are constructed. EQs are much heavier than MQs and
their total number heavily influences the performance. In order to
put these two types of queries together, one needs to factor in the
substantial difference in the size of these two types of queries; this
is best achieved by counting the total number of input symbols,
which gives us a very natural indicator of the overall performance
of the algorithm [40] (RQ3).

While performing these queries, sometimes a reset operation is
needed to bring the FSM to a known state and pose further queries.
This operation is known to be very costly and is often avoided as
much as possible in learning algorithms. To reset a SUL, it may be
necessary to completely restart the system and re-initialize many
of its software components.Therefore, performing a reset may take
a long time [18, 19]. Hence, we use the total number of resets as
another efficiency metric for our comparison (RQ2).

5.1 Subject Systems
To evaluate the proposed adaptive learning method, we need ac-
cess to SPLs with well-defined behavioral (e.g., FSM or labelled
transition system) and structural models (e.g., Feature Models and
the alphabet of each feature). It must also be possible to obtain the
FSM of any valid configuration from these SPLs. The tested SPLs
must be complex enough to involve a number of rounds and have a
reasonably large number of queries in order to allow for ameaning-
ful comparison. According to the mentioned characteristics, two
open-source SPLs are used in the experiments:

5.1.1 The Minepump SPL. The Minepump SPL is presented in [7,
8] and is a simple mine-pump controller that includes 9 features (6
non-mandatory features). The feature model of this SPL is shown
in Figure 3 [7]. The featured transition system of this SPL is pro-
vided in [12]; Using this featured behavioral model, it is possible to
obtain the FSM of any valid configuration from this SPL. Sampling
is performed using the 3-wise method. The sample created from
this SPL contains 15 products. The FSMs of the products in this
sample have a minimum of 9 states and a maximum of 21 states,
and their average number of states is 13.86.

Figure 3: The feature model of the Minepump SPL [7]

5.1.2 The BCS SPL. The Body Comfort System (BCS) SPL [29]
is an automotive software system of a Volkswagen Golf model,
whose original feature model has 27 features. Each component in
this SPL represents a feature and provides a specific functionality.
The I/O transition system of each component is provided in a de-
tailed technical report [29].

In this paper, a simplified version of the BCS SPL is used. The
feature model of the simplified version of the BCS SPL is shown
in Figure 4 (taken from [29] with minor modifications). The simpli-
fied version contains 12 features (6 non-mandatory features). The
product FSMs are constructed using the following steps:

(1) The I/O transition system of each component is converted
to a finite state machine (FSM).

(2) The FSMs of the components corresponding to the features
of each product are merged to construct the FSM of that
product.

The sample created from this SPL using the 3-wise method con-
tains 16 products. The FSMs of the products in this sample have
a minimum of 14 states and a maximum of 864 states, and their
average number of states is 117.25.

5.2 Experiment Design
To perform the experiments, a subset of the valid configurations
of each subject SPL is used. The samples are produced using the
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Figure 4: The feature model of a simplified version of the BCS SPL (inspired by [29])

T-wise product sampling method [24] and the Chvatal algorithm
[6]. For sampling using T-wise method, the value of𝑇 is set to 3. In
[12], it is shown that in T-wise sampling method, the use of 𝑇 = 3
results in a more precise family model than in cases where 𝑇 = 1
or 𝑇 = 2. In this sampling method, using 𝑇 greater then 3 is not
cost-effective [12]. Sampling is performed using the FeatureIDE
[39] library. The FSMs of all products in each sample are learned
using the PL∗ method and the non-adaptive learning method. The
total learning cost is calculated for each learning method.

In these experiments, model learning is performed using the Ex-
tensibleLStarMealyBuilder class of the LearnLib [33] library ver-
sion 0.16.0. In the non-adaptive learning method, before applying
model learning to each product, the observation table is initialized
using 𝑆𝑀 = 𝜖 and 𝐸𝑀 = 𝐼 , where 𝐼 is the input alphabet of the
product [36]. In the adaptive learning method, the observation ta-
bles are initialized using the method explained in Section 3 (the
PL∗ algorithm). Model learning is performed using the following
parameters:

• The equivalence oracle type is WP, which is an established
and structured method for detecting faults (i.e., incorrectly
learned states and transitions).

