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ABSTRACT
Substantial effort has been spent on extending specification nota-

tions and their associated reasoning techniques to software product

lines (SPLs). Family-based analysis techniques operate on a sin-

gle artifact, referred to as a family model, that is annotated with

variability constraints. This modeling approach paves the way for

efficient model-based testing and model checking for SPLs. Albeit

reasonably efficient, the creation and maintenance of family models

tend to be time consuming and error-prone, especially if there are

crosscutting features. To tackle this issue, we introduce FFSMDiff , a

fully automated technique to learn featured finite state machines

(FFSM), a family-based formalism that unifies Mealy Machines from

SPLs into a single representation. Our technique incorporates vari-

ability to compare and merge Mealy machines and annotate states

and transitions with feature constraints. We evaluate our technique

using 34 products derived from three different SPLs. Our results

support the hypothesis that families of Mealy machines can be

effectively merged into succinct FFSMs with fewer states, especially

if there is high feature sharing among products. These indicate that

FFSMDiff is an efficient family-based model learning technique.

CCS CONCEPTS
• Networks → Formal specifications; • Theory of computa-
tion→Query learning; •Hardware→ Finite statemachines;
• Software and its engineering→ Software product lines.
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1 INTRODUCTION
Analysis and maintenance of software product lines (SPL) are

known to be challenging [58]; they should avoid repetitive analysis

of shared assets, and at the same time cater for possible feature

interactions [6]. To tackle these issues, substantial effort has been

spent on extending specification notations and their associated

reasoning techniques to SPLs [13, 20, 28, 29] leading to efficient

family-based analysis [58].

Family-based analysis operates on a single specification, referred

to as family model, that is annotated with feature constraints as

propositional logic formulae to express the combination of features

involved in the concerned part of the model [58]. Thus, using SAT

solvers [42], family models are amenable to family model-based

testing [61] and family model checking [10] where redundant anal-

ysis of shared assets are avoided or minimised. Moreover, the cost

of family-based analysis is mainly determined by the number and

size of features and the amount of feature sharing, rather than the

number of valid products [58].

Model-based techniques specifically tailored to family models

have enabled test generation [9, 14, 29] and model checking [52, 57]

at reduced cost. Nevertheless, the creation and maintenance of test

models are known to be difficult, time consuming and error-prone

[61], and the traceability between the family- and variability models

can be complex due to crosscutting features [54]. Added to this,

as requirements change and product instances evolve, the lack of

maintenance may render family models outdated [68].

Motivated by these issues, in this paper we discuss how the

creation and maintenance of family models can be performed by

combining techniques for automata learning [62], feature model

analysis [11], and automated comparison of state-based models

[69]. Thus, we introduce FFSMDiff , a fully-automated technique to

learn family models by comparing and merging product models.

Our technique extends an approach for comparing labeled tran-

sition systems (LTS) [69] to family models, i.e., featured finite state

machines (FFSM) [26, 29], by incorporating variability to express

product-specific behaviors with feature constraints. An FFSM is a

family-based formalism that combines the Mealy Machines [16] of

all products of an SPLs into a single model by annotating states and

transitions with feature constraints [26]. To evaluate our approach,

we designed the following research questions (RQ):

(RQ1) Is our automated technique effective in learning succinct

family models compared to the total size of the products?

(RQ2) Is the size of learnt family models influenced by the amount

of feature reuse?

(RQ3) Is our automated technique effective in learning succinct

family models compared to hand-crafted family models?

https://doi.org/10.1145/3336294.3336307
https://doi.org/10.1145/3336294.3336307
https://doi.org/10.1145/3336294.3336307
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In our evaluation, we used 34 Mealy machines derived from

three SPLs of previous studies [19, 29]. Although these case studies

are abstract representations of SPLs, they comprise many non-

trivial aspects, such as the possibility of infinite behaviour and the

existence of states with similar or identical behaviour in different

products [69].

As a measure of succinctness, we use the average size of learnt

FFSMs compared to the average total size of the products under

learning. We describe size in terms of the number of states as it is
one of the factors that influences the complexity of model-based

testing [16], model checking [10], and model learning [62]. Thus,

learning succinct models can lead to efficient analysis.

We used the Mann-Whitney test to check if there was significant

difference (p < 0.01) between the sizes of the FFSMs and products

and used the Vargha-Delaney’s Â effect size [64] to assess the like-

lihood of the learnt FFSM being more succinct [7]. To evaluate if

the amount of feature reuse influenced the size of the learnt FFSMs,

we used Pearson’s correlation coefficient.

Our results indicate that families of Mealy machines can be effec-

tively combined into a succinct FFSM, i.e., with far fewer states than

the total number of states in all products under learning. Moreover,

we also show that there is a strong negative correlation between

the amount of feature reuse and the size of learnt FFSMs. Thus,

FFSMs learnt from similar products tend to have fewer states than

those built from drastically different products. These results show

that our technique is an efficient family-based technique for auto-

matically learning family models. To our knowledge, this is the first

study in learning behavioral models of SPLs. Our approach can be

helpful to domain engineering by supporting the inclusion of new

application requirements, SPL re-engineering [22], evolution [43],

and traceability analysis [63].

Thus, our contributions are threefold: (1) we introduce a tech-

nique to automate the process of building family models by means

of comparing FSMs and analyzing feature models; (2) we present an

experiment evaluating our technique and showing its effectiveness

for learning FFSMs; and (3) we show that amount of feature reuse

is a factor that affects family model learning.

The rest of this paper is organized as follows: In section 2, we

briefly discuss software product lines (SPL), featured finite state

machines (FFSM) and an approach to compare state-based models

[69]. In section 3, we introduce our FFSMDiff algorithm to learn

FFSMs from products specifications. In section 4, we present our

experiment design and artifacts, lab package structure
1
, the analysis

of results and threats to validity. In section 5, we discuss related

work. In section 6, we we close this paper with our conclusions and

the directions of our future work.

2 PRELIMINARIES
2.1 Software Product Lines
A software product line (SPL) is a family of products sharing a com-

mon and managed set of features that are developed in a prescribed

way to satisfy the specific needs of a particular market segment.

Let F be the set of features of an SPL. A product p is defined by a

set of features p ⊆ F from a feature model FM [39].

1
The lab package is available at https://github.com/damascenodiego/learningFFSM

A feature model FM captures all information about common

and variant features of an SPL as a hierarchically arranged set of

interconnected features. Based on a feature model, the powerset

P(F ) of all feature combinations is constrained to a subset of valid

products P ⊆ P(F ) that satisfy its feature constraints.

Feature constraints are propositional logic formulae that inter-

pret the elements from F in terms of propositional variables. SAT

solvers [42] can be used to detect valid feature models or feature

combinations, core features (i.e., features that are part of all prod-

ucts) and redundancies in feature model [11]. We denote by B(F )
the set of all feature constraints. The subset Λ ⊆ B(F ) defines all
valid product configurations of an SPL.

