
Science of Computer Programming 77 (2012) 889–907

Contents lists available at SciVerse ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Rule formats for determinism and idempotence✩

Luca Aceto a,∗, Arnar Birgisson b, Anna Ingolfsdottir a, MohammadReza Mousavi c,
Michel A. Reniers c

a ICE-TCS, School of Computer Science, Reykjavik University, Menntavegur 1, IS-101 Reykjavik, Iceland
b Department of Computer Science and Engineering, Chalmers University of Technology, Sweden
c Department of Computer Science, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

a r t i c l e i n f o

Article history:
Received 30 September 2009
Received in revised form 12 March 2010
Accepted 15 April 2010
Available online 27 April 2010

Keywords:
Structural operational semantics
Rule formats
Determinism
Idempotence

a b s t r a c t

Determinism is a semantic property of (a fragment of) a language that specifies that
a program cannot evolve operationally in several different ways. Idempotence is a
property of binary composition operators requiring that the composition of two identical
specifications or programs will result in a piece of specification or program that is
equivalent to the original components. In this paper, we propose (related) meta-theorems
for guaranteeing the determinism and idempotence of binary operators. These meta-
theorems are formulated in terms of syntactic templates for operational semantics, called
rule formats. In order to obtain a powerful rule format for idempotence, we make use
of the determinism of certain transition relations in the definition of the format for
idempotence. We show the applicability of our formats by applying them to various
operational semantics from the literature.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Structural operational semantics (SOS) [25] is a popular method for assigning a rigorous meaning to specification
and programming languages. In this approach to semantics, the behaviour of (terms in) programming and specification
languages is clearly given in terms of states and transitions, where the collection of transitions is specified by means of
a collection of syntax-driven inference rules. Such a rule-based specification of the operational semantics of languages
has proven itself to be very flexible, and naturally lends itself to proofs of properties of languages using structural or rule
induction.

The meta-theory of SOS provides powerful tools for proving semantic properties for programming and specification
languages without investing too much time on the actual proofs; it offers syntactic templates for SOS rules, called rule
formats, which guarantee semantic properties once the SOS rules conform to the templates (see, e.g., the references [3,23]
for surveys on the meta-theory of SOS). There are various rule formats in the literature for many different semantic
properties, ranging from basic properties such as commutativity [21] and associativity [10] of operators, the existence of
unit elements [4] and congruence of behavioral equivalences (see, e.g., [15,30]) to more technical and involved ones such
as (semi-)stochasticity [18] and non-interference [26]. In this paper, we propose rule formats for two (related) properties,
namely determinism and idempotence.

✩ Thework of Aceto, Birgisson and Ingolfsdottir has been partially supported by the projects ‘‘The Equational Logic of Parallel Processes’’ (nr. 060013021),
‘‘NewDevelopments in Operational Semantics’’ (nr. 080039021) and ‘‘Meta-theory of Algebraic Process Theories’’ (nr. 100014021) of the Icelandic Research
Fund. Birgisson has been further supported by research-student grant nr. 080890008 of the Icelandic Research Fund.
∗ Corresponding author.

E-mail addresses: luca@ru.is, luca.aceto@gmail.com (L. Aceto).

0167-6423/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2010.04.002

http://dx.doi.org/10.1016/j.scico.2010.04.002
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:luca@ru.is
mailto:luca.aceto@gmail.com
http://dx.doi.org/10.1016/j.scico.2010.04.002

890 L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907

Determinism is a semantic property of (a fragment of) a language that specifies that a program cannot evolve
operationally in several different ways. It holds for sub-languages of many process calculi and programming languages, and
it is also a crucial property for many formalisms for the description of timed systems, where time transitions are required
to be deterministic because the passage of time should not resolve any choice.

Idempotence is a property of binary composition operators requiring that the composition of two identical specifications
or programswill result in a piece of specification or program that is equivalent to the original components. The idempotence
of a binary operator f is concisely expressed by the following algebraic equation.

f (x, x) = x.
Determinism and idempotence may seem unrelated at first sight. However, perhaps surprisingly, it turns out that, in order
to obtain a powerful rule format for idempotence, we need to have the determinism of certain transition relations in place.
Therefore, having a syntactic condition for determinism, apart from its intrinsic value, results in a powerful, yet syntactic
framework for idempotence.

To our knowledge, our rule format for idempotence has no precursor in the literature. As for determinism, in [13], a rule
format for bounded nondeterminism is presented but the case for determinism is not studied. Also, in [27] a rule format is
proposed to guarantee several time-related properties, including time determinism, in the settings of ordered SOS. In the
case of time determinism, the format considered in [27] corresponds to a subset of our rule format when translated to the
setting of ordinary SOS, by means of the recipe given in [20].

We made a survey of existing deterministic process calculi and of idempotent binary operators in the literature and we
have applied our formats to them. Our formats could cover all practical cases that we have discovered so far, which is an
indication of their expressiveness and relevance. However, in Section 4.4 of the paper, we present a generalized format for
idempotence that may have future applications. Even though we are not aware of applications of this more general format
in the current literature, we find it worthwhile to include it in this paper since one of the goals of research on the meta-
theory of SOS is to present rule formats that might be applicable not only to extant languages, but also to those that might
be developed in the future.

This paper is part of our ongoing line of research on capturing basic properties of composition operators in terms
of syntactic rule formats, exemplified by rule formats for commutativity [21], associativity [10], and left and right unit
elements [4].

This line of research can serve multiple purposes. Firstly, it can pave the way for a toolset that can mechanically prove
such properties without involving user interaction. Secondly, it provides us with an insight as to the semantic nature of
such properties and its link to the syntax of SOS deduction rules. In other words, our rule formats can serve as a guideline
for language designers who want to ensure, a priori, that the constructs under design enjoy certain basic properties.