• The observation table closing strategy is CloseFirst.
• Caching is not used.

To evaluate the experiment results, statistical tests are performed
using the SciPy [25] library of Python. The Matplotlib [22] library
is used to visualize the results. The experiments show that in the
PL∗ method, the order of learning the products affects the total cost
of learning. To more accurately evaluate the results, the following
experiments are performed:

5.2.1 Comparing the LearningMethods. To compare the efficiency
of the PL∗ method with the non-adaptive learning method, a sam-
ple of 200 different random learning orders is produced for each
subject SPL. Each learning order is considered as a permutation of
the products in the sample of products. Considering each of the
sampled learning orders, model learning is performed using the
PL∗ method and the non-adaptive learning method. The following
methods are used to generalize the results by catering for the fol-
lowing random exogenous variables in the learning process:

(1) Using random orders for the input alphabet
(2) Using random orders for the initial prefixes
(3) Using random orders for the initial suffixes

The total amount of the learning cost metrics for each learning
method is calculated for each combination of random values. The
total value of each metric for each learning order is calculated us-
ing the sum of the values of that metric for learning the model of
all products in that order.The amount of metrics in the PL∗ method
and the non-adaptive learningmethod are compared using the one-
sided paired sample T-test.

5.2.2 The Effect of Learning Order. To evaluate and quantify the
effect of learning order on the efficiency of the PL∗ method, for
each subject SPL two learning orders are considered: one learning
order with the highest learning efficiency and one with the lowest
learning efficiency. To obtain these learning orders, the results of
the previous experiments are sorted in ascending order based on
the total number of resets, the total number of input symbols and
the total number of rounds, respectively. In the resulting table, the
first row corresponds to the order with the highest learning effi-
ciency and the last row corresponds to the order with the lowest
learning efficiency. Considering these learning orders, the prod-
uct models are learned using the PL∗ method and the total amount
of metrics are calculated. This experiment is repeated 50 times for
each order. The amount of metrics for these learning orders are
compared using the non-paired T-test.

6 RESULTS
In this section, we first present the results of the experiments per-
formed to evaluate the efficiency of the proposed adaptive learn-
ing method in comparison to the non-adaptive algorithm. Then,
we show how different orderings of the products affect the total
cost of learning in the adaptive algorithm. Finally, we discuss the
obtained results and the threats to their validity. To make the dia-
grams clearer, the scale of each diagram is adjusted according to
the values in that diagram. In this section, the average and stan-
dard deviation values of the number of resets and the number of
input symbols are rounded to the nearest whole number. For the
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metrics shown in Tables 1 to 7, the standard deviation in the non-
adaptive learning method is zero and hence, is not shown in the
table. To highlight the amount of improvement made by the PL∗
method, “improvement percentage” is defined. For each learning
cost metric, if𝑚 is its value in the PL∗ method and𝑚′ is its value in
the non-adaptive learning method, the improvement percentage is
calculated as (1− 𝑚

𝑚′ ) ∗100%. For each specific learning cost metric,
if the improvement percentage is positive, it means that using the
PL∗ method improves learning efficiency in terms of that metric.
On the other hand, if the improvement percentage of some metric
is negative, it shows that using the PL∗ method reduces learning
efficiency in terms of that metric.

6.1 Comparing the learning methods
(RQ1-RQ3)

In this experiment, the total amount of the learning cost metrics
is calculated for 200 random orders using the PL∗ method and
the non-adaptive learning method. In the non-adaptive learning
method, the values of the learning costmetrics are exactly the same
for all orders tested, obviously. Figure 5 shows the distribution of
the total number of resets for the subject SPLs. The distribution of
the total number of query symbols is shown in Figure 6. In these
figures, the blue diagrams show the box-plots of the metrics for the
PL∗ method. The values of metrics for the non-adaptive learning
method are represented by the horizontal line on top of each box
plot.

