
Hierarchical Featured State Machines

Vanderson Hafemann Fragal1,∗, Adenilso Simao1, Mohammad Reza Mousavi2,∗∗

Abstract

Variants of the Finite State Machine (FSM) model have been extensively used
to describe the behavior of reactive systems. In particular, several model-based
testing techniques have been developed to support test case generation from
FSMs and test case execution. Most of such techniques require several validation
properties to hold for the underlying test models. Featured Finite State Machine
(FFSM) is an extension of the FSM model proposed in our earlier publication
that represents the abstract behavior of an entire Software Product Line (SPL).
By validating an FFSM, we validate all valid products configurations of the SPL
looking forward configurable test suites. However, modeling a large SPL using
flat FFSMs may lead to a huge and hard-to-maintain specification. In this paper,
we propose an extension of the FFSM model, named Hierarchical Featured
State Machine (HFSM). Inspired by Statecharts and UML state machines, we
introduce the HFSM model to improve model readability by grouping up FFSM
conditional states and transitions into abstracted entities. Our ultimate goal
is to use HFSMs as test models. To this end, we first define some syntactic
and semantical validation criteria for HFSMs as prerequisites for using them as
test models. Moreover, we implement an adapted graphical Eclipse-based editor
from the Yakindu Project for modeling, derivation, and checking feature-oriented
properties using Satisfiability Modulo Theory (SMT) solver tools. We investigate
the applicability of our approach by applying it to an HFSM for a realistic case
study (the Body Comfort System). The results indicate that HFSMs can be
used to compactly represent and efficiently validate the behavior of parallel
components in SPLs.

Keywords: Model Validation, Software Product Line, Featured Finite State
Machine, Hierarchical Featured Finite State Machine.

∗The work of V. Hafemann has been partially supported by the Science Without Borders
project number 201694/2015-8.

∗∗The work of M. R. Mousavi has been partially supported by the Swedish Research
Council award number: 621-2014-5057 and the Swedish Knowledge Foundation project number
20140312.

Email addresses: vanderson.fragal@gmail.com (Vanderson Hafemann Fragal),
adenilso@icmc.usp.br (Adenilso Simao), mm789@le.ac.uk (Mohammad Reza Mousavi)

1Institute of Math. and Computer Sciences - ICMC, University of S̈ı¿œo Paulo, Brazil.
2Department of Informatics, University of Leicester, UK.

Preprint submitted to Elsevier August 11, 2018

1. Introduction

In the face of the increasing complexity, software industries moved from
craftsmanship to industrialization, where components are customized and assem-
bled to produce similar products with low cost and satisfying several customer
demands [1].

In Software Product Line Engineering (SPLE), a family of related products
(a Software Product Line - SPL) is built out of a common set of core assets, thus
reducing development costs for each product [2]. In SPLE, products are built
step-by-step, by incrementally adding or removing functionalities.

Similar to the development of single systems, the SPLE process also has
several activities that are executed to ensure software quality. Testing (including
verification and validation) is an example of such activities. Despite the system-
atic software artifact reuse that increases productivity, new challenges arise in
testing activities for SPLE [3, 4].

Testing activities represent a large share of overall project costs [5] and
are even more challenging in SPLE than in engineering single systems [6].
Unfortunately, several domains, such as embedded and safety-critical systems,
do not strictly follow development standards (due to high test costs) to efficiently
test several product configurations in a systematic manner. For example, the
standard ISO 262623 for safety-critical automotive software recommends model-
based techniques for various product configurations for the highest level of safety
integrity.

Finite State Machines (FSMs) and their variants have been extensively used
as a fundamental semantic model for various behavioral specification languages.
In particular, several test case generation techniques have been developed for
hardware and software testing based on FSMs; an overview of these techniques
can be found in [7, 8, 9]. All FSM-based testing techniques require the underlying
test models to satisfy some basic validation criteria such as connectedness and
minimality.

There are recent attempts [10, 11] to extend the FSM-based testing techniques
to SPLs, mostly using the delta-oriented approach to SPL modeling. We proposed
Featured Finite State Machines (FFSMs) in the conference publication of this
paper [12] with focus on the basic test model validation criteria for SPLs at the
family-wide level. However, the scalability problem is the main issue of using
the FFSM model for large and complex systems. Such a problem makes model
analysis costly to execute and it also leads to a hard-to-maintain test model. To
improve scalability in modeling, we propose in this paper an extension of FFSMs
named Hierarchical Featured State Machines (HFSMs). The HFSM model is
inspired by Statecharts [13], and its syntax is validated by checking well-formed
states and transitions. To define a formal semantics for HFSMs and enable its
formal analysis, we define a transformation from HFSMs to FFSMs.

Figure 1 shows an overview of the SPL validation workflow for HFSM with
artifact dependencies represented by dashed arrows. In domain engineering, we

3https://www.iso.org/standard/43464.html

2

FFSM/FSM

7-Model Generation

4-Semantic
FFSM Validation

FFSM

Requirements

1-Feature Model
Creation

Family-Based
Model Properties

HFSM

3-Syntax Validation/
Semantic Definition

5-Product Selection

2-HFSM Creation

6-Model Derivation

Pruned HFSM

SAT Solver

Configuration Model

Feature Model

 Domain Engineering

 Application Engineering

Figure 1: SPL validation workflow using HFSMs.

generate reusable and configurable artifacts while in application engineering
those artifacts can be configured for a set of product configurations.

The main contributions of this paper are: (i) extending the FFSM model to
HFSM. The introduction of FFSMs is also among our contributions, but due to
our focus on hierarchy, we dispense with presenting the detailed results about
the basic formalism which can be found in [12]; (ii) implementing a support tool
for modeling, validation, and derivation of HFSMs using the Eclipse platform,
Java language, and the Z3 solver tool [14]; and (iii) investigating the HFSM
applicability and validation using a case study. The case study is from the
automotive domain concerning the Body Comfort System [15]. The results
indicate that HFSMs can be used to compactly represent and to efficiently
validate the behavior of parallel components in SPLs.

The remainder of this paper is organized as follows. Section 2 presents some
preliminary notions and concepts. Section 3 introduces the FFSM formalism.
Section 4 introduces the HFSM formalism with detailed syntax and semantics.
Section 5 presents the supporting tool for HFSM modeling, validation, and
derivation. Section 6 illustrates a case study with an industrially-inspired HFSM.
Section 7 provides an overview of the related work and a comparison among the
relevant approaches in the literature. Finally, Section 8 concludes the paper and
presents the directions of our future work.

2. Background

This section presents the basic concepts and definitions regarding SPL that
we are going to use throughout the rest of the paper.

3

2.1. Feature Diagram

A feature is a prominent or distinctive user-visible aspect, quality, or char-
acteristic of a software or a system [16]. A feature diagram [17] is a notational
convention to describe constraint-based feature relations. The basic feature
relations are mandatory, optional, inclusive-or (or), exclusive-or (alternative),
include, and exclude [18]. A noteworthy feature modeling method for specifying
feature constraints is the Feature-Oriented Domain Analysis (FODA) [16]. Sub-
sequent feature modeling methods, such as the Orthogonal Variability Model
(OVM) [19], extend the FODA to add new dependency relations.

Example 1. The Arcade Game Maker (AGM) [20] produces arcade games with
different game rules. Figure 2 shows the feature diagram of AGM. There are
three alternative features for the game rule (Brickles, Pong, and Bowling) and
one optional feature (Save) to save the game. For each product, one and only
one alternative feature must be selected, and the optional feature is left open for
selection.

A feature diagram is developed in the domain engineering and is used as input
to the application engineering level, where it is instantiated by a configuration
model. A configuration model allows for selecting features to specify a product,
and it is useful for integrating components in the product configuration process.
The product configuration process (binding) derives a specific product using the
reusable SPL architecture and a configuration model with selected features.

2.2. Feature Constraint

In general, due to the dependencies and constraints on feature combinations,
only some combinations of features are valid. Assume a set of features F of a
feature model. The set of all valid products P of an SPL is a subset of feature
combinations from the power set P(F) that satisfies the constraints specified by
the feature model [21].

A feature constraint χ is a propositional formula that interprets the elements
of the feature set F as propositional variables. The set of all feature constraints
is denoted by B(F). The relation between features and their constraints can be
modeled by a feature diagram and can be extracted as a logical formula using
the formal semantics of feature diagrams [17]. A product configuration ρ ∈ B(F)

Brickles[B]

Legend
 Mandatory Feature
 Optional Feature
 Alternative Feature

Collision[L]Movement[M]Bowling[W]Play[Y]

Services[V] Action[A]Rules[R]

Pong[N]Save[S]Pause[P]

Configuration[C]

Arcade Game Maker-AGM[G]

Figure 2: AGM Feature Diagram (adapted from [20]).

4

of a product p ∈ P is a feature constraint of the form ρ = (
∧
f∈p

f) ∧ (
∧
f /∈p
¬f), i.e.,

the conjunction of all features present in p and the conjunction of the negation
of all features absent from p. The set Λ ⊆ B(F) denotes all valid product
configurations of the SPL. Given a feature constraint χ ∈ B(F), a product
configuration ρ ∈ Λ satisfies χ, denoted by ρ � χ, if and only if feature constraint
ρ ∧ χ is satisfiable.