The rest of this paper is organized as follows. In Section 2,we recall some basic definitions from themeta-theory of SOS. In
Section 3, we present our rule format for determinism and prove that it does guarantee determinism for certain transition
relations. Section 4 introduces a rule format for idempotence and proves it correct. In Sections 3 and 4, we also provide
several examples to motivate the constraints of our rule formats and to demonstrate their practical applications. Finally,
Section 5 concludes the paper and presents some directions for future research.

This article is an expanded version of the conference paper [1]. Apart from including the proofs of the technical results
that were announced without proof in the conference publication, the following scientific contributions are new in this
version of the paper:

• Theorem9, to the effect that determiningwhether a closed term in a finite transition system specification is deterministic
for a given label is undecidable, and its proof in the Appendix;

• Theorem20, to the effect that determiningwhether a finite transition system specification is in the syntactic determinism
format with respect to a set of labels L is decidable;

• Section 3.4, which offers rule formats for other forms of determinism not considered in [1];
• Example 49, which introduces a generalization of the format for idempotence presented in [1].

The presentation of the paper has also undergone some changes in reaction to the comments of the expert reviewers.

2. Preliminaries

In this section we present, for the sake of completeness, some standard definitions from themeta-theory of SOS that will
be used in the remainder of the paper.
Definition 1 (Signature and Terms). We let V represent a countably infinite set of variables and use x, x′, xi, y, y′, yi, . . . to
range over elements of V . A signatureΣ is a set of function symbols, each with a fixed arity. We call these symbols operators
and usually denote them by f , g, An operator with arity zero is called a constant. We define the set T(Σ) of terms over
Σ as the smallest set satisfying the following constraints.

• A variable x ∈ V is a term.
• If f ∈ Σ has arity n and t1, . . . , tn are terms, then f (t1, . . . , tn) is a term.

We use t, t ′, ti, . . . to range over terms. We write t1 ≡ t2 if t1 and t2 are syntactically equal. The function vars : T(Σ) → 2V

gives the set of variables appearing in a term. The set C(Σ) ⊆ T(Σ) is the set of closed terms, i.e., terms that contain no

L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907 891

variables. We use p, p′, pi, . . . to range over closed terms. A substitution σ is a function of type V → T(Σ). We extend
the domain of substitutions to terms homomorphically. If the range of a substitution lies in C(Σ), we say that it is a closed
substitution.

Definition 2 (Transition System Specifications). A transition system specification (TSS) is a triple (Σ, L,D), where
• Σ is a signature.
• L is a set of labels. If l ∈ L, and t, t ′ ∈ T(Σ)we say that t

l
→ t ′ is a positive formula and t l9 is a negative formula. A formula,

typically denoted by φ, ψ , φ′, φi, . . . is either a negative formula or a positive one. We often refer to a formula t
l

→ t ′ as
a transitionwith t being its source, l its label, and t ′ its target.

• D is a set of deduction rules, i.e., pairs of the form (Φ, φ), whereΦ is a set of formulae and φ is a positive formula. We call
the formulae contained inΦ the premises of the rule and φ the conclusion.

A TSS is finite ifΣ , L and D are all finite, and the set of premises in each deduction rule in D is finite.
We write vars(r) to denote the set of variables appearing in a deduction rule r . We say that a formula is closed if all of its

terms are closed. Substitutions are also extended to formulae, sets of formulae and rules in the natural way. If r is a rule and
σ is a (closed) substitution, then σ(r) is called a (closed) substitution instance of r .

A set of positive closed formulae is called a transition relation. For T a transition relation and l ∈ L, we write
l

→ for the
collection of l-labelled transitions in T ; that is,

l
→ = {p

a
→ p′

| a = l and p
a

→ p′
∈ T }.

A deduction rule (Φ, φ) is typically written as Φ

φ
. An axiom is a deduction rule without premises. In what follows, an

axiom will be usually written as
φ
or just φ. For a deduction rule r , we write conc(r) to denote its conclusion and prem(r)

to denote its premises. We call a deduction rule f -defining when the outermost function symbol appearing in the source of
its conclusion is f .

Themeaning of a TSS is defined by the following notion of least three-valued stablemodel. To define this notion, we need
two auxiliary definitions, namely provable transition rules and consistency, which are given below.

Definition 3 (Provable Transition Rules). A deduction rule is called a transition rule when it is of the form N
φ
with N a set of

negative formulae. A TSS T proves the closed transition rule N
φ
, denoted by T ⊢

N
φ
, when there is a well-founded upwardly

branching tree with formulae as nodes and of which

• the root is labelled by φ;
• if a node is labelled by ψ and the nodes directly above it form the set K then:

– ψ is a negative formula and ψ ∈ N , or
– ψ is a positive formula and K

ψ
is a closed substitution instance of a deduction rule in T .

Example 4. As a running example, we consider in this section the TSS with constant a, labels l1 and l2, and the deduction
rules given below.

a l29

a
l1
→ a

a l19

a
l2
→ a

.

Both the above rules are a-defining and are provable transition rules. Indeed, they are the only transition rules that are
provable in this TSS.

Definition 5 (Contradiction and Consistency). Formula t
l

→ t ′ is said to contradict t l9 , and vice versa. For two setsΦ andΨ
of formulae, Φ contradicts Ψ when there is a φ ∈ Φ that contradicts a ψ ∈ Ψ . Φ is consistent with Ψ , denoted by Φ � Ψ ,
whenΦ does not contradict Ψ .

It immediately follows from the above definition that contradiction and consistency are symmetric relations on (sets of)
formulae.We now have all the necessary ingredients to define the semantics of TSSs in terms of three-valued stable models.