A product configuration ρ ∈ B(F ) of a product p ∈ P is a feature

constraint that expresses the conjunction of all features in p and

the conjunction of negated features that are absent from it, i.e.,

ρ = (
∧
f ∈p f ) ∧ (

∧
f <p ¬f ). Given a feature constraint χ ∈ B(F ), a

product configuration ρ ∈ Λ satisfies χ , denoted by χ ⊨ ρ, iff the

feature constraint χ ∧ ρ is true . To illustrate these concepts, we use
the Arcade Game Maker SPL.

Example 2.1. (The Arcade Game Maker SPL) The Arcade Game

Maker (AGM) SPL has three alternative features (i.e., Brickle, Pong
and Bowling) and one optional feature (i.e., Save). The feature

model depicted in Figure 1 has six valid product configurations,

among which three satisfy the feature constraint ¬S.

Figure 1: The AGM feature model

Given two feature constraints ωa and ωb from a feature model

FM , and Λa ,Λb ⊆ Λ satisfying ωa and ωb , respectively, we say
that ωa ,ωb are equivalent under FM if Λa = Λb .

2.2 Featured Finite State Machines
Featured Finite State Machines are extensions of Finite State Ma-

chines [27], defined below, with feature constraints.

Definition 2.1. (Finite state machine) A finite state machine
(FSM) is a septupleM = ⟨S, s0, I ,O,D,δ , λ⟩ where S is the finite set
of states, s0 ∈ S is the initial state, I and O are the sets of inputs
and outputs, respectively, D ⊆ S × I is the specification domain, and
δ : D → S and λ : D → O are the transition and output functions.

Initially, an FSM is in the initial state s0. Given a current state

si ∈ S , when a defined input x ∈ I , such that (si ,x) ∈ D, is applied,
the FSM responds by moving to state sj = δ (si ,x) and producing

output y = λ(si ,x). The concatenation of two input sequences α
andω is denoted by α ·ω. An input sequence α = x1 ·x2 · ... ·xn ∈ I

∗

is defined in state s ∈ S if there are states s1, s2, ..., sn+1 such that

s = s1 and δ (si ,xi ) = si+1, for all 1 ≤ i ≤ n. Transition are often

represented as tuples (si ,x ,y, sj )with the origin state, input, output,
and destination states, respectively; or by directed edges labeled

with input and output symbols, i.e., si
i/o

−−→ sj .

https://github.com/damascenodiego/learningFFSM
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Example 2.2. (Example of Mealymachine) In Figure 2, we show an

example of an FSM describing a product from the AGM SPL. In this

example, we have S = {Start Game,Bowling Game, Pause Game},
I = {Start, Pause, Exit} and O = {0, 1}.

Pause GameBowling GameStart Game
Start/1

Pause/1Start/1
Exit/1 Pause/1

Exit/1 Pause/0Start / 0
Exit / 0

Figure 2: Example of FSM [29]

Transition and output functions are lifted to sequences of input in

the standard way. Namely, for the empty input sequence ϵ , δ (s, ϵ) =
s and λ(s, ϵ) = ϵ . For an input α · x defined in state s , we have

δ (s,α · x) = δ (δ (s,α),x) and λ(s,α · x) = λ(s,α)λ(δ (s,α),x). An
input sequence α is a prefix of β , denoted by α ⩽ β , if β = α · ω,
for some sequence ω. An input sequence α is a proper prefix of β ,
denoted by α < β , if β = α · ω, for ω , ϵ . The prefixes of a set T
of input sequences are denoted by pre f (T ) = {α |∃β ∈ T ,α < β}.
If T = pre f (T ), it is prefix-closed.

An input sequence α ∈ I∗ is a transfer sequence from s to s ′

if δ (s,α) = s ′. An input sequence γ is a separating sequence for

si , sj ∈ S if λ(si ,γ ) , λ(sj ,γ ). Two states si , sj ∈ S are equivalent if

for all α ∈ I , λ(si ,α) = λ(sj ,α), otherwise they are distinguishable.

An FSM is complete if D = S × I , otherwise it is partial.
An FSM is deterministic if, for each state si and input x , there is

at most one possible state sj = δ (si ,x) and output y = λ(si ,x). If
all states of an FSM are pairwise distinguishable, it is minimal. If
all states of an FSM are reachable from s0, it is initially connected.
If every state is reachable from all states, it is strongly connected.
In this study, we focus on complete, deterministic, minimal, and

initially connected FSMs, which are hereafter called finite state

machines.

Definition 2.2 (Featured Finite State Machine). An FFSM is
a septuple ⟨F ,Λ,C, c0,Y ,O, Γ⟩, where: (i) F is a finite set of features,
(ii) Λ is the set of product configurations, (iii) C ⊆ S × B(F ) is a finite
set of conditional states, where S is a finite set of state labels, B(F ) is
the set of all feature constraints, and C satisfies the condition:

∀(s,ϕ) ∈ C, ∃ρ ∈ Λ|ρ ⊨ ϕ (1)

(iv) c0 = (s0, true) ∈ C is the initial conditional state of the FFSM, (v)
Y ⊆ I × B(F ) is a finite set of conditional inputs, where I is the finite
set of input symbols, (vi) O is the finite set of output symbols, and
(vii) Γ ⊆ C ×Y ×O ×C is the set of conditional transitions satisfying
the condition:

∀((s,ϕ), (x ,ϕ ′′),o, (s ′,ϕ ′)) ∈ Γ,∃ρ ∈ Λ|ρ ⊨ (ϕ ∧ ϕ ′ ∧ ϕ ′′) (2)

The conditions (1) and (2) ensure that all conditional states and

transitions are present in at least one valid product of the SPL. A

conditional state c = (s,ϕ) ∈ C is alternatively denoted by s[ϕ].
A conditional transition (c, (x ,ϕ),o, c ′) from conditional state c

to c ′ with conditional input x and output o is alternatively denoted

x[ϕ]/o. The logical operators and, or and not are denoted by the

symbols &, |, and ¬, respectively. An omitted condition means that

the condition is true .

Given an FFSM FF = ⟨F ,Λ,C, c0,Y ,O, Γ⟩ and a configuration

ρ ∈ Λ, the model derivation operator ∆ρ [29] can derive a product

FSM ∆ρ = (S, s0, I ,O,D), where: (1) S = {s |(s,ϕ) ∈ C ∧ (ϕ ⊨ ρ)} is
the set of states; (2) s0 = s, c0 = (s,ϕ) ∈ C is the initial state; (3)

D = {(s,x ,o, s ′)|((s,ϕ), (x ,ϕ ′),o, (s ′,ϕ ′′)) ∈ Γ ∧ ρ ⊨ (ϕ ∧ ϕ ′ ∧ ϕ ′′)}
is the set of transitions.

Example 2.3. (The Arcade Game Maker FFSM) Figure 3 depicts

an FFSM for the AGM SPL. In this example, the conditional state

Save Game[S] and all conditional transitions reaching or leaving it

are implemented by all products implementing feature S . In Figure

2, the FSM is an example of product derived using the configuration

ρ = (AGM ∧A ∧M ∧ L ∧V ∧ Y ∧ P ∧W ∧ ¬S ∧ ¬B ∧ ¬N ).