Example 2. Given the feature diagram of Figure 2 the extracted
feature set is F = {G,V,R,C,A, Y, P, S,B,N,W,M,L} where O =
{G,V,R,C,A, Y, P,M,L} ⊆ F is the subset of mandatory features. The ex-
tracted feature constraint that represents the set of all valid products is:

χ = ((
∧
f∈O

f) ∧ (S =⇒ V) ∧ (B ∨N ∨W)∧

¬(B ∧N) ∧ ¬(B ∧W) ∧ ¬(N ∧W)) ∈ B(F)

There are only six product configurations that satisfy χ, namely, those specified
below:

ρ1 = (
∧
f∈O

f) ∧B ∧ ¬N ∧ ¬W ∧ ¬S, ρ2 = (
∧
f∈O

f) ∧B ∧ ¬N ∧ ¬W ∧ S,

ρ3 = (
∧
f∈O

f) ∧ ¬B ∧N ∧ ¬W ∧ ¬S, ρ4 = (
∧
f∈O

f) ∧ ¬B ∧N ∧ ¬W ∧ S,

ρ5 = (
∧
f∈O

f) ∧ ¬B ∧ ¬N ∧W ∧ ¬S, ρ6 = (
∧
f∈O

f) ∧ ¬B ∧ ¬N ∧W ∧ S.

In our textual notation, the logical operators on feature constraints are
denoted by && (and), || (or), and ! (not).

2.3. Feature Model

A Feature model [2] specifies the structure of an SPL in terms of its feature
and feature constraints. It can serve as the underlying structural model for other
formalisms modeling the behavior of an SPL, e.g., for the purpose of testing.

Definition 2.1. A feature model FM is a tuple (F, χ), where F is the set of
features and χ is the feature constraint.

3. Featured Finite State Machines

Variants of the FSM model have been extensively used to describe the behavior
of different domains. In particular, several model-based testing approaches [3]
have been developed to support test design and execution for SPLs. In this paper,
we introduce Featured Finite State Machines (FFSMs) [12] and use them as the
semantics model for our hierarchical model HFSM. The FFSM can represent
the behavior of SPLs using a single model where product FSM properties are
defined and checked in a family-wide level.

5

3.1. Basic Definitions

An FFSM combines states and transitions with feature constraints. The
syntax of FFSMs is defined as follows.

Definition 3.1. An FFSM is a 6-tuple (FM,C, c0, Y,O,Γ), where

1. FM = (F, χ) is a feature model (Definition 2.1),

2. C ⊆ S ×B(F) is a finite set of conditional states, where S is a finite set of
state labels, B(F) is the set of all feature constraints, such that C satisfies
the following condition:

∀(s,ϕ)∈C • ∃ρ∈Λ • ρ � ϕ

3. c0 = (s0, true) ∈ C is the initial conditional state,

4. Y ⊆ I × B(F) is a finite set of conditional inputs, where I is the set of
input labels,

5. O is a finite set of outputs,

6. Γ ⊆ C × Y × O × C is the set of conditional transitions satisfying the
following condition:

∀((s,ϕ),(x,ϕ′′),o,(s′,ϕ′))∈Γ • ∃ρ∈Λ • ρ � (ϕ ∧ ϕ′ ∧ ϕ′′)

The above-given two conditions ensure that every conditional state and every
conditional transition is present in at least one valid product of the SPL. A
conditional state c = (s, ϕ) ∈ C is alternatively denoted by s(ϕ). A conditional
transition from conditional state c to c′ with conditional input y = x(ϕ′′) and

output o t = (c, y, o, c′) is alternatively denoted by x(ϕ′′)/o or c
y→
o
c′. Omitted

feature conditions mean that the condition is true, i.e., state s is equivalent to

(s, true) ∈ C, and
x→
o

is equivalent to
(x,true)→

o
.

Start/1

Start/1

Start/1Start/1
Pause/1

Save[S]/1

Start/1

Pause/1
Save[S]/1

Save[S]/1

Pause/1

Pause[W]/1

Exit/1

Start/1

Start/1

Exit/0
Start/0

Save[B]/0

Pause/0

Save[N]/1

Exit/1

Start/0

Exit/0
Pause[!W]/1
Pause[W]/0

Save/0
Exit[!S]/0

Start/0
Save[S]/0

Exit[W&&!S]/1
Exit[!W||S]/0

Start/1

Exit[S]/1

Pause[!W]/0

Start/1
SaveGame[S]PauseGame

Pong[N]

Bowling[W]

Brickles[B]

Star tGame

Figure 3: FFSM for the AGM SPL.

6

Save[(B||N)&&S]/1

Exit[B]/0

Start/1

Save[W&&S]/1

Pause/1

Pause[W]/1

Exit[N]/1

Save[B]/0

Pause/0

Save[N]/1

Exit/1

Exit/0
Pause[!W]/1
Pause[W]/0

Save/0

Exit[W&&!S]/0

Start/0
Save[S]/0

Exit[W&&!S]/1
Exit[!W||S]/0

Start/1

Exit[W&&S]/1

Pause[!W]/0

Start/1
SaveGame[S]PauseGameBrickles*Pong*Bowling

[B| |N| |W]Star tGame

Figure 4: Alternative FFSM for the AGM SPL.

Example 3. Figure 3 shows the FFSM for the AGM SPL. Transitions have
abstract input and output events. For inputs, their names are self-explanatory
and for outputs, 0 denoted “nothing” and 1 denotes “beep”. Feature con-
straints are put in brackets for conditional states and transitions. Feature
constraints in conditional states constraint the feature constraints of all their
incoming and outgoing conditional transitions. Both conditional transitions

StartGame
(Exit,(W&&!S))→

1
StartGame and Bowling(W)

(Exit,(!S))→
0

Bowling(W)

only exist in one product which have the W feature and do not have the S
feature. Figure 4 shows an alternative FFSM for AGM which represents a
mutually exclusive behavior combining Brickles, Pong, and Bowling in a single
conditional state. States with alternative feature constraints are merged into a
single state with a compound name (combining original names with “*”) and
with the disjunction of their corresponding constraints.

3.2. Model Derivation

To perform model derivation using an FFSM we use a specific feature con-
straint. To use a simplified feature constraint, we first need to define the
equivalence relation between feature constraints for a given feature model FM .

Definition 3.2. Given an FF = (FM,C, c0, Y,O,Γ), where FM = (F, χ), a
feature constraint ωa is a conditional prefix of ωb if: (i) there exists a valid
configuration that satisfies both feature constraints, i.e. ∃ρ∈Λ • ρ � (ωa ∧ ωb);
and (ii) the subset of configurations Λa ⊆ Λ that satisfy ωa is a subset of
configurations Λb ⊆ Λ that satisfy ωb, i.e., Λa ⊆ Λb. When Λa ⊆ Λb and
Λb ⊆ Λa we say that ωa and ωb are equivalent under FM .

Next, we define a model derivation operator, reminiscent of the operator in
[22, 23], that is parameterized by feature constraints. Given a feature constraint,
the product derivation operator reduces an FFSM into an FSM representing a
selection of products.

Definition 3.3. Given an FFSM FF = (FM,C, c0, Y,O,Γ), and a valid product
configuration ρ ∈ Λ (or equivalently, a feature constraint φ corresponding to a
product configuration) for a feature model FM (Definition 3.2), the product
derivation operator ∆ρ : induces an FSM ∆ρ(FF) = (S, s0, I, O, T), where:

1. S = {s|(s, ϕ) ∈ C ∧ ρ � (ϕ ∧ φ)} is the set of states;

7

2. s0 = s, c0 = (s, ϕ) ∈ C is the initial state;

3. T = {(s, x, o, s′)|(s, ϕ)
(x,ϕ′′)→
o

(s′, ϕ′) ∈ Γ ∧ ρ � (ϕ ∧ ϕ′ ∧ ϕ′′ ∧ φ)} is the set

of transitions.

By abusing the same notation, we also define how to reduce an FFSM into
another FFSM that specifies a set of products (i.e., a product sub-line).

Definition 3.4. Given a feature constraint φ ∈ B(F) and an FFSM FF =
(FM,C, c0, Y,O,Γ), if at least one product configuration ρ ∈ Λ satisfies φ, i.e.,
∃ρ∈Λ • ρ � φ, then the product derivation operator ∇φ : B(F) → FFSM
induces a reduced FFSM ∇φ(FF) = (FM ′, C ′, c0, Y

′, O,Γ′) comprising only
those components (i.e., conditional states and transitions) that satisfy φ.

3.3. Validation Properties

To adopt FFSMs as test models, we need to validate the product-line-based
specification with properties used for FSMs. These include the notions determin-
ism, initially-connectedness and minimality initially defined for FSMs. In [12],
we have lifted these notions to their featured counterparts, where the constraints
for each of these notions involve the feature constraints on the considered states
and transitions. Subsequently, in the following theorems, we showed and prove
theat the FFSM-based properties coincide with the corresponding properties for
all their valid FSM products.

Theorem 1. An FFSM FF is deterministic if and only if all derived product
FSMs ∆φ(FF) are deterministic.

Theorem 2. An FFSM is initially connected if and only if all derived product
FSMs ∆φ(FF) are initially connected.

Theorem 3. An FFSM is minimal if and only if all derived product FSMs
∆φ(FF) are minimal.

Further details (including formal definitions and proofs) on model validation
properties for the FFSM model can be found in [12]. Since the focus of the
present paper is on hierarchical models, we dispense with specifying these details
here.

4. Hierarchical Featured State Machine

Inspired by Harel’s Statecharts [13], several hierarchical state machine for-
malisms were defined to specify the behavioral aspects of reactive systems and
extended to object-oriented software development methodologies such as the
Unified Modeling Language (UML) [24]. The states represented in the hierar-
chical model can be simple states or contain an entire state machine. Systems
can be specified by a stepwise refinement and visualized in different levels of
granularity at the cost of complex syntax and semantics.

We introduced the Featured Finite State Machine (FFSM) formalism in [12]
to extend the Finite State Machine (FSM) formalism to the Software Product

8

Line (SPL) context. Due to scalability problems, e.g., the combinatorial explosion
while producing flat models of parallel behavior, large SPLs are hard to model
and maintain using the FFSM model.

In this paper, we present the Hierarchical Featured State Machine (HFSM)
formalism that extends the FFSM model by including hierarchy. The HFSM
model improves model readability by grouping up FFSM conditional states and
transitions into an abstracted view, which provides a better solution for modeling
SPL-based models, e.g., as test models in a model-based testing (MBT) approach.
(We refer to [25], where we lay the foundations of model-based testing using
FFSMs.) Furthermore, similar to FFSMs, an HFSM model can also be projected
into subsets of product configurations.

