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Abstract. Product line calculus of communicating systems (PL-CCSs)
is a process calculus proposed to model the behavior of software product
lines. Modal transition systems (MTSs) are also used to model variability
in behavioral models. MTSs are known to be strictly less expressive than
PL-CCS. In this paper, we show that the extension of MTSs with hyper
transitions by Fecher and Schmidt, called 1-selecting modal transition
systems (1MTSs), closes this expressiveness gap. To this end, we propose
a novel notion of refinement for 1MTSs that makes them more suitable
for specifying variability for software product lines and prove its various
essential properties.
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1 Introduction

Variability modeling is a cornerstone of software product line (SPL) engineering,
through which an inventory of commonalities and differences among different
products are specified in a structured manner. Efficient analysis of variability-
intensive systems is a major challenge due to the potentially large number of
valid products. To this end, many techniques have been adapted, which exploit
variability in different types of analysis. A basic building block of many of these
techniques is a model for capturing variability at the structural or behavioral
level. In this paper, we focus on formal behavioral models that can be used to
capture variability; examples of such models include modal transition systems
(MTSs) [18], product line calculus of communicating systems (PL-CCS) [14],
and featured transition systems (FTSs) [10].

In a previous paper [9], we studied the comparative expressiveness of these
formalisms with respect to the set of products (labeled transition systems (LTSs))
they can specify. There, we proved that MTSs are strictly less expressive than
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PL-CCS (and its underlying semantic model, product line labeled transition sys-
tems (PL-LTSs)). A formalism that was not studied in our previous paper [9] is
1-Selecting Modal Transition System (1MTS) [12], which extends modal transi-
tion systems with (must/may) hyper transitions. Such hyper transitions bundle
a number of possible behavior, of which exactly one will be included in each valid
product. Using 1MTSs it is possible to model alternative behaviour (choices with
XOR relation) in products, which cannot be modeled using MTSs. Intuitively,
this seems the very missing modeling feature in order to fill the expressiveness
gap between MTSs and PL-LTSs.

In this paper, we show that this extension is indeed sufficient to close the
expressiveness gap between MTS and PL-LTS (see Section 5). Furthermore,
we observed that by considering the current refinement relation provided for
1MTSs, some aspects of behavioral variability, such as persistent choices in re-
cursive specifications, cannot be modeled satisfactorily (see Section 3). Hence,
we propose a new refinement relation for 1MTSs which addresses these concerns
(see Section 4) and also leads to more succinct models, and we show that the
new refinement relation enjoys the same intuitive properties as the original one
[12]. The other direction of comparison (from 1MTSs to PL-LTSs) is left as a
future work. However, we conjecture that encoding 1MTSs into PL-LTSs is also
possible.

2 Preliminaries

In this section, we explain some basic concepts regarding software product lines,
1-selecting modal transition systems, and product-line labeled transition systems
that are used throughout the rest of the paper.

2.1 Software Product Lines

The products in a software product line are developed from a common core.
The commonalities and variabilities among products are usually described in
terms of features. A feature is a distinctive user-visible aspect or characteristic
of the system [15]. The products in a product line can be described as sets of
features. There are different types of relations between features in a product
line. We explain some of these relations using an example of a vending machine
product line. The product line includes three mandatory features, namely, Coin,
Drink, and Coffee, which means all the products in this product line should
include these three features. There are two types of coin, namely, Dollar and
Euro which have alternative relation. This means that a product in this product
line can either accept dollar or euro coins but not both. The Drink feature has
two sub-features as well, namely, Tea and Coffee. The Tea is an optional feature.
This means that a product in this product line can offer both tea and coffee or
only coffee as drinks (since, Coffee is a mandatory feature).
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Fig. 1: 1MTS for vending machine product line.

2.2 1-Selecting Modal Transition Systems

Fecher and Schmidt [12] introduced the following definition of 1MTSs.

Definition 1 (1MTS). A 1-selecting modal transition system, is a tuple (S, A,→
, , sinit), where:

– S is a set of states or processes,
– A is a set of actions,
– →⊆ S× (2A×S \ ∅), is the must hyper transition relation,
– ⊆ S× (2A×S \ ∅) is the may hyper transition relation,
– sinit ⊆ S, is a non-empty set of initial states.

In each 1MTS, the relation →⊆ holds between the sets of may- and must hy-
per transitions. This means that must hyper transitions also implicitly represent
may hyper transitions.