Figure 5: Distribution of the total number of resets

The values of the efficiency metrics in the PL∗ method and the
non-adaptive learning method are compared using the one-sided
paired sample T-test. Tables 1, 2, and 3 summarize the results of
these tests for the number of rounds, the total number of resets,
and the total number of query symbols, respectively. In the table
for each metric, the “Ratio” column shows the ratio of the value
of that metric in the PL∗ method to the value of the same metric
in the non-adaptive learning method; Ratio values are rounded to
three decimal places.

Table 1 shows that in the Minepump SPL, the use of the PL∗
method reduces the number of learning rounds by about 39% com-
pared to the non-adaptive learning method. In the BCS SPL, the

Figure 6: Distribution of the total number of query symbols

number of rounds decreases by about 23%.The results of one-sided
paired sample T-tests show that in the tested SPLs, the number of
learning rounds in the PL∗ method is significantly less than that of
the non-adaptive learning method (𝑝-value < 0.01).

Another metric which is evaluated in these experiments, is the
total number of resets, which is the sum of the number of reset op-
erations of the MQs and the EQs. Table 2 shows the results of these
experiments for the total number of resets. In the Minepump SPL,
the total number of resets in the PL∗ method is approximately 13%
lower than that of the non-adaptive learning method. In the BCS
SPL, the amount of the reduction in the number of resets is approx-
imately 7%. The calculated 𝑝-values show that the total number
of resets in the PL∗ method is significantly less than the amount
of this metric in the non-adaptive learning method. Therefore, in
the tested SPLs, using the PL∗ method reduces the total number of
queries in the learning process.

Another effective factor in the efficiency of the model learning
algorithms is the length of queries. To estimate this parameter, the
total number of input symbols can be used, which is the sum of the
input symbols used in MQs and in the implementation of EQs [40].
Table 3 shows that using the PL∗ method reduces the total number
of input symbols by about 12% in the Minepump SPL and by about
6% in the BCS SPL compared to the non-adaptive learning method.
The above results show that the total number of input symbols in
the PL∗ method is significantly less than that of the non-adaptive
learning method.

Therefore, in these experiments, the use of PL∗ method increases
the learning efficiency in terms of the number of learning rounds,
the total number of resets and the total number of input symbols.
The number of resets and input symbols are evaluated for MQs and
EQs separately.

Tables 4 and 5 summarize the results of the experiments for the
MQ resets and theMQ input symbols, respectively. In theMinepump
SPL, using the PL∗ method increases the number of MQ resets by
about 7%. In the BCS SPL, the increase in the number of MQ re-
sets is approximately 18%. The PL∗ method increases the number
of MQ input symbols by about 9% in the Minepump SPL and by
approximately 22% in the BCS SPL.
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Table 1: The total number of rounds in the PL∗ method and the non-adaptive learning method

SUL PL∗ method Non-adaptive learning method Improvement 𝑝-value
Average Standard deviation Average percentage (one-sided paired T-test)

The Minepump SPL 18.005 1.167 30.000 +39.9% 2.845e-204
The BCS SPL 16.910 0.998 22.000 +23.1% 7.034e-145

Table 2: The total number of resets in the PL∗ method and the non-adaptive learning method

SUL PL∗ method Non-adaptive learning method Improvement 𝑝-value
Average Standard deviation Average percentage (one-sided paired T-test)

The Minepump SPL 3,838,078 74,075 4,429,400 +13.3% 1.095e-182
The BCS SPL 77,339,830 1,594,173 83,332,932 +7.1% 7.259e-120

Table 3: The total number of input symbols in the PL∗ method and the non-adaptive learning method

SUL PL∗ method Non-adaptive learning method Improvement 𝑝-value
Average Standard deviation Average percentage (one-sided paired T-test)