Start/1

Start/1

Start/1Start/1
Pause/1

Save[S]/1

Start/1

Pause/1
Save[S]/1

Save[S]/1

Pause/1
Pause[W]/1

Exit/1

Start/1

Start/1

Exit/0
Start/0

Save[B]/0

Pause/0

Save[N]/1

Exit/1

Start/0

Exit/0
Pause[!W]/1
Pause[W]/0

Save/0
Exit[!S]/0

Start/0
Save[S]/0

Exit[W&&!S]/1
Exit[!W||S]/0

Start/1
Exit[S]/1

Pause[!W]/0

Start/1
Save Game[S]Pause Game

Pong[N]

Bowling[W]

Brickles[B]

Star t  Game

Figure 3: FFSM of the AGM [24]

To make FFSMs suitable for model-based testing, Fragal, Simao

and Mousavi [29] propose validation techniques to check if basic

properties hold, such as determinism, completeness, initially con-

nectedness, and minimality. Added to this, they also show that any

FSM derived from it satisfies the aforementioned properties.

Recently, the FFSM formalism has been extended to generate

configurable test suites that can be pruned using feature constraints

for groups of product configuration [26]. The readability of FFSMs

also has been improved by grouping up conditional states and

transitions into hierarchical entities [25]. Thus, the FFSM formalism

has the prospect of serving as a suitable basis for family-based

testing.

2.3 Comparison of state-based models
Structurally comparing two state machines is a difficult task which

involves establishing equivalence relationships between states and

transitions. To achieve this goal, Walkinshaw and Bogdanov [69]

proposed LTSDiff , an algorithm to compute the precise difference

between two state machines. In this section, we discuss the LTSDiff
algorithm in terms of FSMs.

2.3.1 Similarity score. In the LTSDiff algorithm, the differences

between two FSM models Mr = ⟨Sr , s0r , Ir ,Or ,Dr ,δr , λr ⟩ and
Mu = ⟨Su , s0u , Iu ,Ou ,Du ,δu , λu ⟩ are described in terms of states

and their surrounding transitions matching input and output sym-

bols. To achieve this, it first calculates the set of matching transitions

for all states a ∈ Sr ,b ∈ Su using the individual number of pairs of

states that can be reached by matching transitions, as follows:

Succa,b = {(c,d, i,o) ∈ Sr × Su × (Ir ∪ Iu ) × (Or ∪Ou ), such that

δr (a, i) = c, δu (b, i) = d, and

λr (a, i) = λu (b, i) = o}
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Second, a global similarity score is calculated by aggregating the

scores of states connected to the original pair as follows:

SGSucc (a, b) =
1

2

∑
(c,d,i,o) ∈ Succa,b

(1 + k × SGSucc (c, d ))

|
∑out
r (a) −

∑out
u (b) | + |

∑out
r (b) −

∑out
u (a) | + |Succa,b |

An attenuation ratio k is used to give precedence to state pairs

that are closer to the original pair of states and the notation

∑out
r (a)

refers to the set of labels of outgoing transitions for state a ofMr .

Thus, the expression |
∑out
r (a) −

∑out
u (b)| + |

∑out
r (b) −

∑out
u (a)|

denotes the number of outgoing transitions from both states a and

b that do not match each other.

Given two FSMsMr andMu , the global similarity score SGSucc (a,b)
is used to build a system of linear equations, such that each equa-

tion corresponds to the SGSucc (a,b) for one specific pair of states
(a,b) ∈ Sr × Su .

Example 2.4. (Illustration of a system of linear equations) In Table

1, we depict the system of equations resulting from the comparison

of the alternative products from the AGM SPL in Figures 2 and 4.

State pairs are represented by the first two letters of their respective

names.

Pause GamePong GameStart Game
Start/1Exit/1

Pause/1Start/1

Exit/1

Exit/0
Pause/0

Start/0 Pause/0

Figure 4: FSM of an alternative product from the AGM SPL

Table 1: Ilustration of a system of linear equations

Pair (St,St) (St,Po) (St,Pa) (Bo,St) (Bo,Po) (Bo,Pa) (Pa,St) (Pa,Po) (Pa,Pa)

(St,St) 5.0 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 0.0 3

(St,Po) 0.0 12.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

(St,Pa) 0.0 0.0 7.5 0.0 -0.5 0.0 0.0 0.0 0.0 2

(Bo,St) 0.0 0.0 0.0 9.5 0.0 0.0 0.0 0.0 0.0 1

(Bo,Po) 0.0 0.0 0.0 0.0 7.5 0.0 0.0 0.0 -0.5 2

(Bo,Pa) 0.0 0.0 0.0 0.0 0.0 12.0 0.0 0.0 0.0 0

(Pa,St) 0.0 0.0 0.0 0.0 -0.5 0.0 7.5 0.0 0.0 2

(Pa,Po) -0.5 0.0 0.0 0.0 0.0 0.0 0.0 10.0 0.0 1

(Pa,Pa) -0.5 0.0 0.0 0.0 -0.5 0.0 0.0 0.0 5.5 3

The global similarity is calculated both in terms of future be-

havior (i.e., outgoing transitions) and past behaviors (i.e., incoming

transitions). The global similarity score for incoming transitions

SGPrev (a,b) is calculated in a similar manner.

Consider the systems of equations for SGSucc (a,b) and S
G
Prev (a,b),

the similarity scores for each pair (a,b) are averaged as follows:

S(a,b) =
SGSucc (a,b) + S

G
Prev (a,b)

2

Algorithm 1: The LTSDiff algorithm

1 Input: FSMMr , FSMMu , k , t , r ;

2 PairsToScore ← computeScores(Mr ,Mu ,k);

3 KPairs ← identi f yLandmarks(PairsToScore, t , r );

4 if KPairs = ∅ and S(s0r , s0u ) > 0 then
5 KPairs ← (s0r , s0u );

6 end
7 NPairs ← ∪(a,b)∈KPairsSurr (a,b) − KPairs;

8 while NPairs , ∅ do
9 while NPairs , ∅ do

10 (a,b) ← pickHiдhest(NPairs, PairsToScore);

11 KPairs ← KPairs ∪ (a,b);

12 NPairs ← removeConf licts(NPairs, (a,b));

13 end
14 NPairs ← ∪(a,b)∈KPairsSurr (a,b) − KPairs;

15 end
16 return(KPairs);

2.3.2 The LTSDiff algorithm. Given the averaged scores, the com-

parison of two models follows a similar process to how humans

navigate through an unfamiliar landscape with a map [69]. This

process is shown in Algorithm 1.

First, a filtering method denoted by identifyLandmarks selects
the top t% most equivalent pairs, and, if one state is matched to

several others, a ratio r includes only those pairs that are at least r
times as good as any other match. If no state is selected, then the

initial states are selected as initial landmarks. Second, the algorithm

proceeds from the initial landmarks using the Surr (a,b) function
to reach the surrounding states through matching incoming and

outgoing transitions and adds them to a set of candidate matched

state pairs NPairs. Third, the set NPairs is iterated in the order

of similarity scores. Once a pair (a,b) is selected, it is added to a

set of confirmed matches KPairs and all elements in NPairs that
include either a or b are discarded. This process iterates untilNPairs
becomes empty.