Definition 6 (The Least Three-Valued Stable Model). A pair (C,U) of disjoint sets of positive closed transition formulae is
called a three-valued stable model for a TSS T when

• for each φ ∈ C , there is a set N of closed negative transition formulae such that T ⊢
N
φ
and C ∪ U � N , and

• for each φ ∈ U , there is a set N of closed negative transition formulae such that T ⊢
N
φ
and C � N .

C stands for Certainly and U for Unknown; the third value is determined by the formulae not in C ∪U . The least three-valued
stable model is a three-valued stable model that is the least with respect to the ordering on pairs of sets of formulae defined
as (C,U) ≤ (C ′,U ′) iff C ⊆ C ′ and U ′

⊆ U . When for the least three-valued stable model it holds that U = ∅, we say that
T is complete.

892 L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907

Example 7. The TSS in Example 4 has

• ({a
l1
→ a},∅),

• ({a
l2
→ a},∅) and

• (∅, {a
l1
→ a, a

l2
→ a})

as its three-valued stable models. Its least three-valued stable model is (∅, {a
l1
→ a, a

l2
→ a}). Therefore that TSS is not

complete.

Complete TSSs unequivocally define a transition relation, i.e., the C component of their least three-valued stable model.
Completeness is central to almost all meta-results in the SOS meta-theory and, as it turns out, it also plays an essential role
in our meta-results concerning determinism and idempotence. All practical instances of TSSs are complete and there are
sufficient syntactic conditions guaranteeing completeness; see, for example, [14].

3. Determinism

The agenda of this section is to define a rule format for determinism. We start with a general format for determinism
in Section 3.1; that format captures the ‘‘essence’’ of determinism as a semantic property. Although the general format
presented in Section 3.1 is natural and elegant, it lacks the practicality of a syntactic format. This is why, in Section 3.2, we
provide a syntactic variation on our general rule format that is sufficient to guarantee the determinism of certain transition
relations. In Section 3.3, we apply our rule formats to several examples from the literature. In Section 3.4, we present some
alternative definitions for determinism and show how our formats can easily be adapted to these definitions.

3.1. The general determinism format

For the sake of precision, we begin by defining the notion of determinism that is typically considered in the literature on
process calculi and related languages.

Definition 8 (Determinism). A transition relation T is called deterministic for label l when, if p
l

→ p′
∈ T and p

l
→ p′′

∈ T ,
then p′

≡ p′′.
Given a complete transition system specification T = (Σ, L,D), a term p ∈ C(Σ) is deterministic for label l if the

transition relation associated with T is deterministic for label lwhen restricted to the set of closed terms that are reachable
from p.

As with most semantic properties of languages, the determinism of a transition relation is undecidable.

Theorem 9. Given a finite transition system specification (Σ, L,D), a term p ∈ C(Σ) and a label l, the problem of determining
whether p ∈ C(Σ) is deterministic for label l is undecidable.

Proof. See the Appendix. �

In the light of undecidability results like the one above, it is interesting to isolate some conditions on the deduction rules
in a transition system specification that are sufficient to guarantee the determinism of certain transition relations.

Before defining a format for determinism, we need two auxiliary definitions. The first one is the definition of source-
dependent variables, which we borrow from [22] with minor additions.

Definition 10 (Source Dependency). For a deduction rule, we define the set of source-dependent variables as the smallest set
that contains

1. all variables appearing in the source of the conclusion, and
2. all variables that appear in the target of a premise where all variables in the source of that premise are source dependent.

For a source-dependent variable v, let R be the collection of transition relations appearing in a set of premises needed to
show source dependency through condition 2. We say that v is source dependent via the relations in R.

We define the source distance of a source-dependent variable as the least number of applications of item2 in Definition 10
needed to show its source dependency. A variable in the source of the conclusion is thus of source distance 0.

Note that, for a source-dependent variable, the set R is not necessarily unique. For example, in the rule

y
l1
→ y′ x

l2
→ z z

l3
→ y′

f (x, y)
l

→ y′

,

the variable y′ is source dependent via both the set {
l1
→ } and the set {

l2
→ ,

l3
→ }.

The second auxiliary definition needed for our determinism format is the definition of determinism-respecting
substitutions.

L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907 893

Definition 11 (Determinism-Respecting Substitutions). A pair (σ , σ ′) of substitutions is determinism respecting with respect
to a pair of sets of formulae (Φ,Φ ′) and a set of labels L when, for all two positive formulae s

l
→ s′ ∈ Φ and t

l
→ t ′ ∈ Φ ′

such that l ∈ L, it holds that σ(s) ≡ σ ′(t) only if σ(s′) ≡ σ ′(t ′).

Definition 12 (Determinism Format). A TSS T is in the determinism format with respect to a set of labels L when, for each
l ∈ L, the following conditions hold.

1. In each deduction rule Φ

t
l

→ t ′
, each variable v ∈ vars(t ′) is source dependent via a subset of {

l′
→ | l′ ∈ L}.

2. For each pair of distinct deduction rules Φ0

t0
l

→ t ′0
and Φ1

t1
l

→ t ′1
, and for each determinism-respecting pair of substitutions

(σ , σ ′)with respect to (Φ0,Φ1) and L such that σ(t0) ≡ σ ′(t1), it holds that either σ(t ′0) ≡ σ ′(t ′1) or σ(Φ0) contradicts
σ ′(Φ1).

As the proof of Theorem 14 to follow will make clear, the first condition in the definition above ensures that each rule in
a TSS in the determinism format, with some l ∈ L as the label of its conclusion, can be used to prove at most one outgoing
transition for each closed term. The second requirement guarantees that no pair of different rules can be used to prove two
distinct l-labelled transitions for any closed term.