The Minepump SPL 24,950,092 465,514 28,637,112 +12.8% 5.103e-182
The BCS SPL 739,258,253 14,835,751 791,674,093 +6.6% 7.150e-115

Table 4: The number of MQ resets in the PL∗ method and the non-adaptive learning method

SUL PL∗ method Non-adaptive learning method Improvement
Average Standard deviation Average percentage

The Minepump SPL 78,846 1,193 73,937 -6.7%
The BCS SPL 757,186 43,247 642,412 -17.9%

Tables 6 and 7 show the experiment results for the EQ resets and
the EQ input symbols, respectively. In the Minepump SPL, using
the PL∗ method reduces the number of EQ resets by about 13%. In
the BCS SPL, the amount of reduction in the number of EQ resets
is approximately 7%. The PL∗ method decreases the number of EQ
input symbols by about 13% in the Minepump SPL and by about
6% in the BCS SPL.

The results of the experiments show that the PL∗ method can
improve the learning efficiency in terms of the total number of
rounds, resets and input symbols. The PL∗ method increases the
number of MQs. This adaptive learning method reduces the total
cost of learning by reducing the number of EQs. Tables 4 and 6
show that in the subject SPLs, the number of EQ resets is at least
one order of magnitude higher than the number of MQ resets. Sim-
ilarly, Tables 5 and 7 show that the number of EQ input symbols
is at least one order of magnitude higher than the number of MQ
input symbols. These results indicate that the impact of EQs on
the total cost of learning is much greater than the effect of MQs.
Therefore, in both subject SPLs, the PL∗ method increases the total
learning efficiency.

In the PL∗ method, the observation table of the product under
learning is initialized using sequences from the previously learned
models which are defined in its alphabet. Therefore, it makes the
initial observation table more similar to the final observation table
(the observation table after learning). As a result, the PL∗ method
can decrease the number of rounds. This learning method is suit-
able for SPLs which are complex enough that the model learning
of some of their products requires more than one round. We have
not yet evaluated the effect of caching on the learning methods.

6.2 The Effect of Learning Order (RQ4)
To evaluate the effect of learning order on the PL∗ algorithm, from
each subject SPL, two learning orders are selected: one order with
a high learning efficiency (order 1) and one order with a relatively
low learning efficiency (order 2), as explained in 5.2.2. Consider-
ing these orders, the model learning is performed using the PL∗
method. The experiment is repeated 50 times for each of these
learning orders. The results of order 1 and order 2 are compared
using the two-sided unpaired T-test.

In the Minepump SPL, the total number of learning rounds in
all repetitions of this experiment is 15 for order 1 and 22 for order
2. However, to learn these models using the non-adaptive learn-
ing method, 30 rounds are required. As mentioned earlier, the ef-
ficiency of the non-adaptive learning method does not depend on
the learning order of products. In the BCS SPL, the total number
of rounds in the PL∗ method is 16 for order 1 and 18 for order 2,
while the number of rounds in the non-adaptive learning method
is 22.

Table 8 shows the results of these experiments on the total num-
ber of resets. In theMinepump SPL, the average of the total number
of resets is 3714556.240 for order 1, while the value of this metric
is 3898983.160 for order 2. The 𝑝-value of the two-sided unpaired
T-test is 2.875e-14. In the BCS SPL, the average of the total number
of resets is 76182731.480 for order 1 and 81718889.180 for order 2.
In this experiment, the calculated 𝑝-value is 3.281e-42. Therefore,
in these experiments, the total number of resets in order 1 is sig-
nificantly different from that of order 2. Figure 7 shows the distri-
bution of the total number of resets in the experimented learning
orders.
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Table 5: The number of MQ input symbols in the PL∗ method and the non-adaptive learning method

SUL PL∗ method Non-adaptive learning method Improvement
Average Standard deviation Average percentage

The Minepump SPL 433,967 7,513 401,613 -8.1%
The BCS SPL 5,826,720 351,470 4,804,082 -21.3%