3 THE FFSMDiff ALGORITHM
In this section, we introduce the FFSMDiff algorithm, a fully au-

tomated technique that combines FSMs into one succinct FFSM

[26, 29] and annotates states and transitions with feature con-

straints. Although our technique is discussed in terms of FFSMs,

it can be extended to other family-based notations [12], such as

featured transition systems (FTS) [13, 20].

Essentially, FFSMDiff allows to learn an FFSM model (i) from two

FSMs, or (ii) including an FSM into an existing FFSM. The former

approach is applicable when there is no FFSM existing a priori and

the latter if there is a new configuration ρu < Λr not included in

an FFSM FFr specifying a set of configurations Λr , respectively. In
both cases, we assume that the feature model of the SPL and the

configurations of the products under learning are known.
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3.1 Learning a fresh FFSM
Consider two FSM models Mr = ⟨Sr , s0r , Ir ,Or ,Dr ,δr , λr ⟩ and
Mu = ⟨Su , s0u , Iu ,Ou ,Du ,δu , λu ⟩ specifying products pr and pu
that implement configurations ρr = (

∧
f ∈pr f ) ∧ (

∧
f <pr ¬f ) and

ρu = (
∧
f ∈pu f ) ∧ (

∧
f <pu ¬f ). To learn a fresh FFSM from Mr

andMu , three assumptions are required: (i)Mr ,Mu are complete,

deterministic, initially connected and minimal FSMs built a priori

(e.g., using automata learning [62]), and (ii) their respective con-

figurations ρr , ρu , and (iii) their feature model are known a priori.

Thus, we leverage the comparison of state-based models to condi-

tional states and describe how fresh FFSMs can be learnt from two

product FSMs.

Definition 3.1 (FFSM learnt from two configurations).

An FFSM learnt from ⟨Mr ,Mu ⟩ is a tuple FF = ⟨F ,Λ,C, c0,Y ,O, Γ⟩,
where (i) F = (pr ∪ pu ), (ii) Λ = {ρr , ρu }, (iii) C ⊆ S × B(F ) is the
set of conditional states satisfying conditions (1) and

∀(a,b) ∈ KPairs, ∃(cm , ρr |ρu ) ∈ C | a,b 7→ cm , (3)

∀si ∈ Sr , (si , ·) < KPairs, ∃(cr , ρr ) ∈ C | si 7→ cr , (4)

∀sj ∈ Su , (·, sj ) < KPairs, ∃(cu , ρu ) ∈ C | sj 7→ cu (5)

(iv) (c0, true) ∈ C is the initial conditional state such that s0r , s0u 7→
c0, (v) Y ⊆ (Ir ∪ Iu ) ×B(F ) is a finite set of conditional input symbols,
(vi) O = (Or ∪ Ou ) is the finite set of output symbols, and (vii)
Γ ⊆ C × Y × O × C is the set of conditional transitions satisfying
conditions (1-5) and

∀(a1,b1), (a2,b2) ∈ KPairs |(a1,x) ∈ Dr ∧ (b1,x) ∈ Du (6)

∧ λr (a1,x) = λu (b1,x) = o (7)

∧ δr (a1,x) = a2 ∧ δu (b1,x) = b2 (8)

∃((c,ϕ), (x ,ϕ ′),o, (c ′,ϕ ′′)) ∈ Γ where (9)

a1,b1 7→ c ∧ ϕ ′ = (ρu |ρr ) ∧ a2,b2 7→ c ′ (10)

to guarantee that transitions ofMr andMu that match origin, input,
output and destination (6-8) are combined into one conditional tran-
sition (9) annotated with the disjunction of their configurations (10);
otherwise, for each defined transition ofMr andMu (11,14), there is
a conditional transition (12,15) annotated with their configurations
(13,16) as follows:

∀(a1,x) ∈ Dr |λr (a1,x) = or ∧ δr (a1,x) = a2 (11)

∃((cr ,ϕ),(x ,ϕ ′r ),or , (c ′r ,ϕ ′′)) ∈ Γ where (12)

a1 7→ cr ∧ ϕ ′r = ρr ∧ a2 7→ c ′r (13)

∀(b1,y) ∈ Du |λu (b1,y) = ou ∧ δu (b1,y) = b2 (14)

∃((cu ,ϕ),(y,ϕ ′u ),ou , (c ′u ,ϕ ′′)) ∈ Γ where (15)

b1 7→ cu ∧ ϕ ′u = ρu ∧ b2 7→ c ′u (16)

To identify common states, the FFSMDiff algorithm uses a map-

ping 7→ between states to conditional states of the learnt FFSM.

This function ensures that the learnt initial conditional state maps

to both initial states, i.e., s0r , s0u 7→ c0. Added to this, we replace

the lines 4-6 from Algorithm 1 by KPairs ← (s0r , s0u ) ∪ KPairs.
Reduce the complexity of feature constraints, states and transitions

are annotated with simplified configurations where core features
[11] are discarded from their associated formulae.

Example 3.1 (FFSM learnt from two product configurations). In

Figure 5, we depict a fragment of the FFSM resulting from the

comparison of the FSMs in Figures 2 and 4. In this example, the

states Pong Game and Bowling Game were merged into one state

Bowling*Pongwhere there is one conditional transition with input

symbol Exit for each configuration. The constraint (W ∧¬S∧¬B∧
¬N ) is an example of simplified configuration for the product in

Figure 2.

Bowling*Pong
(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)

Start[(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)]/1

Exit[(N&¬S&¬B&¬W)]/1
Start Game

[True]

Exit[(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)]/1

Exit[(W&¬S&¬B&¬N)]/0
Start[(W&¬S&¬B&¬N)|(N&¬S&¬B&¬W)]/0

Exit[(W&¬S&¬B&¬N)]/1
Exit[(N&¬S&¬B&¬W)]/0

Pause[(N&¬S&¬B&¬W)]/0

Pause[(W&¬S&¬B&¬N)]/1

Figure 5: Fragment of the FFSM learnt from the AGM SPL

3.2 Including new product behavior into an
existing FFSM

Consider the FFSM FFr = ⟨Fr ,Λr ,Cr , c0r ,Yr ,Or , Γr ⟩ built from
a set of configurations Λr . If an FFSM FFr does not include the

behavior of an FSMMu = ⟨Su , s0u , Iu ,Ou ,Du ,δu , λu ⟩ specifying a

configuration ρu < Λr , a new FFSM FF can be learnt by comparing

and merging ⟨FFr ,Mu ⟩ using the following definition.

To include a new product into an existing FFSM, three assump-

tions are required: (iv) FFr ,Mu are complete, deterministic, initially

connected, and minimal built a priori, and (v) configurations ρu is

known in advance, and (vi) the FSM and FFSM under learning share

a feature model that is known a priori. Thus, on top of Definition

3.1, we define how an FFSM can be enriched with novel behavior.