In our approach, we use the HFSM as a front-end for modeling and syntax
check, while the semantics of an HFSM is represented by an FFSM. The syntax
check verifies the well-formed state and transition structure. The semantic check
verifies properties such as determinism, initially connectedness, and minimality
at the SPL level. These properties are required for test-case generation methods
guaranteeing full fault coverage (see [26, 25]). However, one of the main issues
of lifting the FFSM formalism to HFSM is how to compose orthogonal regions
that we also explain in this paper.

Next, we present the detailed syntax and semantics of HFSMs (based on
[27]) followed by a support tool for syntax and semantic checks, and then a case
study.

4.1. Syntax

There are many variations of hierarchical FSMs, upon which we can base our
hierarchical extension of FFSM. Due to the popularity of UML and our prior
experience with the formal semantics and verification of UML state diagrams,
we based our definitions on those that form the basis of UML state diagrams
[24], namely [13] and [27]. An HFSM comprises states that may have a further
internal structure (hierarchy) and transitions among them. States and transitions
have feature constraints that must be satisfied according to a feature model. The
following definitions are based on the corresponding definitions in [13] and [27].

Definition 4.1. A Hierarchical Featured State Machine HFSM is represented
by a 5-tuple (FM,Υ, I, O, T), where:

1. FM = (F, χ) is a feature model (Definition 2.1),
2. Υ is a well-formed state structure,
3. I is a set of inputs events,
4. O is a set of outputs events,
5. T is a set of well-formed transitions.

A well-formed state structure (inspired by the same notion in [13]) is a tree
that represent a valid state hierarchy. The set of well-formed transitions contains
valid transitions that connect sets of states in the hierarchy. Input and output
sets represent the observable behavior of the machine. Not every state structure
or transition is valid, e.g., a simple state cannot have sub-states. Thus, some
criteria are required to represent well-formed state structures and transitions. We

9

present the formal definitions of well-formed states and transitions in subsections
4.1.1 and 4.1.2, respectively.

4.1.1. Well-formed state structure

In this section, we define the syntactic state structure of HFSMs, their
restrictions, and well-formedness conditions. First, we define the state structure
as follows.

Definition 4.2. A state structure Υ is defined by a 6-tuple
(S, root, default, sub, type, feature), where:

1. S is a finite set of states;

2. root ∈ S is the root state of the state structure;

3. default : S → {true, false}, is a total function determining whether a
state is default or not;

4. sub : S → P(S) is a total function defining for each state, the set of its
sub-states;

5. type : S → {simple, compOr, compAnd, region} is a total function deter-
mining for each state whether it is a simple (i.e., has no sub-states), a
compOr (i.e., is composite and has only one default sub-state), a compAnd
(i.e., is composite and has more than one default sub-state), or a region
state (i.e., is a sub-state of a composite state);

6. feature : S → B(F), is a total function determining the feature constraint
of a state.

A tree of conditional states represents the state structure. The root state
is the unique state that encapsulates all states in the state structure. The sub-
states of a state are their children in the tree structure. Composite states only
have regions as their sub-states; sub-states of a region may be of any type but
region (these constraints are to be enforced by our well-formedness conditions).
For simplicity, we do not treat history, deep-history, join/forks, and entry/exit
points connections in this paper. Albeit important, these concepts require a
more elaborate semantics and are deferred to future work.

Example 4. Figure 5 shows the HFSM for the AGM SPL [20]. Unlike Example
3, we have given more structure to the alternative states (i.e., Brickles, Pong,
and Bowling). We have put the alternative states in region states (in order to
model independent and potentially parallel behavior). However, due to feature
constraints applied to region states (i.e., B for R1, N for R2, and W for R3),
they are exclusive and will never be composed in parallel. Alternatively, we
could represent these alternative states by combining them as we did in Figure
4. However, we may have more than one state per alternative feature (i.e. 2
states with constraint B and 3 states with constraint N). Thus, as a design
guideline, one may note that such groups of alternative states are better grouped
by regions.

Regarding transitions, we can model transitions that start and finish in
the same state (self-loop transitions) inside the state. By modeling self-loop

10

AGM

M e n u
 Rules
Start/0

RegionA

Exit(N)/1

Exit[S&&W]/1

Save[W]/1

Save[(B||N)&&S]/1

Pause/1

Start/1

RegionM

Pause[W]/1

Save[B]/0
Save[N]/1

Exit/1

 SaveGame[S]
Save,Exit/0
Pause[W]/0
Pause[!W]/1

 PauseGame
Pause/0

 StartGame
Save[S]/0
Pause[!W]/0
Exit[!W||S]/0
Exit[W&&!S]/1

R3[W]

R2[N]

Pong

 Bowling
Exit[!S]/0

 Brickles
Exit/0

R1[B]

Figure 5: HFSM for AGM.

transitions inside a state, we can combine those which have equivalent feature con-
straints, e.g., instead of modeling inside SaveGame[S] two self-loop transitions
Save/0 and Exit/0, we can model Save,Exit/0.

A default state is a state that is automatically activated once the super-state
(parent) is activated or it is the root itself. Default states are only activated when
the transition does not explicitly target a state within the region. For example,
the state StartGame is not activated after taking the transition from Rules
to SaveGame using the input Save, which activates Menu and RegionM . In
Figure 5, the default states, besides region states, are represented by default
connectors, i.e., a filled circle with an outgoing arrow pointing towards the
default state.

Example 5. Figure 6 shows the state structure of the HFSM presented in
Figure 5, where AGM is the root state, Rules is the compAnd state, all states
but PauseGame, SaveGame, and Rules are default states and the sub-states
of the RegionA state is sub(RegionA) = {Menu,Rules}.

The state structure is generic and allows for inconsistent (non-well-formed)
specifications, e.g., sub-states of a region state being region states themselves.
To define the concept of well-formed state structures, we need several auxiliary
functions, defined below. First, we define hierarchy using descendants and
ancestors. Descendants are recursively defined below to include the state itself,
its sub-states, its sub-sub-states and so forth.

11

Legend

 Not Default State

 Default State

 Simple State

 Region State

 CompOr State

 CompAnd State

N a m e

Name

 Simple States

M e n u

R 3 (W)R2(N)R1(B)RegionM

BowlingPongBricklesSaveGamePauseGame

AGM

Rules

Star tGame

RegionA

Figure 6: State structure for AGM HFSM.

Definition 4.3. Given a state s ∈ S, the set of descendants of s, denoted by
desc(s) is the smallest set satisfying the following two properties.

1. s ∈ desc(s); and
2. ∀a∈S • a ∈ desc(s) =⇒ ∀b∈sub(a) • b ∈ desc(s).

For a set of states S′ ⊆ S, we define the notion of descendant by Desc(S′) =⋃
s′∈S′

desc(s′). Super-states and ancestors are the inverses of sub-states and

descendants, respectively, and are defined as follows.

Definition 4.4. Given a state s ∈ S, a super-state (parent) of s is defined by a
function super : S → S where ∀s,s′∈S • s ∈ sub(s′) ⇐⇒ s′ = super(s). More-
over, ancestors of s are denoted by anc(s) and satisfy the following condition.

∀s,s′∈S • s ∈ anc(s′) ⇐⇒ s′ ∈ desc(s)

For a set of states S′ ⊆ S, we define the notion of ancestor by Anc(S′) =⋂
s′∈S′

anc(s′).

Example 6. Following Figure 6 some descendants and ancestors in the state
structure of the HFSM are:

• desc(Menu) = {Menu,RegionM,StartGame, PauseGame, SaveGame};

• anc(PauseGame) = {PauseGame,RegionM,Menu,RegionA,AGM};

• Desc({RegionM,R1}) = {RegionM,R1, StartGame, PauseGame,
SaveGame,Brickles}; and

• Anc({PauseGame,Brickles}) = {RegionA,AGM}.

In the FFSM representation, the constraints of a conditional state further
restrict the feature constraints of its incoming and outgoing transitions. In other
words, transitions “inherit” the feature constraints of their source and target
states. The feature constraint of a transition is composed and checked using
the constraints of the involved states and the constraint of the transition itself.

12

Similarly, in the HFSM representation, the feature constraint of a state also
applies to its descendants. Thus, we define below the composition of constraints
that are used for checking states in the hierarchy.

Definition 4.5. Given a set of states S′ ⊆ S, the state feature composition,
denoted by fcomp : P(S′)→ B(F) is the conjunction of feature constraints of
S′:

fcomp(S′) =
∧
s∈S′

feature(s)

To check the feature constraint of an HFSM state s ∈ S, we compose the fea-
ture constraints of all ancestors of s (i.e., set anc(s)), denoted by fcomp(anc(s)).

Finally, we define the concept of well-formedness of state structures extended
with feature constraints (inspired by the corresponding restrictions in [13] and
[27]).

Definition 4.6. The state structure Υ = (S, root, default, sub, type, feature)
is well-formed, when:

1. Simple-states have no sub-states.

∀s∈S • type(s) = simple =⇒ sub(s) = ∅

This is a basic assumption as simple states should not have any further
structure inside them.

2. All nodes, besides root, have a unique super-state.

∀s∈S\{root} • ∃!s′∈S • s′ = super(s)

This is to make sure that the chain of ancestors reaches an end in the
root and also to make sure that every internal behavior is encapsulated by
regions states.

3. The descendant relation is asymmetric.

∀s∈S • s /∈ sub(s) ∧ ∀s′∈S • s ∈ desc(s′)\{s′} =⇒ s′ /∈ desc(s)\{s}

This constraint disallows loops in the chain of ancestors and descendants.