We use 1MTS, to denote the class of all 1MTSs.
Based on the above definition, there are two types of hyper transitions in a

1MTS, called may- and must hyper transitions. A may hyper transition repre-
sents a set of alternative choices which are optional (at most one of the choices
can be selected). On the other hand, a must hyper transition represents a set of
alternative choices where selecting one of the choices is obligatory. Furthermore,
we assume that for each state s, (s ) = {γ | (s, γ) ∈ }. A simple example
of a 1MTS is provided in Fig. 1. This 1MTS represents the behavior of products
in the vending machine product line.

In order to define how a transition among those in a hyper transition is
chosen, the following notion of choice function is used.

Definition 2 (Choice Function). Let A be a set, and B ⊆ 2A and γ : B → A.
Then γ is a choice function if ∀b∈B : γ(b) ∈ b. The set of all choice functions on
B is defined by choice(B)

As 1MTSs are abstract models, one can associate with each 1MTS a set
of 1MTSs that refine it by allowing for fewer optional choices. The refinement
relation on 1MTSs is defined as follows [12].
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Fig. 2: (1) 1MTS and (2) LTS refining the model in Fig. 1 and Fig. 2(1).

Definition 3 (Refinement for 1MTSs). A refinement relation between two
1MTSs such as M = (S, L,→, , sinit) and M̄ = (S̄, L, →̄, ¯ , s̄init), is defined
as a relation R1MTS ⊆ S× S̄ such that ∀s∈sinit · ∃s̄∈s̄init · s R1MTS s̄ and ∀(s, s̄) ∈
R1MTS · ∀γ ∈ choice(s ) · ∃γ̄ ∈ choice(s̄ ¯ ), such that:

1. ∀ ω ∈ (s ) · ∃ ω̄ ∈ (s̄ ¯ ) · ∃ a ∈ L, s′ ∈ S, s̄′ ∈ S̄ · γ(ω) = (a, s′) ∧
γ̄(ω̄) = (a, s̄′) ∧ s′ R1MTS s̄′,

2. ∀ ω̄ ∈ (s̄→̄) · ∃ ω ∈ (s→) · ∃ a ∈ L, s′ ∈ S, s̄′ ∈ S̄ · γ(ω) = (a, s′) ∧ γ̄(ω̄)
= (a, s̄′) ∧ s′ R1MTS s̄′.

M is said to refine M̄ , written as M . M̄ , when there exists a refinement
relation R1MTS relating each of the initial states of M to one of the initial
states of M̄ .

As a simple example in Fig. 2(1), a 1MTS is shown which refines the 1MTS in
Fig. 1. In this 1MTS, the may hyper transitions are not present.

We define the concrete implementations of a 1MTS as labeled transition
systems, defined below.

Definition 4 (LTS). An LTS is a tuple (S,A,→, sinit), where S is a set of
states, A is a set of actions, →: S×A×S is the transition relation, and sinit is
the initial state. We denote the class of LTSs by LTS. (We follow the definition
given for LTSs as implementations of 1MTSs with single initial states in [12])

As a simple example in Fig. 2(2), an LTS is shown which refines the 1MTSs
in Fig. 1 and 2(1). In this LTS, the may hyper transitions are not present and
the alternative choice among the insert_euro and insert_dollar is resolved by
choosing the former.

2.3 Product Line Process Algebras

Milner’s Calculus of Communicating Systems (CCS) [20] is extended by Gruler
et al. [14] into PL-CCS by introducing a new operator, called binary variant,
to represent the alternative behavior. The introduced binary variant operator
⊕i is different from the ordinary alternative composition operator + in CCS in
that the binary variant choice is made once and for all. As an example, consider
the process terms s = a.(b.s + c.s) and t = a.(b.t ⊕1 c.t); recursive process s
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keeps making choices between b and c in each recursion, while process t makes a
choice between b and c in the first recursion after performing a, and the choice
is recorded and respected in all the following iterations. This means that process
t behaves deterministically after the first iteration with respect to the choice
between b and c. To simplify the formal development of the theory, Gruler et.
al. assume that in every PL-CCS term, there is at most one appearance of the
operator ⊕i for each and every index i. We use the same assumption throughout
the rest of the paper, as well.