Definition 3.2 (FFSM learnt from FFr and configuration ρu ).
An FFSM learnt from ⟨FFr , Mu ⟩ is a tuple FF = ⟨F ,Λ,C, c0,Y ,O, Γ⟩,
where (i) F = Fr ∪ {pu }, (ii) Λ = Λr ∪ {ρu }, (iii) C ⊆ Sr × B(F ) is
the set of states satisfying conditions (1) and

∀(a,b) ∈KPairs,∃(a,ϕa ) ∈Cr ∧(cm ,ϕa |ρu ) ∈C |a,b 7→ cm , (17)

∀(si ,ϕi ) ∈ Cr , (si , ·) < KPairs, ∃(cr ,ϕi ) ∈ C | si 7→ cr , (18)

∀sj ∈ Su , (·, sj ) < KPairs, ∃(cu , ρu ) ∈ C | sj 7→ cu (19)

(iv) (c0, true) ∈ C is the initial conditional state such that the pair
c0r , s0u 7→ c0, (v)Y ⊆ Yr ∪Iu ×B(F ) is a finite set of conditional input
symbols, (vi) O = (Or ∪Ou ) is the finite set of output symbols, and
(vii) Γ ⊆ C ×Y ×O ×C is the set of conditional transitions satisfying
conditions (1), (2), (17-19) and

∀(a1,b1),(a2,b2) ∈ KPairs | (b1,x) ∈ Du (20)

∧ λu (b1,x) = o ∧ δu (b1,x) = b2 (21)

∧ ((a1,ϕa1 ), (x ,ϕr ),o, (a2,ϕa2 )) ∈ Γr (22)

∃((c,ϕ), (x ,ϕ ′u ),o, (c ′u ,ϕ ′′)) ∈ Γ where (23)

a1,b1 7→ c ∧ ϕ ′u = (ϕr |ρu ) ∧ a2,b2 7→ c ′ (24)

to guarantee that transitions of FFr andMu that match origin, input,
output and destination (20-22) are combined into conditional tran-
sitions (23) annotated with the disjunction of their constraint and
configuration (24); otherwise, for each defined transition of FFr and
Mu (25,28), there is one conditional transitions (26,29) annotated with
their configuration/constraint (27,30) as follows:
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∀((a1,ϕa1 ), (x ,ϕr ),or , (a2,ϕa2 )) ∈ Γr (25)

∃((cr ,ϕ), (x ,ϕ ′r ),or , (c ′r ,ϕ ′′)) ∈ Γ where (26)

a1 7→ cr ∧ ϕ ′r = ϕr ∧ a2 7→ c ′r (27)

∀(b1,y) ∈ Du |λu (b1,y) = ou ∧ δu (b1,y) = b2 (28)

∃((cu ,ϕ), (y,ϕ ′u ),ou , (c ′u ,ϕ ′′)) ∈ Γ where (29)

b1 7→ cu ∧ ϕ ′u = ρu ∧ b2 7→ c ′u (30)

To include a new product into an existing FFSM, lines 4-6 are

replaced by KPairs←(c0r , s0u ) ∪ KPairs. Thus, we guarantee that
the initial states ofMu and FFr map to the same learnt initial state.

4 EMPIRICAL EVALUATION
A family-based analysis technique is effective when its complexity

is determined by the number and size of features and the amount of

reuse among configurations, rather than the number of valid con-

figurations [58]. Thus, for our technique to qualify as an effective

family-based learning technique, we expect to learn succinct FFSMs

where states and transitions are annotated with simplified product

configurations. By succinct, we mean that the FFSMs learnt have

far fewer states than the total number of states in all products under

learning, especially if there is high feature sharing. By simplified,

we mean that product configuratons are modified by removing core

features found using SAT solvers [42].

4.1 Research questions
To evaluate the FFSMDiff , we defined three research questions (RQ).

In Table 2, we present our hypotheses about the RQs.

Table 2: Hypotheses

RQ Hypotheses Description

RQ1
H
RQ1

0
The size of learnt FFSMs is larger than the total

size of the products analyzed

H
RQ1

1
The size of learnt FFSMs is at most equal to the

total size of the products analyzed

RQ2
H
RQ2

0
The size of learnt FFSMs is not influenced by

the amount of feature sharing

H
RQ2

1
The size of learnt FFSMs is influenced by the

amount of feature sharing

RQ3
H
RQ3

0
The learnt FFSMs are larger than the hand-

crafted FFSMs

H
RQ3

1
The learnt FFSMs have at most the same size as

hand-crafted FFSMs

We implemented a tool to compare and combine product FSMs

into an FFSM using our algorithm explained in Section 3 and, for

feature model analysis, we used the FeatureIDE [59] library and the

SAT4J solver [42]. To solve the system of linear equations, we used

the Apache Commons Mathematics Library [5]. Details about the

experiment design, subject systems and experimental and coding

artifacts are presented in Sections 4.2, 4.3 and 4.4, respectively.

As ameasure of succinctness, we use the average size of the learnt

FFSMs compared to the total size of the products under learning

(RQ1) and the size of the hand-crafted FFSMs (RQ3). We describe

size in terms of number of states as it is one of the factors that

influences the complexity of model-based techniques [10, 16, 62].

To measure the statistical significance, we used the Mann-Whitney

test to check if there was significant difference (p < 0.01) between

the sizes of the learnt FFSMs and products under learning.

To measure the scientific significance [38], we used the Vargha-

Delaney’s Â effect size [64] to assess the probability of the learnt

FFSM being more succinct [7]. If Â < 0.5, then the learnt FFSM is

smaller than the total size of the FSMs of products under learning.

If Â = 0.5, they have equivalent sizes. To categorize the magnitude

of Â, we used the intervals between Â and 0.5 [33, 60]: neдliдible <
0.147 ≤ small < 0.33 ≤ medium < 0.474 ≤ larдe .

Finally, we used Pearson’s correlation coefficient to evaluate

the relationship between succinctness and reuse (RQ2). Thus, we

measured the correlation between the ratio of the size of learnt

FFSM to the total size of products analyzed on one hand and the

ratio of common features to the total of features implemented by

the SULs, on the other hand.

4.2 Experiment Design
Let {ρ0, ρ1, . . . , ρm } ⊆ B(F ) be a set of valid configurations, such

that the product derived from ρi has at most the same number of

states as ρi+1, i.e., they are sorted by their FSM size.

For RQ1 and RQ2, we ran the FFSMDiff for all pairs of products

to find common states by solving the system of linear equations and

measured the size of the learnt FFSMs. Then, we checked if there

were significant and relevant differences between the size of learnt

FFSMs and the products analyzed and the correlation between

the size of FFSMs and feature reuse. In Figure 6, we illustrate the

experiment design.