4. The single sub-state of a compOr state is a region state.

∀s∈S • type(s) = compOr =⇒ ∃!s′∈S • s′ ∈ sub(s) ∧ type(s′) = region

This constraint will be used to enforce that upon entering a compOr state,
we enter the single region sub-state that represent its inner machine.

5. All sub-states of compAnd states are region states.

∀s∈S • type(s) = compAnd =⇒ |sub(s)| > 1 ∧
∀s′∈sub(s) • type(s′) = region

13

By definition, a compAnd state has more than one region sub-state. Upon
entering a compAnd state, we enter in all region sub-states to support
parallelism.

6. Region states are default states, their sub-states must not be region states,
and only one of their sub-states is default.

∀s∈S • type(s) = region =⇒ default(s) ∧ ∀s′∈sub(s) • type(s′) 6= region ∧
∃!s′′∈sub(s) • default(s′′)

Upon entering a composite state, we automatically enter a region state
that contains an inner machine. Region states are special states used
to represent inner machines, and only composite states can have region
states as sub-states. One sub-state of the region state must be default to
represent the “initial state” of this region.

7. Root is of type compOr and all states are descendants of the root.

∃!s∈S • s = root ∧ type(s) = compOr ∧ ∀s′∈S • s′ ∈ desc(s)

The root state is the common ancestor state of all states in the state
structure.

8. The feature constraint of every state is satisfied by at least one product
(Definition 4.5).

∀s∈S • ∃ρ∈Λ • ρ � fcomp(anc(s))

A state has a valid feature constraint based on its ancestors. A simple state
inherits all feature constraints of anc(s). Thinking about an executable
machine, once we activate a state (e.g., via transition), we activate all the
ancestors as well. Thus, the hierarchy must not contain branches that are
not satisfied by any product configuration.

4.1.2. Well-formed transitions

A transition connects states using input events that trigger output events
when its constraints are satisfied. The syntax of a transition connects a pair
of states of the well-formed state structure. (In principle, transitions in a
hierarchical model can connect multiple states, i.e., have more than one source
state and one target state. We initially experimented with such models, but their
formal treatment here will substantially clutter the presentation and add very
little insight. Hence, we do not formally allow for such complex transitions in this
paper.) Next, we formalize the definition of transitions and their well-formedness
criteria.

Definition 4.7. A transition t in an HFSM is defined by a 5-tuple (a, i, ω, o, b),
where:

1. a ∈ S is the source state;
2. i ∈ I is the input event;
3. ω ∈ B(F) is the feature constraint of the transition;
4. o ∈ O is the output event;
5. b ∈ S is the target state.

14

A transition t = (a, i, ω, o, b) is denoted by a
(i,ω)→
o

b. The source state is

where the transition begins, while the target state is where it ends. The input
and output events are the observable behavior of the transition. The feature
constraint ω is a specific condition of the transition. When we omit the feature
constraint, ω = true. The feature constraints of the source and target states
restrict the entire feature constraint of a transition. Thus, we compose the
feature constraints of all elements of the transition as follows.

Definition 4.8. Given a transition t = (a, i, ω, o, b), the transition feature
composition, denoted by tcomp : T → B(F) is the conjunction of feature
constraints of elements of t:

tcomp(t) = fcomp(anc(a)) ∧ ω ∧ fcomp(anc(b))

A transition exists in a product configuration only if it satisfies its transition
feature composition. The definition of transition is generic and allows for
inconsistent specifications, e.g., transitions whose target state is a region state.
As mentioned before, region states are default states that can represent an entire
machine. The basic metamodels (e.g., of statecharts or UML) does not allow for
transitions to connect region states.

To validate a transition, we define several auxiliary functions, and finally,
define the notion of a well-formed transition. Thus, we define the subset of states
that can be used as source and target in a transition.

Definition 4.9. Given the set S of states, the set R ⊂ S is the set of all
transition-relevant states, when they are neither region states nor the root state:

∀s∈S • type(s) 6= region ∧ s 6= root =⇒ s ∈ R

To define orthogonality between two states, i.e., when they can both be
entered after a transition, we use the following notion of least common ancestor.

Definition 4.10. Given a subset of states S′ ⊆ S, their least common ancestor,
denoted by lca(S′), is the bottommost ancestor which contains all states of S′.

∃!a∈Anc(S′) • ∀b∈ ⋂
s′∈S′

anc(s′) • b ∈ anc(a)⇔ lca(S′) = a

Example 7. Consider the HFSM depicted in Figure 5; the set of transition
relevant states and the least common ancestor of PauseGame and Brickles states
are:

• R = {Menu,Rules, StartGame, PauseGame,Brickles, Pong,Bowling};

• lca({PauseGame,Brickles}) = RegionA.

Orthogonal states can be active at the same time. Transitions with source
states that are orthogonal synchronize on common inputs and activate their
target states simultaneously.

15

Definition 4.11. Two states s, s′ ∈ S are orthogonal to each other when their
least common ancestor (Definition 4.10) is a compAnd state.

Finally, we define the concept of well-formedness of transitions extended with
feature constraints (inspired by the corresponding definition in [13]).

Definition 4.12. A transition t = (a, i, ω, o, b) is well-formed when the following
conditions hold.

1. The source and target states are transition-relevant states (Definition 4.9).

a, b ∈ R

This is a basic assumption as no transition should use regions or root as
their source or target states.

2. The source and target states are not orthogonal to each other (Definition
4.11).

type(lca({a, b})) 6= compAnd

There should not be any transition involving parallel regions. Communica-
tion mechanisms trigger transitions in parallel regions.

3. The transition t has to be satisfied by at least one product (Definition 4.8).

∃ρ∈Λ • ρ � tcomp(t)

Every transition must exist in at least one product configuration.

4.2. Semantics

The semantics of HFSMs is represented by FFSMs. We transform an HFSM
with a valid syntax into an FFSM to represent its semantic. We use an algorithm
for model transformation that composes parallel regions in order to create a
transformed set of state configurations (TSC), i.e., the flattened representation
of states that are simultaneously active.

Conditional states of the semantic FFSM are obtained from TSC, which
is derived after composing all compAnd states. Then, conditional transitions
are derived by processing the exit and enter sets, i.e., the set of states left and
entered due to a transition. Next, we present the required definitions for our
semantics.

4.2.1. State configurations

To transform an HFSM into an FFSM, valid conditional states and transitions
are required. The set of conditional states of the FFSM is defined using the
HFSM well-formed state structure.

Definition 4.13. Given an HFSM H = (FM,Υ, I, O, T) with valid syntax, a
state configuration (or just configuration) SC ⊂ S is a maximal orthogonal set
of simple states. i.e., ∀s,s′∈SC • (type(s) = type(s′) = simple) ∧ (lca({s, s′}) =
compAnd).

16

The root state and at least one leaf of the state structure tree are always
active. The initial configuration is identified using all descendants of root that
are default.

Definition 4.14. Given a state s ∈ S, the set ddesc(s) ⊆ S of default descen-
dants of s is the set of states defined by the following condition:

∀s,s′∈S • ∀s′′∈(anc(s′)\anc(s)) • (s′ ∈ desc(s)) ∧ default(s′′) ⇐⇒ s′ ∈ ddesc(s)

Informally, if a state is a descendant of s and its ancestors up to s are all
default, then it is in ddesc(s).

The initial conditional state of a semantic FFSM is the composition of the
default simple states among the descendants of root (ddesc(root)). The state set
Init ⊂ S denotes the initial configuration of the semantic FFSM and is defined
by the following constraint: ∀s∈S • (s ∈ ddesc(root))∧ (type(s) = simple)⇔ s ∈
Init.

Example 8. The default descendants of the root state are ddesc(root) =
{AGM,RegionA,Menu,RegionM,StartGame}, where root = AGM . The
initial configuration of the state structure presented in Figure 6 is Init =
{StartGame}. If the state Rules were a default state instead of Menu, then
our initial configuration would have been Init = {Brickles, Pong,Bowling}. In
the next section, we show how our flattening process maps a configuration into
a single state, i.e., the initial state of the semantic FFSM becomes the flattened
state Brickles ∗ Pong ∗Bowling.

State configurations may include simple states of several orthogonal state
regions. To transform HFSM states into FFSM conditional states, we need
to identify every valid state configuration. Next, we define the composition of
orthogonal states that derives FFSM conditional states.

4.2.2. Composition of Orthogonal States

The composition of orthogonal states (state composition) is a mechanism
that allows a flat representation of the parallel execution of the HFSM. We
identify valid (reachable) state configurations by combining pairs of regions of
compAnd states. To transform a state configuration into an FFSM conditional
state, we merge all parallel states of the state configuration and put them in
the set of transformed state configurations TSC, i.e., {a, b, c} ∈ SC implies
{a ∗ b ∗ c} ∈ TSC.

To perform state composition, we use Algorithm 1. The algorithm recursively
computes the set of all flattened states, by starting from the root and performing
a depth-first traversal until it reaches a simple state as a leaf. Afterwards the
backtracking starts and all such visited states are added to the TSC; then, while
traversing parallel regions, all those regions whose constraints do not contradict
the hitherto accumulated constraints are composed to form a flattened state.

This functionality is achieved through 3 main functions: compose states,
pairwise merge, and compose.

17

At the highest level, in Line 29, function compose states is called with
the initial parameters root and the empty set. The first parameter of com-
pose states denotes the current state and the second parameter denotes the
set of visited (simple or flattened) states. We assume that the components of
the HFSM (such as its root and state structure) are stored in a global variable
and are accessible in all functions. Function compose states traverses the
state structure (by considering the sub-states of the current state) and calculates
a set of consistent (i.e., states that can co-exist in a product) through calling
pairwise merge.

In turn, pairwise merge, fetches the identified states in an arbitrary or-
der and calculates a flattened state by composing them one-by-one by calling
compose.

Finally, compose, combines the state names (by putting an asterisk between
each two of them) and the feature constraints (by taking their conjunction) and
combines the calculated state name and constraint into a conditional state.