The semantics of a PL-CCS term is defined based on PL-LTSs [14], using a
structural operational semantics, which is explained informally next. The states
of a product line labeled transition system are pairs of ordinary states, i.e.,
process terms, and configuration vectors. The transitions of a PL-LTS are also
labeled with configuration vectors. These vectors are of type {L,R, ?}I with I
being an index set, L and R, respectively, denoting that the choice has been
made in favor of the left- or right-hand-side term and ? denoting that the choice
has not been made yet.

Definition 5 (PL-LTS). Let {L,R, ?}I denote the set of all total functions
from an index set I to the set {L,R, ?}. A product line labeled transition
system is a 5-tuple (P × {L,R, ?}I , A, I,→, pinit) consisting of a set of states
P×{L,R, ?}I , a set of actions A, and a transition relation→⊆ (P×{L,R, ?}I)×
(A × {L,R, ?}I) × (P × {L,R, ?}I), and an initial state pinit ∈ P × {L,R, ?}I ,
satisfying the following restrictions:

1. ∀P,ν,a,Q,ν′,ν′′ (P, ν)
a,ν′−−→ (Q, ν′′) =⇒ ν′ = ν′′.

2. ∀P,ν,a,Q,ν′,i (P, ν)
a,ν′−−→ (Q, ν′) ∧ ν(i) 6=? =⇒ ν′(i) = ν(i).

3. ∀P0,ν0,a,Q0,ν′0,i,P1,ν1,b,Q1,ν′1,i
(P0, ν0)

a,ν′0−−→ (Q0, ν
′
0) ∧ (P1, ν1)

b,ν′1−−→ (Q1, ν
′
1) ∧

ν0(i) = ν1(i) =? ∧ ν′0(i) 6=? 6= ν′1(i) =⇒ (P0, ν0) = (P1, ν1).

In Definition 5, the conditions follow from the operational rules given by Gruler
et al. [14]. The first condition indicates that the change in the configuration is
identically reflected in the label and the target. The second condition indicates
that a decision made on a choice is recorded as L or R in the configuration
vector and would not change in the future. The third condition reflects that
the configuration at index i can be resolved in at most one state; this follows
immediately from the uniqueness of indices in PL-CCS terms.

In order to define the valid implementations of a PL-LTS, we start with the
following relation between the configuration vectors [9].

Definition 6 (Configuration Ordering). The ordering relation v on the set
{L,R, ?} is defined as v= {(?, ?), (L,L), (R,R), (?, L), (?, R)}. We lift this or-
dering relation to the level of configuration vectors by defining ν v ν′ ⇐⇒
∀i∈I ν(i) v ν′(i), for any ν, ν′ ∈ {L,R, ?}I .

Considering the above definition, for each ν, ν′ ∈ {R,L, ?}I , we say ν(i) ./
ν(j)⇔ ν(i) v ν(j) ∨ ν(j) v ν(i), for each i, j ∈ I. We lift this ordering relation
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Fig. 3: (1) A PL-LTS example (2) A 1MTS with an LTS implementation (3). (4)
A 1MTS modeling the same behavior as the PL-LTS in (1). (5) An example of
a 1MTS to demonstrate conciseness problem.

to the level of configuration vectors by defining ν ./ ν′ ⇐⇒ ∀i∈I ν(i) ./ ν′(i),
for any ν, ν′ ∈ {L,R, ?}I .

In order to compare the expressiveness of 1MTS with PL-LTS, we define
product derivation relation for a PL-LTS as follows [9].

Definition 7 (Refinement for PL-LTSs). Let (P × {L,R, ?}I , A,→, pinit)
be a PL-LTS and let (S, A,→, sinit) be an LTS. A binary relation Rθ ⊆ S ×
(P × {L,R, ?}I) (parameterized by every product configuration θ ∈ {L,R}I) is
a product-derivation relation if and only if the following transfer properties are
satisfied:

(a) ∀P,Q,a,ν,ν′,s s Rθ (P, ν) ∧ (P, ν)
a,ν′−−→ (Q, ν′) ∧ ν′ v θ ⇒ ∃t s

a−→ t ∧
t Rθ (Q, ν′) ,

(b) ∀P,a,ν,s,t s Rθ (P, ν) ∧ s a−→ t ⇒ ∃Q,ν′ (P, ν)
a,ν′−−→ (Q, ν′) ∧ ν′ v θ ∧

t Rθ (Q, ν′) .

A state s ∈ S in an LTS is (the initial state of) a product of a PL-LTS (P, ν)
with respect to a configuration vector θ, denoted by (P, ν) `θ s, if ν v θ and
there exists an Rθ product-derivation relation such that s Rθ (P, ν).