Product 1: (AGM & N & ¬B)

TRUE N
Start/1

Exit / 1

Start/0Exit/0
Pause/0

Product 2: (AGM & B & ¬N)

TRUE B
Start/1

Start/0
Exit/0

Exit/0
Pause/0

AGM

B N

AGM

B N

    Product 1 | 2: (AGM & N & ¬B) | (AGM & B & ¬N) 

TRUE [B|N]
Start[B|N]/1

Exit[N]/1

Start[B|N]/0
Exit[B]/0
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Figure 6: Experiment design
For RQ3, added to the FFSMs learnt from pairs of products, we

incrementally built FFSMs by merging the FSMs resulting from

all products

⋃j−1
i=0(ρi ) with the FSM of the next product ρ j , and

compared the sizes of the learnt and hand-crafted FFSMs.

4.3 Subject systems
In our evaluation, we used 34 FSMs derived from three SPLs of

previous studies [19, 29]. Table 3 depicts the SPLs in terms of the

number of features, valid configurations, size of FFSMs and the

total sum of the number of states in all valid products analyzed.

The AGM SPL is an example from [29] and the Vending Machine

(VM) and the Wiper System (WS) are FFSMs hand-crafted by the

authors based on FTS [20] from a collection of examples [19].
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Table 3: Description of the SPLs under learning
SPL Number of Sum total of states in

ID Name Features Valid config. FFSM All products

AGM Arcade Game Maker 13 6 6 21

VM Vending Machine 9 20 14 207

WS Wiper System 8 8 13 56

All the FSMs used in this study were derived from FFSMs using

the model derivation operator ∆ρ [29]. Thus, we had reference

FSMs and FFSMs to assess the learnt models, namely, the product-

line FFSMs were handcrafted and the intermediate FFSMs and the

product FSMs were automatically generated. The VM and WS SPLs

are described in the following sections.

4.3.1 Vending Machine. The Vending Machine (VM) is an SPL

that we hand-crafted based on featured transition systems from a

collection of illustrative SPLs [19]. In Figure 7, we depict the VM

feature model.

Figure 7: The VM feature model

In our VM SPL, we support three beverages, (i.e., Coffee, Tea,
and Cappuccino), one optional RingTone played when the beverage

is completed, and two alternative currencies (i.e., Dollar or Euro).
These features composed interesting case as they resulted on FSMs

with distinct structures and languages. Among the FSMs derived,

we highlight two main differences: (i) the addition of states for each

of beverage; (ii) changes in the initial state for each currency. This

is our largest SPL in terms of number of products and states.

4.3.2 Wiper System. The Wiper System (WS) is another SPL that

we hand-crafted based on the aforementioned collection of exam-

ples [19]. In Figure 8, we depict the feature model of the WS SPL.

Figure 8: The WS feature model

Our WS SPL has two subsystems – a sensor to detect rain, and

the wiper itself; both features are available in two qualities, i.e.,

high and low, and one optional feature for permanent movement.

A high quality sensor can discriminate between heavy and light

rain, whereas a low quality sensor can only distinguish between

rain and no rain. Similarly, the high quality wipers can operate at

two speeds, and the low quality wiper operates at one single speed.

4.4 Experiment and coding artifacts
For the sake of reproducibility, we have included a lab package

with a variety of artifacts (e.g., source-code, test scripts, FFSMs,

FSMs, feature models). The lab package is available on GitHub at

https://github.com/damascenodiego/learningFFSM.

In our lab package, we have included the subject systems , i.e.,

agm, vm, and ws; and their respective models (i.e., FSMs, FFSMs),

feature models, visual representations and test scripts. For the anal-

ysis of results, we have included an RStudio [49] project with R

scripts for calculating and plotting statistics. To reproduce our

experiments, we have included two sets of Python scripts, i.e.,

run_‹ID›_pairs.py and run_‹ID›.py, that execute our tool for
each SPL and construct FFSMs from all pairs of products and incre-

mentally learn an FFSM by merging all products.

The source-code of our FFSMDiff implementation is organized as

a Java project where two packages are included: i.e., br.usp.icmc
and uk.le.ac. The former includes code artifacts developed by

Fragal et al. [29] that we used in the first phase of our study to

validate FFSMs and derive FSMs. The latter includes code artifacts

that we developed to (i) read/write FSMs; (ii) solve the systems of

linear equations to compare the FSMs and FFSMs under learning;

and (iii) merge FSM models into annotated FFSMs. The project can

be opened using the Eclipse IDE [36] and compiled using the JDK

version 1.8.

For reading and writing FSMs, we designed the ProductMealy
class using the CompactMealy class from LearnLib [48]. This class

extends basic operations over FSMs (e.g., reset, transition/output

functions) with methods to maintain product configurations, as

specified by our IConfigurableFSM interface.
Using the Apache Commons Math library [5], we calculate the

state pairs most likely to be equivalent. Based on empirical obser-

vations by [69], we have set the attenuation ratio to k = 0.5 and, to

guarantee the mapping between initial states, we have implemented

the identifyLandmarks() function to return the pair of initial states

(s0r , s0u ) to KPairs.
To represent FFSMs, we designed the FeaturedMealy class using

the FastNFA class, one of the LearnLib building blocks to repre-

sent non-deterministic models. We opted for a non-deterministic

representation because, if we ignore presence conditions, FFSMs

can be seen as a non-deterministic FSM. To represent conditional

states/transitions, we designed the classes ConditionalState and

ConditionalTransition with collections of Node objects. The

Node class is a FeatureIDE building block to represent feature

constraints.

4.5 Analysis of Results
In this section, we discuss the results of our experiments in terms

of the RQs we defined to this study and the Hypotheses we have

shown in Table 2.

4.5.1 Is the FFSMDiff algorithm effective in learning succinct family
models compared to the total size of the products?

In Figure 9, we show the boxplots for the size of learnt FFSMs

and total size of all products analyzed. The boxplots indicate that

all FFSMs learnt from AGM andWS presented fewer states than the

average total size of products. For the VM SPL, on the other hand,

there were cases where the learnt FFSMs had more states than the

hand-crafted FFSMs.

https://github.com/damascenodiego/learningFFSM
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Figure 9: Boxplots of the size of the learnt FFSMs (white)
compared to the total size of all products analyzed (gray)

We analyzed the FSMs from the VM SPL and found that modi-

fications in the input/output symbols of early transitions and the

addition of extra states lead to significant changes in their structure

and language. These changes related to features about the currency

and drinks supported by the vending machine, e.g., Dollar ,Euro,
and played a key role in outgoing transitions from initial states. As

result, these changes masqueraded the similarity of surrounding

states and hence difficulted their combination. The outliers above

the VM boxplot depict these unsuccessful comparisons.

By analyzing the Mann-Whitney test, we found statistically sig-

nificant differences (p < 0.01) between the size of learnt FFSMs and

total size of products. The effect size also indicated differences of

larдe magnitude with the size of learnt FFSMs as smaller than the

total size of all products analyzed. Thus, our results support the

hypothesis H
RQ1

1
that the size of learnt FFSMs is at most equal to

the total size of products analyzed.