Remark 13. Usually, the term ‘‘format’’ refers to a template for deduction rules that is defined using purely syntactic
conditions. The latter requirement in Definition 12 is not syntactic since it refers to a condition that needs to be checked
for each determinism-respecting pair of substitutions. However, rather than coining a new word for the requirements in
Definition 12, we decided to stretch the use of the term ‘‘format’’ and to refer to the notion defined there as ‘‘determinism
format’’.

Theorem 14. Consider a TSS with (C,U) as its least three-valued stable model and a subset L of its labels. If the TSS is in the
determinism format with respect to L, then C is deterministic for each l ∈ L.

Proof. Let T be a TSS with (C,U) as its least three-valued stable model. Instead of proving that C is deterministic for each
l ∈ L, we establish the following more general result. We prove that, for each l ∈ L, if p

l
→ p′

∈ C ∪ U and p
l

→ p′′
∈ C , then

p′
≡ p′′.
Since p

l
→ p′

∈ C∪U , there exists a provable transition rule such that T ⊢
N

p
l

→ p′
, for some setN of negative formulaewith

C � N . We show the claim by an induction on the proof structure for the transition rule N

p
l

→ p′
. Consider the last deduction

rule r and closed substitution σ used in the proof structure for N

p
l

→ p′
.

Since p
l

→ p′′
∈ C , there also exists a proof structure such that T ⊢

N ′

p
l

→ p′′
for some set N ′ of negative formulae with

C ∪ U � N ′. Again, consider the last deduction rule r ′ and closed substitution σ ′ used in the proof structure for T ⊢
N ′

p
l

→ p′′
.

We first consider the case when r and r ′ are the same rule, say Φ

t
l

→ t ′
. Obviously σ(t) ≡ σ ′(t), since both must be equal

to p. Since σ(t ′) and σ ′(t ′) are equal to p′ and p′′, respectively, we need to show that σ(t ′) ≡ σ ′(t ′).
For each variable v that is source dependent via a subset of {

l
→ | l ∈ L}, we proceed with another induction on the

source distance of v to prove that σ(v) ≡ σ ′(v). If we show this claim, then it follows that σ(t ′) ≡ σ ′(t ′) since all variables
in t ′ are source dependent by the first condition of our rule format.

We consider the two possible reasons for v being source dependent.

1. Assume that v appears in t . In this case, σ(v) ≡ σ ′(v) since σ(t) ≡ σ ′(t).

2. Assume that v appears in the target of some premise ti
li

→ t ′i ∈ Φ , where li ∈ L and all variables in ti are source dependent

via a subset of {
l

→ | l ∈ L}. Each variable w ∈ vars(ti) has a source distance smaller than that of v. Therefore, the
induction hypothesis (on the source distance of variables) applies and we have that σ(w) ≡ σ ′(w). This means that
σ(ti) ≡ σ ′(ti). This allows us to apply the induction hypothesis on the proof structure, since N

σ(ti
li
→ t ′i)

has a proof structure

that is smaller than the one for N

p
l

→ p′
, to conclude that σ(t ′i) ≡ σ ′(t ′i). Since v appears in t ′i , it follows that σ(v) ≡ σ ′(v).

In either case, σ and σ ′ agree on the value of v. Since this holds for all variables of t ′, we reach the conclusion we seek,
namely that σ(t ′) ≡ σ ′(t ′).

We now consider the case where the rules r and r ′ are distinct. Let Φ and Φ ′ be the sets of premises of r and r ′,
respectively. We first show that (σ , σ ′) is determinism respecting with respect to (Φ,Φ ′) and L.

Assume, towards a contradiction, that our claim concerning determinism-respecting substitutions does not hold. Then,
for some l ∈ L, there exist two positive formulae si

l
→ s′i and ti

l
→ t ′i among the premises of r and r ′, respectively, such

that σ(si) ≡ σ ′(ti), but it does not hold that σ(s′i) ≡ σ ′(t ′i). Since si
l

→ s′i is a premise of r , the transition σ(si
l

→ s′i) is

894 L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907

contained in C ∪ U and has a smaller proof structure than the one justifying that p
l

→ p′
∈ C ∪ U . Following a similar

reasoning, σ ′(ti
l

→ t ′i) ∈ C . But the induction hypothesis (on the proof structure) applies, and hence we have σ(s′i) ≡ σ ′(t ′i),
which contradicts our earlier assumption that σ(s′i) ≡ σ ′(t ′i) does not hold. Hence, we conclude that (σ , σ ′) is determinism
respecting with respect to (Φ,Φ ′) and L.

Sincewehave shown that (σ , σ ′) is determinism respecting, it then follows from the second condition of the determinism

format that either σ(conc(r)) ≡ σ ′(conc(r ′)), which was to be shown, or there exist premises φi ≡ si
li

→ s′i in one deduction

rule and φ′

i ≡ ti
li9 in the other deduction rule such that σ(φi) contradicts σ ′(φ′

i). We show that the latter possibility leads
to a contradiction, thus completing the proof. Since σ(φi) contradicts σ ′(φ′

i), we have that σ(si) ≡ σ ′(ti). We distinguish
the following two cases based on the status of the positive and negative contradicting premises with respect to r and r ′.

1. Assume that the positive formula is a premise of r . Then, σ(si
li

→ s′i) ∈ C ∪ U , but, from C ∪ U � N ′ and σ ′(φ′

i) ∈ N ′, it

follows that, for no p′′, we have that σ(si) ≡ σ ′(ti)
li

→ p′′
∈ C ∪ U , thus reaching a contradiction.

2. Assume that the positive formula is a premise of r ′. Then σ ′(si
li

→ s′i) ∈ C , but, from C � N and σ(φ′

i) ∈ N , it follows that,

for no p1, we have that σ(ti) ≡ σ ′(si)
li

→ p1 ∈ C , again reaching a contradiction. �

For a TSS in the determinism format with (C,U) as its least three-valued stable model, U and thus C ∪ U need not be
deterministic. The following counter-example illustrates this phenomenon.