We say an LTS T = (S, A,→, sinit) is a valid implementation of a PL-LTS
P = (P× {L,R, ?}I , A, I,→, pinit), denoted by T ≺ P if and only if there exists
a configuration θ ∈ {L,R, ?}I such that pinit `θ sinit .

3 Design Decisions

In this section, we study the refinement relation provided for 1MTSs by Fecher
and Schmidt [12] (see Definition 3) and use some examples to point out a few
issues in using this notion of refinement for product derivation. These issues
lead us to design decisions for a new notion of refinement, introduced in the
next section, that is more suitable for the setting of software product lines.

The first example concerns alternative behavior. Consider the PL-CCS terms
s0 = a.s1 and s1 = b.s2 ⊕1 c.s3. The corresponding underlying PL-LTS is rep-
resented in Fig. 3(1). Then, consider the 1MTS shown in Fig. 3(2). Intuitively,
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this model may be considered as a solution to represent the same set of prod-
ucts using 1MTSs: it bundles the choice between the b- and c-labeled transitions
into a must hyper transition. (Recall from Definition 1 that must hyper tran-
sitions intuitively represent mandatory choices.) However, in Fig. 3(3), a valid
implementation of this 1MTS based on the refinement relation in Definition 3 is
depicted. (The dashed arrows show how the states of the LTS and 1MTS are re-
lated using the refinement relation.) In the LTS implementation, both the b- and
c-labeled transitions are included. A 1MTS that has the same implementations
as the PL-LTS in Fig. 3(1), is given in Fig. 3(4); namely, the choice has been
lifted to the initial states. This way, the exclusive behavior can be separated
among the two parts of the model initiated in these two states.

The process of lifting choices to the initial states can lead to an exponential
blow up in 1MTS representation of product lines. This is already hinted at by
the 1MTS given in Fig. 3(4) and can be generalized as follows. Consider the
1MTS shown in Fig. 3(5). This model is similar to the 1MTS given in Fig.
3(2) with k = n/2 independent exclusive choices (modeled by k must hyper
transitions). There are 2k possible combinations of all choices. This model suffers
from the same problem as described above, namely, the alternative transitions
can be included simultaneously in some LTS implementations. As mentioned
above, in order to model alternative behavior the solution is to use a model with
several initial states where each part of the model includes one of the possible
combinations. Hence, the model should include 2k separate parts each with a
different initial state. This issue severely compromises succinctness in 1MTS
representation of product lines.

Another issue in using 1MTSs for modeling product lines concerns persistent
choices. Assume that we add the term s3 = d.s1 to the aforementioned PL-CCS
process term. This will lead to having a new state in the PL-LTS (s1, 〈R〉) and a
transition from (s3, 〈R〉) to this state. As mentioned in Section 2.3, the decisions
made about the exclusive choices are stored in configuration vectors. Hence,
when going back again to s1, the choice that was made before, which is R, will
not change. Using the current notion of refinement for 1MTSs, it is not possible
to keep track of the choices that are made in the past. Assume that we want
to model the same behavior (as in Fig. 3(1)) using 1MTSs. Assume a transition
from state s3 to state s1 with label d is added to the 1MTS represented in Fig.
3(2). One of the valid implementations of such 1MTS is an LTS where b is chosen
the first time reaching state s1 and then c is chosen the next time that this state
is reached. The solution to solve this problem, is the same as above (using several
initial states) in addition to unrolling loops.

To address these 3 issues, namely, alternative behavior, succinct representa-
tion of choice, and persistence choice, we introduce a new notion of refinement
for 1MTSs in the next section.
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4 Revisiting the Refinement Relation

In this section, we propose a new refinement relation for 1MTSs to address
the issues pointed out in the previous section regarding the original refinement
relation [12]. Then, we show that our new refinement relation preserves the
intuitive properties posed for the original one [12].

4.1 New Refinement Relation

We revisit the refinement relation in Definition 3, and provide a new refinement
relation for 1MTSs as follows. First, we define an auxiliary function, namely, the
choice resolution function.

Definition 8 (Choice Resolution Function). Consider a 1MTSM=(S, L,→
, , sinit). A choice resolution function is a total function Γ : S→

⋃
s∈S choice(s ).

We denote the set of all choice resolution functions of the 1MTS M by ΓM .

The purpose of defining the choice resolution function is to assign a choice func-
tion to each state of the 1MTS once and for all. Next, we give the refinement
relation for 1MTSs as follows.