On Line 1, we execute the recursive function compose states using the
root state and the empty set TSC as the initial input parameters. On Line
2, we check all substates of a state s, starting with root. On Line 3, we make
a recursive call using substates of s and TSC as input and resulting in the
updated TSC set. On Line 4, we check whether the substate is simple type.
On Line 5, we add the simple state into TSC. On Line 6, we check whether the
substate is compAnd type. On Line 7, we initialize the init conditional state
using the compAnd state and the disjunction of the feature constraints of all
regions involved. On Line 8, we use the power set of regions to decide whether a
subset of regions (called a segment) can be composed or not. On Line 9, we check
whether there is a product configuration that can have a specific combination
of regions. A feature constraint is created and verified using a conjunction of:
(i) the feature constraints of all region states in R; and (ii) the negation of the
feature constraints of all regions out of R (i.e., get full conj const). On Line 10,
we call the pairwise merge function to perform the composition process using
pairs of region states in R.

On Line 12, we execute the pairwise merge function using R, init and TSC
as input. On Line 13, we remove the first region from R and initialize comp. On
Line 14, we get every other region to compose with comp. On Line 15, we call
the compose function that merge regions comp and r. The resulting composition
is stored in comp to be composed with the next region of r. On Line 16, we
set init as the initial state of the resulting comp composed (flattened) region.
On Line 17, we remove from TSC all descendants of the regions of R. This is
required for the return of the recursion (upper compAnd states). On Line 18,
we update TSC with the resulting flat region comp.

On Line 20, we compose all states and transitions of a pair of regions. On
Line 23, 24, and 25, for each substate pair we create the conditional state using
their name, the combined feature constraint, and store in state. On Line 26, we
store the composed elements of the flat region, including their conditional states
state and conditional transitions. Every transition that leaves or reaches s1 and
s2 are combined for state.

18

Algorithm 1 Composition of orthogonal states.

1: function compose states(s, TSC)
2: for s′ ∈ sub(s) do
3: TSC = compose states(s′, TSC)
4: if type(s′) = simple then
5: TSC = TSC ∪ s′
6: if type(s′) = compAnd then
7: init = (s′, get disjunction constraint(sub(s′)))
8: for R ∈ powerset(sub(s′)) do
9: if sat(get full conj const(R, sub(s′))) then

10: TSC = pairwise merge(R, init, TSC)

11: return TSC
12: function pairwise merge(R, init, TSC)
13: comp = R.get(0); R.remove(0)
14: for r ∈ R do
15: comp = compose(comp, r)

16: link segment(comp, init)
17: TSC = TSC\{Desc(R)}
18: TSC = TSC ∪ comp.get simple states()
19: return TSC
20: function compose(comp, r)
21: for s1 ∈ sub(comp) do
22: for s2 ∈ sub(r) do
23: name = s1 +′′ ∗ ′′ + s2

24: feature = fcomp(anc(s1)) +′ && ′′ + fcomp(anc(s2))
25: state = create state(name,Z3 cond(feature))
26: comp = comp ∪merge transitions(state, s1, s2)

27: return comp

28: function main
29: return compose states(root, ∅);

Example 9. Figure 7 and Figure 8 show how the semantics of a compAnd state
vary in terms of the feature model.

Figure 7.(a) shows a part of an HFSM, which is a compAnd state comprising
three regions. In two of these regions, there are simple states with outgoing
transitions synchronizing on input a. We have three feature constraints for each
parallel region: F1 for R1; F2 for R2 and F3 for R3. Figure 7.(b) shows the
semantic FFSM using Feature Model A. We perform the composition in pairs of
regions, i.e, region R1 with R2, then the result with R3. The order of choosing
regions in the composition does not change the final behavior, but changes the
composed name of the configuration and how inconsistent pairs are removed
(how efficiently we prune the structure). Dashed states represent unreachable
state configurations that are not transformed to conditional states. Due to
synchronous transitions, our semantic FFSM has 4 out of 8 state configurations.

19

Legend
 Mandatory Feature
 Optional Feature
 Alternative Feature

F1

Feature Model A

F3F2

Root

Reachable ConfigurationUnreachable Configuration

a2*b2*c2
[F1&&F2&&F3]

a1*b2*c2
[F1&&F2&&F3]

a2*b1*c2
[F1&&F2&&F3]

a1*b1*c2
[F1&&F2&&F3]

a2*b2*c1
[F1&&F2&&F3]

a1*b2*c1
[F1&&F2&&F3]

Semantics

a2*b1*c1
[F1&&F2&&F3]

a1*b1*c1
[F1||F2||F3]

(b)

(a)

c1

c2

R3[F3]

b 1

b 2

R2[F2]

a2

a1

R1[F1]

CompAnd State Composition

a/0

a/0

a/1

a/0*1

a/0*1

c/0

c/1

c/0

c/1

a/1*0

a/1*0

c/1c/0a/0a/1a/1a/0

Figure 7: Semantic variation for composing a compAnd state (part 1).

In the HFSM, each region has a feature constraint that is logically equivalent to
true based on feature model A; hence, our composition boils down to a simple
flattening of the state structure.

Figure 8.(a) shows the semantic FFSM using Feature Model B. All pair of
states are composed; since all features are optional, different combinations of fea-
ture presence or absence create different behavior segments. These combinations
can lead to an exponential blow up in the number of valid state configurations
in the worst case, in the number of features. Note that state configurations
designated in gray are the same presented in Figure 7.(b). Note that there are
groups of state configurations with the same feature constraint which belong to
the same behavior segment. Thus, we have 7 (out of the total of 8) segments
that represent the behavior of valid products. All segments are connected to the
initial state configuration that uses as feature constraint the disjunction of all
three region feature constraints.

20

Legend
 Mandatory Feature
 Optional Feature
 Alternative Feature

Legend
 Mandatory Feature
 Optional Feature
 Alternative Feature

F1

Feature Model C

F3F2

Root

F1

Feature Model B

F3F2

Root

a1*b1*c1
[F1||F2||F3]

c2
[!F1&&!F2&&F3]

b 2
[!F1&&F2&&!F3]

a2
[F1&&!F2&&!F3]

b2*c2
[!F1&&F2&&F3]

a2*c2
[F1&&!F2&&F3]

a1*c2
[F1&&!F2&&F3]

b1*c2
[!F1&&F2&&F3]

a2*b2*c2
[F1&&F2&&F3]

a2*b2*c1
[F1&&F2&&F3]

a1*b1*c2
[F1&&F2&&F3]

b2*c1
[!F1&&F2&&F3]

a2*c1
[F1&&!F2&&F3]

a2*b2
[F1&&F2&&!F3]

c2
[!F1&&!F2&&F3]

b 2
[!F1&&F2&&!F3]

a2
[F1&&!F2&&!F3]

a1*b1*c1
[F1||F2||F3]

Semantics

Semantics
(b)

(a)

c/1
c/0

a/0
a/1

a/1
a/0

c/1c/0
a/0
a/1

a/0a/1

c/1c/0

c/0 c/1c/0 c/1

a/1

a/0

c/1

a/1*0

a/1*0

a/0*1

a/0*1

c/0

a/0

c/0
c/1

a/1

a/1*0
a/0*1

c/1
c/0

a/0
a/1

a/1
a/0

Figure 8: Semantic variation for composing a compAnd state (part 2).

21

Figure 8.(b) shows the semantic FFSM using Feature Model C. This scenario
is where we greatly reduce the number of state configurations. In this case, the
number of segments is the number of alternative features, i.e., 3 segments with
one state configuration designated in light gray.

After executing Algorithm 1, there is a post-processing involved. Namely,
we add the rest of state configurations that contain a single state into TSC,
i.e., ∀s∈S • (∀s′∈anc(s) • type(s′) 6= compAnd)∧ type(s) = simple =⇒ s ∈ TSC.
Finally, for each transformed state configuration TSC, we create an FFSM
conditional state.

Definition 4.15. Given a set of transformed state configurations (TSC) after
executing the state composition (Algorithm 1), the set of conditional states C of
an FFSM is defined by: ∀s∈TSC • (s, fcomp(anc(s))) ∈ C.

4.2.3. Creating conditional transitions

Semantically, transitions of the HFSM connect several states of the well-
formed state structure; in particular, all ancestors of states of a state configuration
are active.

Definition 4.16. Given a transition t = (a, i, ω, o, b) and a state configuration
SC, the set of active states AC is all ancestors of SC, i.e., ∀s∈SC • anc(s) ⊆ AC.

Some states are activated/deactivated once a transition is performed. To
identify those states we define the scope of a transition.

Definition 4.17. Given a transition t = (a, i, ω, o, b), the scope of t, denoted
by scope(t), is the lowest state in the state hierarchy that is a common ancestor
of source and target states, i.e., scope(t) = lca({a, b}) (Definition 4.10).

When a transition is performed, some states are deactivated while some are
activated. The set of states that are activated after executing the transition is
called enterSet.

Definition 4.18. Given a transition t = (a, i, ω, o, b), the enterSet of t is the
set of states comprising: all default descendants of b and all ancestors of b except
the ancestors of the scope, i.e, enterSet = {ddesc(b)∪ {anc(b) \ anc(scope(t))}}.

We do not include the ancestors of the scope of t because they are already
active. The set of states that are deactivated after executing a transition is
called exitSet, defined below.

Definition 4.19. Given a transition t = (a, i, ω, o, b) and a state configuration
SC, the exitSet of t is the set of states comprising all descendants of a that are
in SC and all ancestors of a except the ancestors of the scope, i.e., exitSet =
{{desc(a) ∩Anc(SC)} ∪ {anc(a) \ anc(scope(t))}}.

We do not include the ancestors of the scope of t because we do not want
to exit those states only to enter them again. Once the transition is taken, the
current state configuration may change. Simple states of the exitSet are removed
and simple states of the enterSet are included in the new state configuration.