Example 15. Consider the TSS given by the following deduction rules.

a
l

→ a

a
l

→ b

a l9

a
l

→ a
.

The above-given TSS is in the determinism format since a
l

→ a and a l9 contradict each other (under any substitution). Its
least three-valued stable model is, however, (∅, {a

l
→ a, a

l
→ b}) and {a

l
→ a, a

l
→ b} is not deterministic.

Example 16. The conditions in Definition 12 are not necessary to ensure determinism. For example, consider the TSS with
constant a and rule

x
a

→ y
. The transition relation

a
→ is obviously deterministic, but the variable y is not source dependent

in the rule
x

a
→ y

. However, as the following two examples show, relaxing the conditions in Definition 12 may jeopardize the

determinism.
To see the need for condition 1, consider the TSS with constant 0 and unary function symbol f with rule

f (x)
a

→ y
. This TSS

satisfies condition 2 in Definition 12 vacuously, but the transition relation
a

→ it determines is not deterministic since, for
instance, f (0)

a
→ p holds for each closed term p. Note that the variable y is not source dependent in

f (x)
a

→ y
.

The need for condition 2 is exemplified by the classic non-deterministic choice operator, given by the following deduction
rules.

x0
a

→ x′

0

x0 + x1
a

→ x′

0

x1
a

→ x′

1

x0 + x1
a

→ x′

1

.

The rules for this operator satisfy condition 1, but not condition 2. The transition relations defined by those rules are non-
deterministic except for ‘‘trivial TSSs’’ including this operator.

Corollary 17. Consider a complete TSS with L as a subset of its labels. If the TSS is in the determinism format with respect to L,
then its defined transition relation is deterministic for each l ∈ L.

Condition 2 inDefinition 12may seemdifficult to verify, since it requires checks for all possible (determinism-respecting)
substitutions. However, in practical cases, to be quoted in the remainder of this paper, variable names are chosen in such a
way that condition 2 can be checked syntactically. For example, consider the following two deduction rules.

x
a

→ x′

f (x, y)
a

→ x′

y a9 x
b

→ x′

f (y, x)
a

→ x′

.

If in both deduction rules f (x, y) (or symmetrically f (y, x)) was used, it could have been easily seen from the syntax of the
rules that the premises of one deduction rule always (under all pairs of substitutions agreeing on the value of x) contradict the
premises of the other deduction rule and, hence, condition 2 is trivially satisfied. Based on this observation, we next present
a rule format whose conditions have a purely syntactic form and that is sufficiently powerful to handle all the examples we
discuss in Section 3.3. (Note that, for the examples in Section 3.3, checking the conditions of Definition 12 is not too hard
either.)

L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907 895

3.2. The syntactic determinism format

In order to derive a syntactic rule format for determinism, we limit the syntactic structure of the rules to the following,
very common, subset of normalized TSSs.

Definition 18 (Normalized TSSs). A TSS is normalized with respect to L if

1. each deduction rule is f -defining for some function symbol f ,
2. for each deduction rule of the form

(r)
Φr

f (s⃗)
l

→ s′
,

each variable v ∈ vars(s′) is source dependent in r via some subset of {
l′

→ | l′ ∈ L}, and
3. for each label l ∈ L, each function symbol f and each pair of deduction rules of the form

(r)
Φr

f (s⃗)
l

→ s′
(r ′)

Φr ′

f (t⃗)
l

→ t ′

the following conditions are satisfied:
(a) the sources of the conclusions coincide, i.e., f (s⃗) ≡ f (t⃗),
(b) for each variable v ∈ vars(r) ∩ vars(r ′) there is a set of formulae inΦr ∩Φr ′ proving its source dependency (both in

r and r ′) via some subset of {
l′

→ | l′ ∈ L}.

The second and third conditions in Definition 19 guarantee that the syntactic equivalence of relevant terms (the target of
the conclusion or the premises negating each other)will lead to syntactically equivalent closed terms under all determinism-
respecting pairs of substitutions.

The reader can check that all the examples quoted from the literature in Section 3.3 are indeed normalized TSSs.

Definition 19 (Syntactic Determinism Format). A normalized TSS is in the (syntactic) determinism format with respect to L
when, for each two deduction rules Φ0

f (s⃗)
l

→ s′
and Φ1

f (s⃗)
l

→ s′′
with l ∈ L, it holds that s′ ≡ s′′ orΦ0 contradictsΦ1.

Unlike the semantic condition of determinism, it is decidable whether a finite TSS is in the syntactic determinism format
with respect to a set of labels L.

Theorem 20. The problem of deciding whether a finite TSS is in the syntactic determinism format with respect to a set of labels
is decidable.

Proof. Assume that we are given a finite TSS T and a finite subset of its labels L. Observe that, given two finite sets of
transition formulae Φ0 and Φ1, it is decidable whether Φ0 contradicts Φ1. The condition in Definition 19 can therefore be
effectively checked because the set of deduction rules in T is finite, and the set of premises of each rule in T is also finite. The
conditions in Definition 18 can also be checked effectively because the number of rules is finite and so is the set of premises
of each rule in T . �

The following theorem states that, for normalized TSSs, Definition 19 implies Definition 12.

Theorem 21. Each normalized TSS in the syntactic determinism format with respect to L is also in the determinism format with
respect to L.

Proof. Let T be a normalized TSS in the syntactic determinism format with respect to L. Condition 1 of Definition 12 is
satisfied since T is normalized. (To see this, consider the first two conditions in Definition 18.)