Table 6: The number of EQ resets in the PL∗ method and the non-adaptive learning method

SUL PL∗ method Non-adaptive learning method Improvement
Average Standard deviation Average percentage

The Minepump SPL 3,759,232 73,731 4,355,463 +13.6%
The BCS SPL 76,582,644 1,575,454 82,690,520 +7.3%

Table 7: The number of EQ input symbols in the PL∗ method and the non-adaptive learning method

SUL PL∗ method Non-adaptive learning method Improvement
Average Standard deviation Average percentage

The Minepump SPL 24,516,124 463,540 28,235,499 +13.1%
The BCS SPL 733,431,533 14,740,136 786,870,011 +6.7%

Table 8: The effect of product learning order on the total number of resets in the PL∗ method

SUL Learning order 1 Learning order 2 𝑝-value
Average Standard deviation Average Standard deviation (two-sided unpaired T-test)

The Minepump SPL 3,714,556 25,498 3,898,983 124,018 2.875e-14
The BCS SPL 76,182,731 978,964 81,718,889 269,506 3.281e-42

Figure 7: Distribution of the total number of resets in the
experimented learning orders

Table 9 summarizes the results of the experiments on the total
number of input symbols. In the Minepump SPL, the average of
the total number of input symbols is 24166589.700 for order 1 and
25374188.260 for order 2. The 𝑝-value of the two-sided unpaired
T-test is 1.421e-14. In the BCS SPL, the average of the total number
of input symbols is 728779454.060 for order 1 and 778246372.540
for order 2. The calculated 𝑝-value in this experiment is 2.071e-40.
Therefore, the total number of input symbols in order 1 is signifi-
cantly different from the same metric in order 2. The distribution
of the total number of input symbols in the experimented orders
is shown in Figure 8.

Figure 8: Distribution of the total number of input symbols
in the experimented learning orders

The above results show that in the PL∗ method, the order of
learning the products can affect the efficiency of model learning in
the SPL context.

6.2.1 How to Determine the Order of Learning. As mentioned ear-
lier, the order of learning products can affect the efficiency of the
PL∗ method. In this experiment, the use of parameter 𝐷 to deter-
mine the product learning order in the PL∗ method is evaluated.
Using the equation 1, the parameter𝐷 is calculated for all 200 learn-
ing orders in Experiment 6.1. The Pearson correlation coefficient
𝑟 between the parameter 𝐷 and the learning cost metrics and its
𝑝-value is calculated.

Table 10 summarizes the results of these experiments for the
total number of resets.The Pearson correlation coefficient between
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Table 9: The effect of product learning order on the total number of input symbols in the PL∗ method

SUL Learning order 1 Learning order 2 𝑝-value
Average Standard deviation Average Standard deviation (two-sided unpaired T-test)

The Minepump SPL 24,166,590 160,544 25,374,188 796,102 1.421e-14
The BCS SPL 728,779,454 9,355,222 778,246,373 2,470,848 2.071e-40

Table 10:The Pearson correlation coefficient between the pa-
rameter 𝐷 and the total number of resets

SUL 𝑟 𝑝-value
The Minepump SPL -0.305 1.127e-05

The BCS SPL -0.430 2.183e-10

Table 11:The Pearson correlation coefficient between the pa-
rameter 𝐷 and the total number of input symbols

SUL 𝑟 𝑝-value
The Minepump SPL -0.301 1.484e-05

The BCS SPL -0.404 2.988e-09

the parameter 𝐷 and the total number of resets is -0.305 for the
Minepump SPL (𝑝-value= 1.127e-05) and -0.430 for the BCS SPL (𝑝-
value = 2.183e-10). Figure 9 shows the diagram of the total number
of resets vs. parameter 𝐷 and its regression line.