Definition 9 (New Refinement for 1MTS). Consider two arbitrary 1MTSs
M= (S, L,→, , sinit) and M ′= (S′, L,→′, ′, s′init), we say M refines M ′,
denoted by M.M ′, iff there exists a refinement relation R1MTS ⊆ S×S′×ΓM×
ΓM ′ such that ∀f ∈ ΓM ∃f ′ ∈ ΓM ′ ∀s0 ∈ sinit ∃s′0 ∈ s′init · (s0, s

′
0, f, f

′) ∈ R1MTS

and ∀(s, s′, f, f ′) ∈ R1MTS, the following conditions hold:

(i) ∀ ω ∈ (s ) · ∃ ω′ ∈ (s′ ′) · ∃ a ∈ L, s′′ ∈ S, s′′′ ∈ S′ · f(s)(ω) = (a, s′′)
∧ f ′(s′)(ω′) = (a, s′′′) ∧ (s′′, s′′′, f, f ′) ∈ R1MTS , and

(ii) ∀ ω′ ∈ (s′ →′) · ∃ ω ∈ (s→) · ∃ a ∈ L, s′′ ∈ S, s′′′ ∈ S′ · f(s)(ω) = (a, s′′)
∧ f ′(s′)(ω′) = (a, s′′′) ∧ (s′′, s′′′, f, f ′) ∈ R1MTS .

(iii) Additionally, ∀s1 ∈ S, f ′′ ∈ ΓM ′ · (s1, s
′, f, f ′′) ∈ R1MTS ⇒ f ′ = f ′′.

In the rest of the paper, we use Rf,f
′

1MTS to denote a 1MTS refinement relation
that follows the above definition (that uses choice resolution functions f and
f ′). In Fig. 4(1), an example of a 1MTS is given. Based on the Definition 3, the
1MTS in Fig. 4(2) is refining this 1MTS. However, based on the Definition 9,
this is not a valid refinement for the 1MTS in Fig. 4(1). Hence, the problem with
modeling alternative behavior that was mentioned in Section 3 is solved in the
new definition. Similarly the problems with modeling the conciseness and the
persistent behavior are solved.

4.2 Refinement Relation Properties

We prove a set of properties for the new refinement relation as follows. This is
the same set of properties proven for the original 1MTS refinement relation by
Fecher and Schmidt in [12]. (Due to space limitation, the proofs are omitted and
we will include them in an extended version of the paper.) First, we show that
the new refinement relation is a preorder.
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Fig. 4: (1) A 1MTS example. (2) A 1MTS refining (1).

Proposition 1. The refinement relation given in Definition 9, is a preorder.

Next, we show that all the LTS implementations of a 1MTS also implement the
1MTSs that are refined by this 1MTS.

Proposition 2. Consider two 1MTSsM andM ′ such thatM.M ′. Then ∀lts ∈
LTS · lts . M ⇒ lts . M ′.

Next, we prove that the bisimulation relation satisfies the properties of the re-
finement relation in Definition 9.

Proposition 3. Consider two arbitrary LTSs lts1 and lts2 such that lts1 ∼ lts2,
where ∼ denotes strong bisimilarity; it follows that lts1 . lts2.

5 Encoding PL-LTSs into 1MTSs

In order to compare the expressiveness of PL-LTSs with 1MTSs, following the
approach provided by Beohar et al. in [9], we define an encoding from PL-LTSs
into 1MTSs. The main idea of giving an encoding is to define a transforma-
tion from one class of models into the other class of models that is semantic
preserving. First, we give the following auxiliary definitions taken from [9].

Definition 10 (Product Line Structure). A product line structure is a tuple
M = (M, J K), where M is the class of the intended product line models (in
this paper 1MTSs and PL-LTSs) and J K : M → LTS is the semantic function
mapping a product formalism to a set of product LTSs that can be derived from
each product line model.

Next, we give the formal definition of an encoding.

Definition 11 (Encoding). An encoding from a product line structure M =
(M, J K) into M′ = (M′, J K′), is defined as a function E : M→M′ satisfying the
following correctness criterion: J K = J K′ ◦E. We say a product line structure M′

is at least as expressive as M if and only if there exists an encoding E : M→M′.