4.5.2 Is the size of learnt family models influenced by the amount
of feature reuse?

In Figure 10, we show the scatter plot for the amount of feature

sharing and size of learnt FFSMs for all pairs of products. We have

normalized the size of learnt FFSMs using the ratio between the

number of states of the learnt FFSM to the total number of states

of the products analyzed and the amount of feature sharing as the

ratio of common features to the total of features.

R = − 0.62 , p < 2.2e-16
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Figure 10: Pearson correlation coefficient between FFSM size
and amount of feature sharing

An amount of feature sharing equal to 1.0 means that both prod-

ucts have the same feature configuration. A ratio between size of

learnt FFSM and total size of products equal to 0.5 means that the

products analyzed implement equivalent FSMs, otherwise the learnt

FFSM includes states depicting variability.

By calculating the Pearson correlation coefficient, we found a

strong negative correlation between FFSM size and amount of fea-

ture sharing. Thus, FFSMs learnt from products implementing a

similar set of features tend to be more succinct than those built

from products implementing fewer common features. These find-

ings support our hypothesis H
RQ2

1
that the size of learnt FFSMs is

influenced by the amount of feature sharing.

4.5.3 Is the FFSMDiff algorithm effective in learning succinct family
models compared to hand-crafted family models?

To evaluate the succinctness of the FFSMs learnt using our ap-

proach, we also compared the size of hand-crafted models to the

FFSMs learnt in two settings: (i) FFSMs incrementally learnt from

all products and (ii) FFSMs learnt from pairs of products. In Figure

11, we show the size of learnt FFSMs from all products of the SPLs.
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Figure 11: Size of the FFSMs recovered

It turns out that two FFSMs were learnt with fewer states than

their original models, i.e., AGM andWS.We inspected the learnt and

hand-crafted FFSMs models and found that two states presented

similar behaviors and could be merged without side-effects. As

shown in Table 3, the hand-crafted FFSMs for the AGM and WS

SPLs presented 6 and 13 conditional states, respectively. The FFSMs

learnt from AGM and WS, in their turn, included 4 and 11 states,

respectively.

Moreover, we found that the FFSMs learnt from the AGM SPL

coincided with the alternative representation in Figure 12. This rep-

resentation was shown by Fragal [24] in his thesis as an alternative

representation to the AGM SPL with fewer states. In this alternative

representation, all three conditional states are composed into one

state annotated with the disjunction of the alternative features.

Save[(B||N)&&S]/1

Exit[B]/0

Start/1
Save[W&&S]/1

Pause/1

Pause[W]/1

Exit[N]/1

Save[B]/0

Pause/0

Save[N]/1

Exit/1
Exit/0

Pause[!W]/1
Pause[W]/0

Save/0

Exit[W&&!S]/0

Start/0
Save[S]/0

Exit[W&&!S]/1
Exit[!W||S]/0

Start/1

Exit[W&&S]/1

Pause[!W]/0

Start/1
Save Game[S]Pause GameBrickles*Pong*Bowling

[B| |N| |W]Star t  Game

Figure 12: Alternative FFSM for AGM with fewer states [24]
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On the other hand, the hand-crafted and learnt FFSMs for the

VM SPL presented the same size. In this case, the order that the

products were analyzed favoured the FFSMDiff algolrithm to learn

an FFSMs with the same size as the original FFSM of VM SPL. These

findings indicate that selecting “good" configurations could be help-

ful for learning more succinct FFSMs. To achieve this, configuration

selection [65] and prioritization [32] can be used to improve the

overall t-wise coverage each time a configuration is incorporated

into an existing FFSM.

To compare the sizes of FFSMs hand-crafted and learnt from

product pairs, we calculated the Mann-Whitney test and Â effect

size. In Figure 13, we depict boxplots for the sizes of FFSMs learnt

from product pairs. The size of hand-crafted FFSMs is shown as

gray lines.
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Figure 13: Average size of the learnt FFSMs compared to the
size of hand-crafted FFSMs

By analyzing the results of the Mann-Whitney test, we found

statistically significant differences (p < 0.01) between the size of

FFSMs learnt from AGM and WS and their respective hand-crafted

versions. For these SPLs, the effect size indicated differences of larдe
magnitude with the learnt FFSMs as the smaller models. For the

VM SPL, on the other hand, we did not find statistically significant

differences (p > 0.01) between the size of the learnt and hand-

crafted FFSMs. Thus, our results support the hypothesis H
RQ3

1
that

learnt FFSMs have at most the same size as hand-crafted FFSMs.

4.6 Discussion
In this section, we discuss some of the practical implications and

limitations of our study.

What are the implications for practitioners?Ourwork com-

plements traditional reverse engineering techniques on helping

practitioners to create family models from product specifications.

These specifications can be either created manually or extracted

using model learning [62]. As result, our approach can leverage

family model-based testing [61] and family model checking [10] to

projects where there are no family models a priori.

What types ofmodelsmay itwork/notwork? In our current
implementation, we fixed identifyLandmarks() to the mapping be-

tween the initial states (s0r , s0u ). As a result, some types of changes

(e.g., those added to initial states of FSMs) hurdled the process of

building succinct models. To improve our approach, more parame-

ters can be added to identifyLandmarks(), as in its original design

where a threshold t and a ration r are used to find state pairs most

likely to be equivalent [69], or either by allowing engineers to set

mappings between state pairs as user-defined assumptions.

How are the different notions of variability represented?
Currently, our approach annotates state and transitions using the

disjunction of simplified configurations. As result, the represen-

tation of feature constraints is limited to one single format (i.e.,

OR with ANDs). To overcome this limitation, more sophisticated

presence-condition simplification techniques [67] could be used to

reduce the complexity of feature constraints.

4.7 Threats to validity
In this section, we discuss the threats to validity of the methods

used in this research paper.

Conclusion validity: These threats concern the relationship

between treatment and outcome. To ensure the reliability of our

measures and treatment implementation, we have a setup in place

based on widely used tools for automata learning [48], SAT solving

[42], and SPL analysis [59].

External validity: These concern with the generalization of our
results to industrial subject states. Our results are based on three

small product lines as subject systems; the small number of product

lines and their small sizes pose a threat to external validity. We plan

to remedy this by extending our study to more and larger product

lines. The fact that the intermediate FFSMs and the product FSMs

are generated from the product line FFSM pose another threat to

external validity. To remedy this external threat, we need to use

learned FSMs along with handcrafted FFSMs from different subsets

of larger software product lines. Thus, we could come up with

subject systems with more irregularities arising from learning and

handcrafting models.

Internal validity: These concern the phenomena that can affect

the casual relationship between the treatment and outcomes. One

variable that will form a threat to internal validity of our results for

larger product lines is the order of incorporating product FSMs into

product-line FFSMs. In our study, we considered one single order

for incorporating products into an FFSM. We plan to incorporate

this variable into our experimental setup for larger product lines

and complement our study with various configuration selection

[65] and prioritization [32] techniques.