22

Example 10. Given the transition t = (Menu, Start, true, 1, Rules) (Figure
5) and the current state configuration SC1 = {PauseGame}, the scope of t is
scope(t) = RegionA, the enterSet is {Rules,R1,R2,R3,Brickles,Pong,Bowling}
({Rules,R1*R2*R3,Brickles*Pong*Bowling} after orthogonal composition - sec-
tion 4.2.2) and the exitSet is {Menu,RegionM,PauseGame}. After per-
forming the transition, the new state configuration is SC2 = {Brickles ∗
Pong ∗ Bowling}. In Algorithm 1, the merge transition call combines
the transitions involving different region states. Thus, the transitions that
leave or reach Brickles, Pong, and Bowling are combined for the flat-
tened state Brickles ∗ Pong ∗ Bowling. The single resulting FFSM condi-
tional transition is created using the name of simple states and their fea-
ture constraints: ((PauseGame, fcomp(SC1)), Start, true, 1, (Brickles∗Pong ∗
Bowling, fcomp(SC2))).

For transition t2 = (Rules, Save,W, 1, SaveGame) and the current
state configuration SC2 = {Brickles ∗ Pong ∗ Bowling}, the scope of
t2 is RegionA, the enterSet is {Menu,RegionM,SaveGame} and the exit-
Set is {Rules,R1*R2*R3,Brickles*Pong*Bowling}. After taking the tran-
sition, the new state configuration is SC3 = {SaveGame}. The
single resulting FFSM conditional transition is: ((Brickles ∗ Pong ∗
Bowling, fcomp(SC2)), Save,W, 1, (SaveGame, fcomp(SC3))).

5. Tool Support

We implemented a tool4 (under Eclipse Public Licence) that has a graphical
editor based on the Eclipse platform. Our tool extends the Yakindu Project5

(publicly available under Eclipse Public Licence) and is integrated with Fea-
tureIDE [28] (publicly available under Lesser General Public Licence - LGPL),
and the Z3 SMT Solver [14] (publicly available under MIT license) for construct-
ing feature models and analyzing feature constraints, respectively. Our tool
supports modeling, validation, and derivation of HFSM models with the aid of a
semantic FFSM. Figure 9 shows how the HFSM of Figure 5 is modeled in our
tool.

Our tool parses HFSMs provided in a simple textual format and generates a
flattened version, after having analyzed the corresponding feature constraints
according to Algorithm 1. The resulting FFSM is stored for further analysis
(please see below) in a textual format with transitions of the following shape:
“source@z3condition −− input@z3condition/output − > target@z3condition”

Example 11. The FFSM generated from the HFSM of Figure 9 has 4 states
and 26 transitions, which is equivalent to the manually modeled FFSM of Figure
4. The source of the first transition is the root state. The first and the last
FFSM transitions are:
“StartGame@true −− Exit@(and W (not S))/ 1() − > StartGame@true”

4Publicly available from: https://github.com/vhfragal/ConFTGen-tool
5Open Source Yakindu Project https://github.com/Yakindu/statecharts

23

Figure 9: HFSM for AGM SPL on the implemented tool.

“Brickles*Pong*Bowling@(or B N W) −− Exit@(and S W)/ 1() − >
PauseGame@true”

5.1. HFSM Syntax Validation

Syntax validation is performed automatically by the implemented tool. To
validate the syntax of an HFSM, we first extract the feature constraint χ
of a feature model FM , and then generate assertions (corresponding to the
validation properties) in the Z3 format. We execute Z3 externally by passing on
the constraints in an SMT file. The generated SMT file has three parts: (i) type
definitions; (ii) assertion of the feature constraint of a given feature model; (iii)
assertions of the validation properties.

Example 12. To validate the syntax of the HFSM of Figure 9, we extract the
feature constraint χ of the feature diagram of Figure 2. Then, we prepare the
file header using type definitions and assert χ (in Z3 format):
(define-sort Feature () Bool)
(declare-const G Feature) (declare-const A Feature) (declare-const M Feature)
(declare-const L Feature) (declare-const C Feature) (declare-const R Feature)
(declare-const B Feature) (declare-const N Feature) (declare-const W Feature)
(declare-const V Feature) (declare-const Y Feature) (declare-const P Feature)
(declare-const S Feature)
(assert (and G (= A G) (= M A) (= L A) (= C G) (= R G) (= (or B N W) R)
(not (and B N)) (not (and B W)) (not (and N W)) (= V G) (= Y V) (= P V)
(=> S V)))

To validate assertions, we include several checks using assertion blocks.
In Z3, push and pop commands can temporarily set the context (e.g., with
assertions), and once a verification goal is discharged, the context can be reset.
The (check − sat) command evaluates all assertions present in the SMT file so
far, and returns sat or unsat. We can complete our SMT file to check one or

24

more feature constraints following the structure:
(push)(assert Z3 CONSTRAINT)(check-sat)(pop)

Assume that we need to check the consistency of two different transitions x
and y with the feature constraint of our FM, where the fcomp(x) = (B ∧N)
and fcomp(y) = (W ∨ ¬S), respectively. Inside a command block which begins
with push and ends with pop, we can write several assert commands. However,
our simple check only requires one assertion for each fcomp. Thus, we create
push-pop command blocks such as:
(push)(assert (and B N))(check-sat)(pop)
(push)(assert (or W (not S)))(check-sat)(pop)
These assertions result in unsat and sat, respectively6. The unsat result means
that there is no product configuration that satisfy (B∧N). The sat result means
that there is at least one product configuration that satisfies (W ∨ ¬S), in this
case ρ1, ρ3, ρ5, ρ6, which is a combination of subsets (due to ∨ operator), such
that ρ1, ρ3, ρ5 satisfy ¬S, and ρ5, ρ6 satisfy W (please see Example 2).

For complex validation properties such as minimality, we combine several
such checks into a single block.

5.1.1. Well-formed validation

To check the constraints of a well-formed state structure, most of the items
(1-7) from Definition 4.2 are covered by the Yakindu implementation based on
its metamodel. The metamodel ensures that those items are always valid by
construction. Hence, only validation of items 6 and 8 were added in our tool.
Regarding item 6, we check whether every region state has a substate that is
default. Thus, we do not allow empty regions. Regarding item 8, we check that
every state is satisfied by at least one product configuration.

Example 13. Figure 10 (left) shows a state region with an invalid feature
constraint which also invalidates all of its descendants (Brickles). The Brickles
state inherits the feature constraints of its ancestors, in this case, B&&N of R1
and true for Rules, RegionA, and AGM(root). All HFSM states are checked
using their feature constraint. The resulting fcomp(anc(R1)) is equivalent to
(and B N) in Z3 format, which is unsat (Example 12) according to our FM for
AGM.

6Z3 online tool https://rise4fun.com/z3

Figure 10: Invalid states (left) and transition (right) in HFSM for AGM SPL.

25

To check well-formed transitions, only item 1 of Definition 4.12 is covered by
the metamodel and it is valid by construction. Item 2 is checked by Yakindu
and we implemented item 3 in our extended tool.

Example 14. Figure 10 (right) shows an invalid transition due to its feature
constraint. The transition t = (PauseGame, Save, (B ∧ N), 0(), SaveGame)
has an invalid feature constraint that results unsat in our Z3 check.

5.2. Semantic Validation

Once we derive a semantic FFSM of our HFSM, validation properties (de-
terminism, initially-connectedness, and minimality) can be checked as briefly
introduced in Section 3.3 (we refer [12] to for full details). All these properties
are checked automatically after saving the HFSM model.

To check determinism, we check all conditional states and their transitions.
We select a conditional state c = (s, φ) and then select a conditional input i.
First, we identify the set of satisfiable product configurations for the selected
state, i.e., ∀ρ∈Λ • ρ � φ =⇒ ρ ∈ Λs. If c has more than one transition leaving
the state with the input i, i.e., t1 = (c, i, φ1, o, c

′) and t2 = (c, i, φ2, o
′, c′′), then

we pairwise check whether the resulting feature constraint of those transitions
(tcomp(t1) and tcomp(t2)) have an intersection of product configurations, i.e,
∃ρ∈Λ •ρ � tcomp(t1)∧ tcomp(t2). If they do, then our FFSM is not-deterministic.
In other words, a deterministic FFSM cannot have a product configuration
enabling two transitions leaving the same state with the same input.

Figure 11 shows an example of determinism error. The deterministic check
fails when we change the feature constraint W to (W ||N) of the transition from
StartGame to PauseGame; in that case, it will be in conflict with the self-loop
transition of StartGame with Pause input and ¬W feature constraint. The
conflict occurs due to the non-empty intersection of two product configurations
that have feature N . Thus, checking the feature model we see that both
transitions are valid for products configurations with feature N .

After checking determinism, we check initially connectedness and minimality,
respectively. To check minimality and initially connectedness, we use other
checks to establish whether there are reaching paths for each and every state
and distinguishing sequences for each and every pair of states, respectively.

Figure 12 shows an example of initially connectedness error. The initially
connectedness check fails when for some product, there is no path from the initial
state to some valid state. The conditional state (SaveGame, S) has the feature
constraint S which is satisfied by ρ2, ρ4 and ρ6. To reach this conditional state in

Figure 11: HFSM parts for AGM SPL with a deterministic error.

26

Figure 12: HFSM parts for AGM SPL with an initially connected error.

Figure 13: HFSM parts for AGM SPL with minimal error(bottom).

all products, we need three distinct paths (from B, N, and W). Once we remove
the conditional transition ((PauseGame, true), Save,N, 1(), (SaveGame, S)),
there is no path that reaches SaveGame and is satisfied by ρ4 anymore.