To prove condition 2 of Definition 12, let r =
Φ0

t0
l

→ t ′0
and r ′

=
Φ1

t1
l

→ t ′1
be distinct rules of T and (σ , σ ′) be a determinism-

respecting pair of substitutions with respect to (Φ0,Φ1) and L such that σ(t0) ≡ σ ′(t1). Since T is normalized, both r and
r ′ are f -defining for some function symbol f , i.e., t0 = f (s⃗) and t1 = f (t⃗). Furthermore, since f (s⃗) ≡ f (t⃗), we have that σ
and σ ′ agree on all variables appearing in f (s⃗) ≡ f (t⃗).

In order to prove the theorem, it suffices to show only the following claim.
Claim: σ(v) ≡ σ ′(v) for each v ∈ vars(r) ∩ vars(r ′).

Indeed, using the above claim, we can prove the theorem as follows. Definition 19 yields that either t ′0 ≡ t ′1 or Φ0
contradictsΦ1. If t ′0 ≡ t ′1, then variables in vars(t ′0) = vars(t ′1) are all source dependent via transitions in L that are common
to both Φ0 and Φ1 (by condition 3 of Definition 18). By the above-mentioned claim, σ(t ′0) ≡ σ ′(t ′1) and condition 2 of
Definition 12 follows, which was to be shown. IfΦ0 contradictsΦ1, then assume that the premises negating each other are

φj ≡ sj
lj

→ s′j and φj′ ≡ tj′
lj9 and it holds that sj ≡ tj′ . All variables in tj′ ≡ sj are source dependent via transitions in L

896 L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907

(by condition 3 of Definition 18). It follows from the claim that σ(sj) ≡ σ ′(tj′) and thus σ(φj) contradicts σ ′(φj′), which
again implies condition 2 of Definition 12.

We now proceed to prove the claim. For each variable v ∈ vars(r) ∩ vars(r ′), we define its common source distance to be
the source distance of v when only taking the formulae inΦ0 ∩Φ1 into account. Note that such a common source distance
exists since, by condition 3 of Definition 18, all v ∈ vars(r) ∩ vars(r ′) are source dependent via a subset of {

l
→ | l ∈ L}

included in the collection of transition relations used inΦ0 ∩ Φ1.
We prove the claim by an induction on the common source distance of v ∈ vars(r) ∩ vars(r ′). If v ∈ vars(f (s⃗)),

then we know that σ(v) ≡ σ ′(v) (since t0 ≡ t1 and σ(t0) ≡ σ ′(t1)). Otherwise, since v is source dependent in r via
transitions with labels in L, there is a positive premise u

l
→ u′ in Φ0 with l ∈ L such that v ∈ vars(u′) and all variables

in u are source dependent with a shorter common source distance than that for v. Furthermore, since v appears in both
rules, i.e., v ∈ vars(r) ∩ vars(r ′), this premise also appears in Φ1 according to condition 3 of Definition 18, and thus
vars(u) ⊆ vars(r) ∩ vars(r ′). By the induction hypothesis, we have that σ(u) ≡ σ ′(u), and since (σ , σ ′) is determinism
respecting with respect to (Φ0,Φ1) and L, we know that σ(u′) ≡ σ ′(u′). Specifically, the substitutions must agree on the
value of v, i.e., σ(v) ≡ σ ′(v) as desired. �

The following statement is thus a corollary of Theorems 21 and 14.

Corollary 22. Consider a normalized TSS with (C,U) as its least three-valued stable model and a subset L of its labels. If the TSS
is in the (syntactic) determinism format with respect to L (according to Definition 19), then C is deterministic with respect to any
l ∈ L.

It is natural to ask oneself whether the syntactic determinism format can be easily generalized. The following examples
show that relaxing the restrictions of that format may jeopardize Theorem 21. (Examples showing the need for the first two
conditions in Definition 18 were already discussed in Example 16.)

In order to see that condition 3a in Definition 18 is necessary, consider a TSSwith constants a and b, and a binary function
symbol f with the following rules.

f (x0, x1)
a

→ x0 f (x0, y1)
a

→ y1
.

Each of these rules is f -defining and each variable occurring in them is source dependent via the empty set of transition
relations.Moreover, the condition inDefinition 19 is vacuouslymet since the sources of the twodeduction rules are different.
It is easy to see that f (a, b)

a
→ a and f (a, b)

a
→ b. Therefore the transition relation

a
→ is not deterministic.

In order to see that condition 3b in Definition 18 is necessary, consider a TSS with constants 0, a and a2, and a binary
function symbol f with the following rules.

a
a

→ 0 a2
a

→ a

x0
a

→ y

f (x0, x1)
a

→ y

x1
a

→ y

f (x0, x1)
a

→ y
.

This TSS meets all the conditions in Definitions 18 and 19, apart from condition 3b. It is easy to see that f (a, a2)
a

→ 0 and
f (a, a2)

a
→ a. Therefore the transition relation

a
→ is not deterministic.

The need for the condition in Definition 19 is exemplified by the classic non-deterministic choice operator discussed in
Example 43 to follow. The rules for this operator satisfy the conditions in Definition 18, but not the one in Definition 19.
As remarked upon already in Example 16, the transition relations defined by those rules are non-deterministic except for
‘‘trivial TSSs’’ including this operator.

Remark 23. The reader might wonder whether for each TSS there is a normalized one that defines the same transition
relation. This is false. As an example, consider the TSS with constants a and b, and a unary function symbol with rules

f (a)
a

→ a f (b)
a

→ a
.

One can convince oneself that any normalized TSS over this signature defining the transition relation {f (a)
a

→ a, f (b)
a

→ a}
would have to contain a rule of the form

N

f (x)
a

→ t
,

for some collection of negative formulaeN .Wemay assume,without loss of generality, that the above rule proves a transition
rule with conclusion f (a)

a
→ a. From this fact, it is not too hard to see that such a rule could also be instantiated to prove

either f (b)
a

→ b (if t is a variable) or f (f (a))
a

→ a (if t ≡ a), contradicting the assumption that the normalized TSS defines
the transition relation {f (a)

a
→ a, f (b)

a
→ a}.