Before elaborating on the proposed encoding, we give two auxiliary definitions
which are used for encoding the transitions of a PL-LTS into must/may hyper
transitions of a 1MTS. As (hyper) transitions in a 1MTS are transitions with
multiple targets (see Definition 1), we need to group some of the transitions in a
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PL-LTS, which correspond to resolving the same alternative choice, and encode
them as a (may/must) hyper transition. To this end, we consider the type of
changes that is made by a transition to the configuration vector of a PL-LTS. A
transition for which the configuration vectors in the source and target states are
not identical, is corresponding to resolving a choice (making a decision about
one of the variant operators). We formally define the hyper must closed set and
hyper may closed set as follows.

Definition 12 (Hyper Must Closed Set). Consider a state (P, ν) of a PL-
LTS such as (P×{L,R, ?}I ,A,I,→, pinit); we assume that Out (P,ν) denotes the
set of all outgoing transitions from state (P, ν) and Out

(P,ν)
δ denotes the set

of outgoing transitions form (P, ν) that make a change in at least one of the

elements of the configuration vector of the source state, i.e., for each (P, ν)
a,ν′−−→

(P ′, ν′) ∈ Out
(P,ν)
δ , there exists an i ∈ I s.t. ν(i) =? ∧ ν′(i) 6=?. A set T ⊆→ of

transitions is hyper must-closed for (P, ν) when it is a maximal subset of Out
(P,ν)
δ

such that:

– For each (P, ν)
a0,ν0−−−→ (Q0, ν0) ∈ T , and each i ∈ I s.t. ν(i) 6= ν0(i) there

exists a (P, ν)
a1,ν1−−−→ (Q1, ν1) ∈ T s.t. ¬(ν0(i) ./ ν1(i)) and for all j 6= i,

ν0(j) ./ ν1(j).
– For each two different transitions (P, ν)

a0,ν0−−−→ (Q0, ν0) ∈ T and (P, ν)
a1,ν1−−−→

(Q1, ν1) ∈ T , exists i ∈ I s.t. ¬(ν0(i) ./ ν1(i)).

We denote the set of all such maximal subsets for a state (P, ν), by T (P,ν)
→ .

Definition 13 (Hyper May Closed Set). The hyper may closed set for a
state (P, ν), denoted by T (P,ν), is defined the same as the hyper must closed
set as given in Definition 12, with the only difference that the first condition is
replaced with the following condition.

– For each (P, ν)
a0,ν0−−−→ (Q0, ν0) ∈ T , for some i ∈ I s.t. ν(i) 6= ν0(i) there

exists a (P, ν)
a1,ν1−−−→ (Q1, ν1) ∈ T s.t. ¬(ν0(i) ./ ν1(i)) and for all j 6= i,

ν0(j) ./ ν1(j).

Next, we formalise the encoding of a PL-LTS into a 1MTS.

Definition 14 (PL-LTS to 1MTS Encoding). Let (P, A, I,→, pinit) be a
PL-LTS. We construct a 1MTS M = (S, A,→, , sinit) as an encoding of such
a PL-LTS as follows.

– The set S of states is defined as P, i.e., the set of states in the PL-LTS,
pinit = sinit , A is the same set of actions,

– We construct the → and , which, respectively, denote the must and may
hyper transition relations for each state of the the encoding 1MTSs as follows.
Given Definition 12 and Definition 13, we define the following transition
rules:

((P, ν)→) =
⋃

Λ∈T (P,ν)
→
|Λ|〉1

{
⋃

1≤i≤|Λ|

{(ai, (Pi, νi))}| (P, ν)
ai,νi−−−−→ (Pi, νi) ∈ Λ}∪
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⋃
1≤i≤|Out(P,ν)\Out

(P,ν)
δ

|

{{(ai, (Pi, ν))}| (P, ν)
ai,ν−−−→ (Pi, ν) ∈ Out

(P,ν) \Out
(P,ν)
δ }

((P, ν) ) =
⋃

Λ∈T (P,ν)

{
⋃

1≤i≤|Λ|

{(ai, (Pi, νi))}| (P, ν)
ai,νi−−−−→ (Pi, νi) ∈ Λ}∪

{(a, (P ′, ν′))| (P, ν)
a,ν′−−−→ (P

′
, ν
′
) ∈

(
Out

(P,ν)
δ \ (T (P,ν)

→ ∪ T (P,ν)
)
)
}

Given the above encoding, we prove that the class of 1MTSs is at least as expres-
sive as the class of PL-LTSs. (Due to space limitation, the proofs are omitted
and we will include them in an extended version of the paper.)