Figure 13 shows an example of minimality error. The minimality check fails
when we cannot distinguish all pairs of conditional states. Consider the con-
ditional states StartGame and PauseGame; both states have the true feature
constraint and hence, they must be distinguishable in all valid product configu-
rations. The Exit input can distinguish the aforementioned pair of conditional
states in configurations ρ1, ρ2, ρ3, ρ4, ρ6. There is no input, however, that can
distinguish this pair of conditional states in ρ5.

5.3. Model Derivation

Once the HFSM is modeled, we can use a configuration file to select product
configurations for AGM. Using the product configuration ρ5 that is equivalent
to W ∧ ¬S (Example 2) the tool can derive a pruned HFSM. Figure 14 shows
the reduced HFSM with only satisfiable elements. The semantic FFSM of the
reduced HFSM is:
“StartGame@true −− Start@true/ 1() − > Bowling@W”
“StartGame@true −− Exit@(and W (not S))/ 1() − > StartGame@true”
“StartGame@true −− Pause@W/ 1() − > PauseGame@true”
“PauseGame@true −− Start@true/ 1() − > Bowling@W”
“PauseGame@true −− Pause@true/ 1() − > PauseGame@true”
“PauseGame@true −− Exit@true/ 1() − > StartGame@true”
“Bowling@W −− Start@true/ 1() − > Bowling@W”
“Bowling@W −− Pause@true/ 1() − > PauseGame@true”
“Bowling@W −− Exit@(not S)/ 1() − > Bowling@W”

The semantic FFSM of the reduced HFSM can be derived into an FSM for
ρ5 by removing the feature constraints of its elements.

27

Figure 14: Derived HFSM for AGM SPL.

6. Body Comfort System Case Study

We illustrate and evaluate our approach in a prototypical implementation
using a case study from the automotive domain, a simplified Body Comfort
System (BCS) for the VW Golf SPL [15]. The FeatureIDE tool [28] was used to
elaborate Feature Models and their configurations. The original BCS system
has 19 non-mandatory features and can have 11616 configurations.

Figure 15 presents an adapted version of the feature model used to handle a
part of the features with 4 non-mandatory features and 6 possible configurations
for 4 components: Finger Protection FP (FP) blocking the window movement
when a finger is clamped in a window, Manual ManPW (ManPW) or alternatively
Automatic AutPW (AutPW), and Central Locking System CLS (CLS) with
optional Automatic Locking AL (AL) when the car is driving. In Example 3,
we show that states with alternative features can be composed for FFSMs.
The behavior of ManPW and AutPW components are similar and exclusive
and hence, we can combine them in a single region by adding product-specific
conditional transitions.

The behavior of components can be checked individually or in groups. In
groups, they can be composed of parallel regions using hierarchical models or
elaborated individually using flat models. Figure 16 presents the HFSM of four
selected components of BCS. The original behavioral model of each component
can be found in [15]. Inputs, outputs, and used features are presented on the
left-hand side of Figure 16.

Two alternative components were modeled in the PowerWindow region,
and product-specific transitions represent the behavior in each case. The only
non-mandatory region is CentralLockingSystem which means that for different
products, we have to compose either all three regions (first segment), and the
first two on the left (second segment). Region composition is explained in Figure
7 and Figure 8.

28

Figure 15: Adapted Feature Model of the Body Comfort System [15].

6.1. Results

The HFSM presented in Figure 16 was validated regarding both syntactic
and semantic properties. To check the basic syntax and derive the semantic
FFSM it took less than 2 seconds. The resulting semantic FFSM of BCS for
the selected four components has 17 conditional states and 171 conditional
transitions, and it took approximately 2 minutes to perform semantic checks for
all three validation properties. The running environment used Ubuntu 15.04 (64
bit) operating system on an Intel processor i7-5500U at 2.40GHz with 12GB
of RAM. Additional experimental results about the validation time of such
properties in FFSMs were presented in [12].

Once the HFSM was validated, we chose a product configuration to derive
and validate partial specifications. We pruned our HFSM for a subgroup of
product configurations. For example, in a feature model configuration file we
selected the Automatic Power Window component and left the Central Locking
System and Automatic Locking features unchecked, resulting 3 out of 6 possible
configurations. By using a feature constraint that ignores the uncheck features
we derived an HFSM for those 3 product configurations. Figure 17 shows
the resulting HFSM for 3 product configurations. We also derived another
specification for a single product configuration by excluding other features,
similar to the example presented in Section 5.3. It took 1 second to derive such
models.

29

Figure 16: HFSM of 4 components of BCS.

6.2. Discussion of the Results

Scalability is the main issue of our approach as for any hierarchical model.
The impact in terms of scalability concerns semantic validation that may increase
as we add more parallel states. The BCS is no different, as it has several parallel
regions containing 1 to 9 states. Composing all regions results in more than 50000
states which is a challenge for our semantic checks, i.e. the initially connected
which may require checking several paths to each state. Also, we show in Section
4.2.2 that composing parallel regions with features may increase the number of
semantic states. This is a threat to validity for the applicability for real-world
cases.

Feature models and HFSMs are straightforward to model and easy to under-
stand. The introduction of hierarchy in modeling, because it eases maintenance
(by modularizing the design) and leads to a compact representation of the SPL
behavior. However, large real-world specifications require a substantial amount
of time to validate. A common approach to alleviate the complexity of analysis
is to exploit compositionality, which seems a viable approach to consider further
on.

30

Figure 17: HFSM derived for 3 configurations with 3 components.

7. Related Work

Usually, an SPL can generate several similar products where only a few
features vary from one to another. A major challenge in SPL engineering is
verification of products using a simplified behavioral model that takes advantage
of the similarity among products. There are proposals [29, 30] that provide
a concise hierarchical formalism for representing SPL behavior in one model.
However, many recent attempts are focused on formal (static and dynamic)
verification, techniques model checking [30] or test generation for simple test
criteria such as boundary tests [29]; we refer to [31] for an overview. In this
paper, we lift the definition of an FFSM model to handle hierarchy with an
HFSM. Subsequently, we provide syntactic and semantic checks to pave the
way for using such hierarchical behavioral models as inputs for automatic test
generation methods.

Regarding configurable models for SPLs, most modeling concepts for vari-
ability can be classified into three main approaches: annotative, compositional
and transformational variability modeling [32]. Compositional approaches for
modeling variability capture variation by selecting specific component variants.
Compositional variability modeling [33] allows a modular description of vari-

31

ability but limits the impact of changes to the applied composition technique.
Transformational approaches represent variability by transformation of a base
architectural model. Model transformation rules guide the derivation of products
by performing additions, modifications or removals using variability. For example,
delta modeling [34] can represent variability in model transformation which a
core system is developed, and subsequent products are derived by executing
such transformations rules. Annotative approaches use variant annotations
(also called 150%-models), e.g., UML stereotypes in UML models to define
which model elements belong to specific product variants. In the orthogonal
variability model (OVM) [35], a separate variability representation with links to
the architecture model replaces direct annotations. Some approaches [36, 37]
propose a pruning-based approach to UML 150% test model for SPLs, separating
variability from the base models using mapping models.

Using an annotative 150% statechart, test model and transition coverage
criteria, Cichos et al.’s approach [29] presents SPL test design for complete test
model coverage with subsequent product subset selection for test suite execution.
Weissleder et al. [38] propose an approach for automatic test suite derivation
based on reusable UML state machine test models and OCL expressions. As in
Featured Transition Systems [30], model fragments are annotated with presence
conditions, i.e., Boolean expressions that define to which products a fragment
belongs.

There a number of attempts to extend formal models to the SPL level; ex-
amples of such work include approaches based on Labeled Transition Systems
[10, 39, 11] and feature-oriented approaches [22, 40]. Common to other formal
feature-oriented approaches [22, 40], our proposed approach for configurable HF-
SMs is based on a specification that uses features of an SPL as feature constraints.
However, the approach proposed in [22, 23] exploits non-deterministic models,
and semantic validation of models is not considered in their approach. We are
not aware of any prior study that uses formal models with hierarchy in the SPL
context to validate properties such as determinism, initially connectedness, and
minimality.

8. Conclusions

In this paper, we presented the Hierarchical Featured State Machine (HFSM)
formalism for representing behavioral test models in the Software Product Line
(SPL) context. The HFSM improves the modeling of SPL behavior compared to
their underlying flat model, i.e., Featured Finite State Machines (FFSMs), by
grouping states and transitions into hierarchies.

Inspired by statecharts and UML state diagrams, we defined the syntax
and semantics of HFSMs. In the syntactic part, we defined well-formed state
structures and transitions. In the semantical part, we used FFSMs as the semantic
model of HFSMs. State configurations were transformed into conditional states.
We also addressed the composition of orthogonal states, which can potentially
lead to a combinatorial explosion of states. We showed how using feature
constraints in regions can tame this combinatorial explosion in some cases.

32

We showed how basic validation properties (as prerequisites for most testing
techniques) can be checked on the semantical FFSM models. To mechanize the
validation of HFSMs, we implemented a tool by adapting the Yakindu project.
We added several checks regarding syntactic and semantical validation properties
and used the Z3 SMT solver to verify the generated feature constraints. The
tool performs all the checks automatically. Moreover, the tool provides model
derivation commands that are useful to create partial HFSM models for a single
or a group of product configurations.

Finally, we used the Body Comfort System as a case study. We noticed
that we could not analyze the whole specification due to the well-known state
explosion problem: the resulting flat FFSM would have more than 50000 states.
Thus, we selected some parts of the original specification. The results indicate
that our HFSM is able to represent the parallel SPL behavior of four components
each having a few states, the semantical FFSM models have up to 17 states and
171 transitions.

As future work, we plan to use HFSMs to extend our recent FFSM-based
test-case generation method [25]. We also plan to include history, deep-history,
join/forks, and entry/exit points connections in the HFSM model. Moreover,
we plan to explore the state explosion problem identified in the HFSM used in
the case study and use well-known reduction techniques and adapt them to the
context of model-based testing.