L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907 897

Although the syntactic determinism format presented in Definition 19 is more straightforward to check than the format
presented in Definition 12, the format in Definition 12 is interesting for the following reasons:
1. it is indeed more general than the syntactic determinism format,
2. it demonstrates and justifies thewaywe arrived at the syntactic format, and hence is interesting for pedagogical reasons,

and
3. the correctness proof for the syntactic format relies conveniently on the one for the more semantic format from

Definition 12 (although a direct proof is certainly possible).

3.3. Examples

In this section, we present some examples of various TSSs from the literature and apply our (syntactic) determinism
format to them. Some of the examples we discuss below are based on TSSs with predicates. The extension of our formats
with predicates is straightforward and we discuss it briefly below.
Definition 24 (Predicates). Given a set P of predicate symbols, P t is a positive predicate formula and ¬P t is a negative
predicate formula, for each P ∈ P and t ∈ T(Σ). We call t the source of both predicate formulae and P their label. In
the extended setting, a (positive, negative) formula is either a (positive, negative) transition formula or (positive, negative)
predicate formula. The notions of deduction rule, TSS, provable transition rules, contradiction, consistency and three-valued
stable models are then naturally extended by adopting the more general notion of formulae. In particular, the formulae P t
and ¬P t contradict each other. The label of a deduction rule is either the label of the transition formula or of the predicate
formula in its conclusion.

Definitions 12 and 19 apply unchanged to a setting with predicates, as do Theorems 14 and 21.
Example 25 (Conjunctive Nondeterministic Processes). In their paper [16], Hennessy and Plotkin define a language, called
conjunctive nondeterministic processes, for studying logical characterizations of processes. The signature of the language
consists of a constant 0, a unary action prefixing operator ‘a._’ for each a ∈ A, and a binary conjunctive nondeterminism
operator ‘∨’. The operational semantics of this language is defined by the following deduction rules.

0 cana a.x cana

x cana

x ∨ y cana

y cana

x ∨ y cana

0 aftera 0 a.x aftera x a.x afterb 0
a ≠ b

x aftera x′ y aftera y′

x ∨ y aftera x′
∨ y′

.

The above TSS is in the (syntactic) determinism formatwith respect to A. Hence,we can conclude that the transition relations
aftera are deterministic.
Example 26 (Delayed Choice). The second example we discuss is a subset of the process algebra BPAδϵ + DC [5], i.e., Basic
Process Algebra with deadlock and empty process extended with delayed choice. First we restrict attention to the fragment
of this process algebra without non-deterministic choice ‘+’ and with action prefix ‘a._’ instead of general sequential
composition ‘·’. This altered process algebra has the following deduction rules, where a ranges over the set of actions A:

ϵ↓ a.x
a

→ x

x↓

x ∓ y↓

y↓

x ∓ y↓

x
a

→ x′ y
a

→ y′

x ∓ y
a

→ x′
∓ y′

x
a

→ x′ y a9

x ∓ y
a

→ x′

x a9 y
a

→ y′

x ∓ y
a

→ y′

.

In the above specification, predicate p↓ denotes the possibility of termination for process p. The intuition behind the delayed
choice operator, denoted by ‘_ ∓ _’, is that the choice between two components is only resolved when one performs an
action that the other cannot perform. When both components can perform an action, the delayed choice between them
remains unresolved and the two components synchronize on the common action. This transition system specification is in
the (syntactic) determinism format with respect to A.

The addition of non-deterministic choice ‘+’ or sequential composition ‘·’ results in deduction rules that do not satisfy
the determinism format. For example, the addition of sequential composition comes with the following deduction rules:

x
a

→ x′

x · y
a

→ x′
· y

x↓ y
a

→ y′

x · y
a

→ y′

.

898 L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907

The sets of premises of these rules do not contradict each other. The extended TSS is indeed non-deterministic since, for
example, (ϵ ∓ (a.ϵ)) · (a.ϵ)

a
→ ϵ and (ϵ ∓ (a.ϵ)) · (a.ϵ)

a
→ ϵ · (a.ϵ).

Example 27 (Time Transitions I). This example deals with the Algebra of Timed Processes, ATP, of Nicollin and Sifakis [24].
In the TSS given below, we specify the time transitions (denoted by label χ) of delayable deadlock ‘δ’, non-deterministic
choice ‘_ ⊕ _’, unit-delay operator ‘⌊_⌋_’ and parallel composition ‘_ ∥ _’.

δ
χ
→ δ

x
χ
→ x′ y

χ
→ y′

x ⊕ y
χ
→ x′

⊕ y′ ⌊x⌋(y)
χ
→ y

x
χ
→ x′ y

χ
→ y′

x ∥ y
χ
→ x′

∥ y′

.

These deduction rules all trivially satisfy the determinism format for time transitions since the sources of conclusions
of different deduction rules cannot be unified. Also the additional operators involving time, namely, the delay operator
‘⌊_⌋d_’, execution delay operator ‘⌈_⌉d_’ and unbounded start delay operator ‘⌊_⌋ω ’, satisfy the determinism format for time
transitions. The deduction rules are given below, for d ≥ 1:

⌊x⌋1(y)
χ
→ y

x
χ
→ x′

⌊x⌋d+1(y)
χ
→ ⌊x′

⌋
d(y)

x χ9

⌊x⌋d+1(y)
χ
→ ⌊x⌋d(y)

x
χ
→ x′

⌊x⌋ω
χ
→ ⌊x′

⌋
ω

x χ9

⌊x⌋ω
χ
→ ⌊x⌋ω

x
χ
→ x′

⌈x⌉1(y)
χ
→ y

x
χ
→ x′

⌈x⌉d+1(y)
χ
→ ⌈x′

⌉
d(y)

.