Theorem 1. The class of 1MTSs is at least as expressive as the class of PL-
LTSs.

6 Related Work

In this section, we discuss related work regarding formalisms used for modeling
product lines and the comparison of their expressiveness. We limit our consid-
eration to the models which have LTSs as the semantic domain.

Considering the comparison of the expressiveness of the formalisms used for
modeling variability, Beohar et al. in [9] provide a comparison between the ex-
pressiveness of three fundamental models, namely, MTSs, PL-CCSs, and Feature
Transition Systems (FTSs). (FTSs [11] are extensions of LTSs with propositional
formulas called feature expressions.) A novel notion of encoding, based on the
set of implementing LTSs, from one class of models to the other is provided.
The existence of mutual encodings between two classes of models is described
as having the same expressiveness. As a result a hierarchy of formalisms based
on their expressiveness is provided. Furthermore, Benduhn et al. in [7], provide
a survey on formalisms focusing on the suitability of these models in applying
different analysis techniques.

Considering the formalisms proposed for modeling product lines; In [13], Fis-
chbein et al. for the first time argued that MTSs are adequate for modeling
variability. In several works, MTSs have been used for modeling variability in
the behavior of product lines [2, 1, 3, 19, 16]. As shown in [9], MTSs are the least
expressive in the provided hierarchy. In order to tackle the limited expressive-
ness of MTSs, several extensions of such models have been proposed. In a set of
works, MTSs are used with variability constraints [6], which are constraints ex-
pressed in Modal-Hennessy-Milner-Logic (MHML) [2, 1, 3]. In [17], an extension
of MTSs, namely, Disjunctive Modal Transition Systems (DTMSs) are intro-
duced which provides the possibility to model an or relation between choices
in the behavior using hyper transitions. Fecher and Schmidt in [12], introduce
1MTSs, which (as mentioned in Section 2) can be used for modeling alternative
choices. Furthermore, in this work, a comparison between the expressiveness of
these two models is provided, which shows that the two classes of models have
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the same expressiveness concerning the sets of implementing LTSs. Benes et al.
in [8], introduce an extension of MTSs, namely, parametric modal transition
systems in which the concept of obligation functions is used. The obligation
functions are defined upon atomic propositions of states, the transitions, and a
set of parameters, which can be used for representing features. By setting the
valuation of parameters the presence or absence of states and transitions in a
specific product model can be specified. Moreover, an extension of contract au-
tomata with modality [5] is introduced by Basile et al. in [4]. In this extension
of the model, permitted and necessary requests are distinguished using feature
constraints. There have been other approaches introduced that use some inter-
face theories principles to indicate the set of derivable variants from an MTS as
the ones that are compatible under parallel composition with regards to a given
environmental specification [16, 19].

As mentioned in Section 2, PL-CCS [14], introduced by Gruler et al. [14], is an
extension of Milner’s CCS [20] by means of an alternative choice operator called
“binary variant”. This operator provides the possibility of modeling persistent
choices in the behavior. The validity of variants can be further restricted using
the multi-valued modal mu-calculus [21].

To the best of our knowledge, the provided encoding from PL-LTSs into
1MTSs, the results regarding the expressiveness, and the provided refinement
relation for 1MTSs that addresses the limitations of such models in modeling
variability in the behavior in this paper are novel.

7 Conclusion

In this paper, we compared the expressiveness of PL-LTSs and 1MTSs. To this
end, we defined the set of products for specifications in both formalisms, of which
the behaviors are commonly specified in the domain of LTSs. We then showed
that 1MTSs can capture all products that can be specified by the product line
calculus of communicating systems. Furthermore, we provided a set of obser-
vations regarding the limitations in modeling variability in the behavior which
are enforced by the refinement relation given for 1MTSs. We proposed a new
refinement relation for 1MTSs to tackle these limitations and proved a set of
properties for the new refinement relation.

An immediate question to ask is whether the two formalism have the same
expressive power or not. We conjecture that the answer is positive and leave
this for immediate future work. We also would like to combine the results of
this paper with our earlier results in [9] and present a comprehensive lattice of
expressive power among all fundamental behavioral models for software product
lines. As another part of our future work, we plan to provide a stronger relation
between PL-LTSs and PL-CCS terms by introducing a set of conditions (on the
configuration vectors of states) in a PL-LTS which guarantee that the PL-LTS
is induced from a PL-CCS term.
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