Construct validity: These are concerned with the ability to

draw correct conclusions about the treatment and outcomes. Two

factors that will form threats to construct validity are the nature of

the hand-crafted FFSMs and the engineers expertise. Highly special-

ized engineers are more likely to come up with optimal models (i.e.,

minimal number of states) than those with less experience. This

may hamper the construction of more succinct models. However,

optimal representations are interesting artifacts to show that our

technique can also recover models as succinct as those hand-crafted
by experts.

5 RELATEDWORK
In this section, we discuss our approach in terms of related work

and how it can be helpful in their contexts.
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5.1 Automata learning
Automata learning [4] has been a popular approach to automatically

derive behavioral models. For an overview of related work and an

introduction to automata learning and applications, we refer to [2,

37, 56]. Automata learning have been harnessed for black boxmodel

checking [46], real-world protocols [1, 23], software evolution [21,

35], automatic test generation [47], and generalization of failure

models [17, 40]. The problem of learningmodels from SPLs becomes

more complex as it has to cope with products that may have their

own models, requirements and code. Our approach pave the way

for family model learning techniques, which are still understudied.

5.2 Family-based analysis of SPLs
For an overview on techniques for family-model analysis, testing

and modeling, we refer the interested readers to recent surveys

[12, 15, 58]. Family models have been exploited as theoretical foun-

dation to perform efficient test case generation [9, 14], family model

checking [52, 57], to automatically generate specifications of indi-

vidual products [8], to support the automatic validation of families

of products [29], and to specify fine-grained differences among

product variants [53]. Thus, we believe that our approach is com-

plementary to the aforementioned techniques in the sense that it

can leverage family model-based techniques to cases where family

models are non-existent or outdated.

5.3 Comparison of state-based models
The ability to compare FSMs is important for software engineer-

ing tasks [69] such as conformance testing [16], and for the sake

of evaluating the accuracy of automata learning techniques [62].

Studies related to ours are by Walkinshaw and Bogdanov [69] and

Nejati et al. [44].

Walkinshaw and Bogdanov [69] compared two approaches for

computing the precise difference between labeled transition sys-

tems (LTS) in terms of their language and structure. For comparing

the language of state-based models, the authors proposed an ap-

proach based on the proportion of test sequences generated by

a well-known FSM-badsed testing method, called the W-method

[18, 66], that are classified in the same way by two modelsMr and

Mu . Thus, measurements such as, precision, recall, and F-measure

can be used to compare the language of two LTS.

A major issue of comparing FSMs by their language is the fact

that minor differences can mask structural similarities. To solve

this problem, they proposed the LTSDif f algorithm, presented in

Section 2.3.2. These two approaches are said to be complementary
as two models may have similar state transition structure, but com-

pletely different languages, or vice-versa. In the setting of SPLs, the

FSMs specifying products can be compared using the LTSDif f al-

gorithm. However, the algorithm lacks a step to incorporate feature

constraints. Thus, we designed FFSMDiff to fill this gap.

Nejati et al. [44] presented an approach for matching and merg-

ing Statecharts [30]. Their approach relies on two operators for

matching and merging transitions. The latter uses static and be-

havioral properties to match state pairs. The former produces a

combined model in which variant behaviors are parameterized

using guards on their transitions where temporal properties are

preserved. The authors showed that that relying on both operators

produces higher precision than relying on them independently.

In our study, we aimed at the problem of matching and merg-

ing FSMs to build FFSMs. Recently, the FFSM formalism has been

extended to support hierarchy [25]. The hierarchical featured fi-

nite state machine (HFSM) model improves FFSM readability by

grouping up FFSM conditional states and transitions into abstracted

entities [25]. The results indicate that HFSMs can be used to suc-

cinctly represent and efficiently validate the behavior of parallel

components in SPLs. The problem of analyzing Statecharts and

learning HFSMs provides interesting possibilities to extend our

approach.

5.4 Reverse engineering feature models
Feature models play a central role in the variability management

for SPLs [11]. Unfortunately, companies often develop software

variants in an unstructured manner and may lack feature models

as their construction is time-consuming and error prone [31].

In this context, several approaches have been proposed to auto-

matically build feature models from sets of product configurations

[3, 31, 51]. Approaches based on Formal Concept Analysis (FCA)

show promising possibilities on reverse engineering feature mod-

els as they can detect interdependencies and hierarchies between

features [3]. Our proposal aims at one similar problem, which can

be described as “reverse engineering” family models from product

specifications. In our study, we assume that the feature model is

known a priori. However, we believe that our technique can be

extended to cope with non-existent feature models and learn fam-

ily and feature models at once, but the succinctness of the feature

constraints may be compromised. Thus, investigations combining

feature model and behavioral model learning is required.

5.5 Software product line evolution
In the context of SPLs, the tasks of re-engineering and refactor-

ing are vital to the maintenance and evolution of their software

products. For an overview on SPL evolution, refactoring and re-

engineering, we refer the interested readers to [22, 41, 43].

A large variety of artifacts have been considered in SPL evolu-

tion, but feature models are by far the most researched ones [43].

Moreover, recent studies have shown that there is a need for re-

engineering approaches specifically tailored for agile processes [43],

and migration of SPL paradigms [41].

Several studies have investigated model learning techniques to

cope with traditional software evolution and regression testing

[34, 55]. However, to the best of our knowledge, there are no works

investigating model learning in the setting of SPLs. Combined with

automata learning techniques [4], we believe that our algorithm

can support model-based regression testing in SPLs [50] and family

model checking [52, 57] in agile processes [45].

6 CONCLUSION
The problem of outdated and deprecated models can arise in the

setting of SPLs and hamper the application of family-based analy-

sis. Family-based analysis techniques operate on a single artifact,

referred to as a family model, annotated with feature constraints

to express variability in terms of states and transitions specific to

product configurations. To tackle this issue, we introduce FFSMDiff ,

an automated technique to learn succinct FFSMs from sets of FSMs

specifying products.
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Our technique incorporates variability to compare and merge

FSMs and annotate states and transitions with feature constraints.

We designed our approach to cope with (i) learning fresh FFSMs

from two FSMs, and (ii) including an FSM into an existing FFSM.

To evaluate our technique, we used 34 products derived from three

SPLs and measured its effectiveness in terms of the size of learnt

FFSMs and amount of feature reuse.

Our results supported the hypothesis that families of FSMs can

be effectively merged into succinct FFSMs, especially if there is

high feature reuse among products. These indicate that FFSMDiff is

an efficient family-based model learning technique that can pave

the way to several family-based analysis techniques without family

models specified a priori.
As future work, we would like to invesitgate further how family

models can be used to steer the process model learning. Adaptive

learning is a variant of model learning that attempts to reuse se-

quences from existing models to speed up state discovery [34]. We

believe that FFSMs can be useful to derive queries and improve the

process of reverse engineering family models. Another possible

branch of this research consist of evaluating how configuration

prioritization [32] may affect the size of the family models. Our

results indicated that some combinations may lead to FFSMs larger

than hand-crafted versions and we believe that similarity functions

[32] may be useful to accelerate and support family model learning.

The problem of learning HFSMs from Statecharts is left as future

work.
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