References

[1] J. Greenfield, K. Short, Software factories: Assembling applications with
patterns, models, frameworks and tools, in: Companion of the 18th Annual
ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, OOPSLA ’03, ACM, New York, NY, USA,
2003, pp. 16–27. doi:10.1145/949344.949348.

[2] K. Pohl, G. Böckle, F. van der Linden, Software Product Line Engineering:
Foundations, Principles and Techniques, Springer-Verlag New York, Inc.,
2005.

[3] S. Oster, A. Wubbeke, G. Engels, A. Schürr, A Survey of Model-Based
Software Product Lines Testing, in: Model-Based Testing for Embedded
Systems, CRC Press, 2012, pp. 338–381. doi:10.1145/2362536.2362545.

[4] E. Engström, P. Runeson, Test overlay in an emerging software product
line - An industrial case study, Information and Software Technology 55 (3)
(2013) 581–594. doi:10.1016/j.infsof.2012.04.009.

[5] G. J. Myers, C. Sandler, T. Badgett, T. M. Thomas, The Art of Software
Testing, 2nd Edition, Vol. 15, John Wiley & Son, 2004. doi:10.1002/stvr.322.

[6] A. Tevanlinna, J. Taina, R. Kauppinen, Product family test-
ing, ACM SIGSOFT Software Engineering Notes 29 (2) (2004) 12.
doi:10.1145/979743.979766.

33

[7] D. Lee, M. Yannakakis, Principles and Methods of Testing Finite State
Machines - A Survey, Proceedings of the IEEE 84 (8) (1996) 1090–1123.
doi:10.1109/JPROC.1996.533955.

[8] M. Broy, B. Jonsson, J. Katoen, M. Leucker, A. Pretschner, Model-Based
Testing of Reactive Systems: Advanced Lectures, Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2005.

[9] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick, J. Dick,
M. Gheorghe, M. Harman, K. Kapoor, P. Krause, Others, Using formal
specifications to support testing, ACM Computing Surveys (CSUR) 41 (2)
(2009) 9. doi:10.1145/1459352.1459354.

[10] M. Lochau, J. Kamischke, Parameterized Preorder Relations for Model-
Based Testing of Software Product Lines, in: Proceedings of the 5th In-
ternational Symposium on Leveraging Applications of Formal Methods,
Verification and Validation. Technologies for Mastering Change (ISoLA),
2012, pp. 223–237. doi:10.1007/978-3-642-34026-0 17.

[11] M. Varshosaz, H. Beohar, M. R. Mousavi, Delta-Oriented FSM-Based Test-
ing, in: Proceedings of the International Conference on Formal Engineering
Methods (ICFEM), Springer, 2015, pp. 366–381. doi:10.1007/978-3-319-
25423-4 24.

[12] V. H. Fragal, A. Simao, M. R. Mousavi, Validated Test Models for Software
Product Lines: Featured Finite State Machines, in: Proceedings of the
13th International Conference on Formal Aspects of Component Software
(FACS), Springer, 2016, pp. 210–227. doi:10.1007/978-3-319-57666-4 13.

[13] D. Harel, A. Naamad, The STATEMATE semantics of statecharts, ACM
Transactions on Software Engineering and Methodology (TOSEM) 5 (4)
(1996) 293–333. doi:10.1145/235321.235322.

[14] L. de Moura, N. Bjørner, Z3: An Efficient SMT Solver, in: Tools and
Algorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
2008, pp. 337–340. doi:10.1007/978-3-540-78800-3 24.

[15] S. Lity, R. Lachmann, M. Lochau, I. Schaefer, Delta-oriented Software
Product Line Test Models - The Body Comfort System Case Study, Tech.
rep., TU Braunschweig (2013).

[16] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson, Feature-
Oriented Domain Analysis (FODA) Feasibility Study, Tech. rep., Carnegie-
Mellon University Software Engineering Institute (Nov. 1990).

[17] P. Y. Schobbens, P. Heymans, J. C. Trigaux, Feature Diagrams: A Survey
and a Formal Semantics, in: Proceedings of the 14th IEEE International
Conference on Requirements Engineering (RE), IEEE, 2006, pp. 139–148.
doi:10.1109/RE.2006.23.

34

[18] S. Kang, J. Lee, M. Kim, W. Lee, Towards a Formal Framework for Product
Line Test Development, in: Proceedings of the 7th IEEE International
Conference on Computer and Information Technology (CIT), IEEE, 2007,
pp. 921–926. doi:10.1109/CIT.2007.40.

[19] F. Linden, K. Schmif, E. Rommes, Software Product Lines in Action,
Springer, 2007.

[20] SEI, A framework for software product line practice (2011).
URL http://www.sei.cmu.edu/productlines/tools/framework/

[21] D. Batory, Feature Models, Grammars, and Propositional Formulas, in:
Proceedings of the 9th international conference on Software Product Lines
(SPLC), 2005, pp. 7–20. doi:10.1007/11554844 3.

[22] H. Beohar, M. R. Mousavi, Input-output Conformance Testing Based
on Featured Transition Systems, in: Proceedings of the 29th An-
nual ACM Symposium on Applied Computing, 2014, pp. 1272–1278.
doi:10.1145/2554850.2554949.

[23] H. Beohar, M. R. Mousavi, Spinal Test Suites for Software Product Lines, in:
Model-Based Testing (MBT), Vol. 141, 2014, pp. 44–55. arXiv:1403.7260,
doi:10.4204/EPTCS.141.4.

[24] OMG, OMG Unified Modeling Language. Version 2.5, Tech. rep. (2015).

[25] V. H. Fragal, A. Simao, M. R. Mousavi, U. C. Turker, Extending hsi
test generation method for software product lines, The Computer Journal-
doi:10.1093/comjnl/bxy046.

[26] G. Luo, A. Petrenko, R. Petrenko, G. V. Bochmann, Selecting Test Se-
quences For Partially-Specified Nondeterministic Finite State Machines, in:
Proceedings of The International Federation for Information Processing
(IFIP), 1994, pp. 91–106. doi:10.1007/978-0-387-34883-4 6.

[27] E. Mikk, Y. Lakhnech, C. Petersohn, M. Siegel, On formal semantics of
statecharts as supported by statemate, in: Proceedings of the 2Nd BCS-
FACS Conference on Northern Formal Methods, Springer-Verlag, 1997, pp.
1–12.

[28] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, T. Leich, Fea-
tureIDE: An Extensible Framework for Feature-Oriented Software Develop-
ment, Science of Computer Programming 79 (2014) 70–85.

[29] H. Cichos, S. Oster, M. Lochau, A. Schürr, Model-Based Coverage-Driven
Test Suite Generation for Software Product Lines, in: Proceedings of the
14th international conference on Model driven engineering languages and
systems (MODELS), 2011, pp. 425–439. doi:10.1007/978-3-642-24485-8 31.

35

[30] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, J.-F. Raskin,
Featured Transition Systems: Foundations for Verifying Variability-Intensive
Systems and Their Application to LTL Model Checking, IEEE Transactions
on Software Engineering 39 (8) (2013) 1069–1089. doi:10.1109/TSE.2012.86.

[31] T. Thüm, S. Apel, C. Kästner, I. Schaefer, G. Saake, A Classification and
Survey of Analysis Strategies for Software Product Lines, ACM Computing
Surveys (CSUR) 47 (6) (2014) 1–45. doi:10.1145/2580950.

[32] I. Schaefer, R. Rabiser, D. Clarke, L. Bettini, D. Benavides, G. Botterweck,
A. Pathak, S. Trujillo, K. Villela, Software diversity: state of the art
and perspectives, International Journal on Software Tools for Technology
Transfer 14 (5) (2012) 477–495. doi:10.1007/s10009-012-0253-y.

[33] A. Haber, H. Rendel, B. Rumpe, I. Schaefer, F. van der Linden, Hierarchical
Variability Modeling for Software Architectures, in: Proceedings of the 15th
International Software Product Line Conference (SPLC), IEEE, Munich,
Germany, 22-26 August, 2011, pp. 150–159. doi:10.1109/SPLC.2011.28.

[34] D. Clarke, M. Helvensteijn, I. Schaefer, Abstract delta modeling, in: ACM
SIGPLAN Notices, Vol. 46, 2011, p. 13. doi:10.1145/1942788.1868298.

[35] K. Pohl, A. Metzger, Software product line testing, Communications of the
ACM 49 (12) (2006) 78–81. doi:10.1145/1183236.1183271.

[36] K. Czarnecki, M. Antkiewicz, Mapping Features to Models: A Template
Approach Based on Superimposed Variants, in: Proceedings of the 4th
international conference on Generative Programming and Component Engi-
neering (GPCE), 2005, pp. 422–437. doi:10.1007/11561347 28.

[37] H. Grönninger, H. Krahn, C. Pinkernell, B. Rumpe, Modeling Variants of
Automotive Systems using Views, in: Tagungsband Modellierungs-Workshop
MBEFF: Modellbasierte Entwicklung von eingebetteten Fahrzeugfunktionen,
TU Braunschweig, Berlin, Germany, 2008, pp. 1–14. arXiv:1409.6629.

[38] S. Weißleder, D. Sokenou, B.-H. Schlingloff, Reusing state machines for
automatic test generation in product lines, in: Model-Based Testing in
Practice (MoTiP), 2008, p. 10.

[39] M. Lochau, S. Lity, R. Lachmann, I. Schaefer, U. Goltz, Delta-oriented
model-based integration testing of large-scale systems, Journal of Systems
and Software 91 (2014) 63–84. doi:10.1016/j.jss.2013.11.1096.

[40] X. Devroey, G. Perrouin, M. Papadakis, A. Legay, P.-Y. Schobbens, P. Hey-
mans, Featured model-based mutation analysis, in: Proceedings of the 38th
International Conference on Software Engineering (ICSE), ACM, 2016, pp.
655–666. doi:10.1145/2884781.

36