Figure 9: Diagram of the total number of resets vs. the pa-
rameter 𝐷

The correlation coefficient between the parameter 𝐷 and the to-
tal number of input symbols and its 𝑝-value is summarized in Table
11. The Pearson correlation coefficient between the parameter 𝐷
and the total number of input symbols is -0.301 for the Minepump
SPL (𝑝-value = 1.484e-05) and -0.404 for the BCS SPL (𝑝-value
= 2.988e-09). The diagram of the total number of input symbols
against the parameter 𝐷 and its regression line is shown in Figure
10.

The above experiments show that the order of learning the prod-
ucts can affect the efficiency of the PL∗ method. In these experi-
ments, it is observed that the total learning efficiency usually in-
creases if the number of newnon-mandatory features that are added
simultaneously is small. Using this observation, the parameter 𝐷
is defined as a heuristic to find an order which increases the effi-
ciency of learning. Experimental results show that there is a mild
negative correlation between the value of 𝐷 and the total num-
ber of resets. There is also a mild negative correlation between
the value of 𝐷 and the total number of input symbols. Therefore,

Figure 10: Diagram of the total number of input symbols vs.
the parameter 𝐷

it is possible to determine the proper order for learning a subset
of products using the PL∗ method. However, for all learning or-
ders tested, the PL∗ method is more efficient than the non-adaptive
learning method.

6.3 Threats to Validity
Because the PL∗ method has been tested on a small number of case
studies, the results may be biased according to the characteristics
of the subject systems. This is a threat to generalization of our re-
sult to other SPLs. To mitigate this threat, we plan to test the PL∗
method onmore subject systems. Evaluation of the adaptive model
learning method in case studies featuring evolution of behavior
both in space and time is a way to test more and larger subject
systems (considering evolution in time will enrich our set of case
studies and make them applicable to a larger problem space). In
particular, we see a threat to the generalization of the product or-
dering heuristic due to our limited set of subject systems; with a
large set of case studies, we see a possibility of (statistically) learn-
ing the optimal order and testing the learned model on the larger
set.

The use of a particular T-wise sampling algorithm (with T =
3, based on [12]) may pose another threat for the generalization
of our results. We plan to extend our results by considering other
values for T and other sampling algorithms.

We captured the random exogenous variables involved in our
experiments, such as the order of alphabet symbols and prefixes in
learning, and minimized their threats to the validity of the results
by taking a large sample. This threat is sufficiently mitigated for
the current experiment and we did not observe any significant in-
fluence of these random variables in our results to plan a further
mitigation.

To minimize the threats to conclusion validity, we opted for the
most general statistical tests in our experiment design: for compar-
ing the learning methods, we used one-sided paired sample T-tests.
For comparing and evaluating the learning orders, we started off
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with an unpaired sample T-test but strengthened the results by us-
ing the Pearson correlation coefficient for measuring the correla-
tion of learning efficiency with the value of the parameter 𝐷 .

7 CONCLUSION
In this paper, we presented an adaptive model-learning approach
that reuses the learned information about the behavior of products
while covering the variability space. It has been shown through
an empirical evaluation on two subject systems that our proposed
adaptive approach significantly outperforms the standard model
learning approach based on Angluin’s L∗ algorithm. For our com-
parison, we have used the number of resets and the total number of
input symbols, as well as the number of equivalence and member-
ship queries. Additionally, we studied the role of product ordering
in learning efficiency and provide a heuristic through defining a
parameter that was shown to correlate with learning efficiency for
our subject systems.

Performing more experimental evaluation with other subject
systems is among our priorities for future work. We plan to ex-
tend our technique to a family-based learning process by extend-
ing the learning data structures to ones annotated with feature ex-
pressions. Other model learning techniques have been proposed
recently, which can be extended to the adaptive and family-based
setting following the same recipe. It was observed that the ran-
domness in the order of prefixes and suffixes affects the efficiency
of the PL∗ method, while it does not affect the efficiency of the
non-adaptive learning method. Evaluating the effect of random-
ness of the order of prefixes and suffixes on the efficiency of the
PL∗ method is another line of our future research works.
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