Example 28 (Time Transitions II). Most of the timed process algebras that originate from the Algebra of Communicating
Processes (ACP) from [8,7], such as those reported in [6], have a deterministic time transition relation as well.

In the TSS given below, the unary time unit delay operator is denoted by ‘σrel’, nondeterministic choice is denoted by ‘+’,
and sequential composition is denoted by ‘·’. The deduction rules for the time transition relation for this process algebra are
the following:

σrel(x)
1

→ x

x
1

→ x′ y
1

→ y′

x + y
1

→ x′
+ y′

x
1

→ x′ y 19

x + y
1

→ x′

x 19 y
1

→ y′

x + y
1

→ y′

x
1

→ x′ x ↓̸

x · y
1

→ x′
· y

x
1

→ x′ y 19

x · y
1

→ x′
· y

x
1

→ x′ x↓ y
1

→ y′

x · y
1

→ x′
· y + y′

x 19 x↓ y
1

→ y′

x · y
1

→ y′

.

Note that here we have an example of deduction rules, the first two deduction rules for time transitions of a sequential
composition, for which the premises do not contradict each other. Still these deduction rules satisfy the determinism
format since the targets of the conclusions are identical. In the syntactically richer framework of [29], where arbitrary first-
order logic formulae over transitions are allowed, those two deduction rules are presented by a single rule with premise
x

1
→ x′

∧ (x ↓̸ ∨ y 19).
Sometimes such timed process algebras have an operator for specifying an arbitrary delay, denoted by ‘σ ∗

rel’, with the
following deduction rules.

x 19

σ ∗

rel(x)
1

→ σ ∗

rel(x)

x
1

→ x′

σ ∗

rel(x)
1

→ x′
+ σ ∗

rel(x)
.

The premises of these rules contradict each other and so the TSS also satisfies the conditions of our (syntactic) determinism
format.

L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907 899

3.4. Other forms of determinism

Onemay also wish to consider stronger forms of determinism than the one considered so far in this section, which is the
standard one in the concurrency-theory literature and underlies results such as those presented in [12,28]. In what follows
we consider two variations on Definition 8 and showhow the rule formatwe presented in this section can be easilymodified
to guarantee them.

Definition 29 (Strong Determinism). A transition relation T is called strongly deterministic when, if p
l

→ p′
∈ T and p

l′
→ p′′

∈

T , then p′
≡ p′′.

So, in a strongly deterministic transition relation, all the outgoing transitions from a closed term have the same target.
One can easily modify the formats in Definitions 12 and 19 to guarantee strong determinism as follows. We first present a
modification of the format offered in Definition 12. In defining a format for strong determinism, the following variation on
Definition 11 will be useful.

Definition 30. A pair of substitutions (σ , σ ′) is strong-determinism respecting with respect to a pair of sets of formulae

(Φ,Φ ′)when, for all two positive formulae s
l

→ s′ ∈ Φ and t
l′

→ t ′ ∈ Φ ′, it holds that σ(s) ≡ σ ′(t) only if σ(s′) ≡ σ ′(t ′).

Definition 31 (Strong-Determinism Format). We say that a TSS is in the strong-determinism format if the following
conditions hold.
1. In each deduction rule Φ

t
l

→ t ′
, each variable v ∈ vars(t ′) is source dependent.

2. For each pair of distinct deduction rules Φ0

t0
l

→ t ′0
and Φ1

t1
l′
→ t ′1

and for each strong-determinism-respecting pair of

substitutions (σ , σ ′) with respect to (Φ0,Φ1) such that σ(t0) ≡ σ ′(t1), it holds that either σ(t ′0) ≡ σ ′(t ′1) or σ(Φ0)
contradicts σ ′(Φ1).

By essentially replaying the proof of Theorem 14, we can show the following result to the effect that the conditions in
the definition of the strong-determinism format are sufficient to guarantee strong determinism of the induced transition
relation.

Theorem 32. Consider a TSS with (C,U) as its least three-valued stable model. If the TSS is in the strong-determinism format,
then C is strongly deterministic.

Following the earlier developments in this section, we next present a rule format, whose conditions have a purely
syntactic form and are based on a variation on those in Definitions 18 and 19, that guarantees strong determinism of the
induced transition relation.

Definition 33 (Syntactic Strong-Determinism Format). We say that a TSS is strongly normalized when
1. each deduction rule is f -defining for some function symbol f ,
2. for each deduction rule of the form

(r)
Φr

f (s⃗)
l

→ s′
,

each variable v ∈ vars(s′) is source dependent in r , and
3. for each function symbol f and each pair of deduction rules of the form

(r)
Φr

f (s⃗)
l

→ s′
(r ′)

Φr ′

f (t⃗)
l′

→ t ′

the following conditions are satisfied:
(a) the sources of the conclusions coincide, i.e., f (s⃗) ≡ f (t⃗),
(b) for each variable v ∈ vars(r) ∩ vars(r ′) there is a set of formulae inΦr ∩Φr ′ proving its source dependency (both in

r and r ′).

A strongly normalized TSS is in the (syntactic) strong-determinism format when, for each two deduction rules Φ0

f (s⃗)
l

→ s′
and

Φ1

f (s⃗)
l′
→ s′′

, it holds that s′ ≡ s′′ orΦ0 contradictsΦ1.

By mimicking the proof of Theorem 21, we can now show the following analogue of that result, which implies, together
with Theorem 32, that the syntactic strong determinism format guarantees strong determinism of the induced transition
relation.

Theorem 34. Each TSS in the syntactic strong-determinism format is also in the strong-determinism format.

It follows immediately from Definition 29 that each strongly deterministic transition relation is also deterministic with
respect to the set of labels of a TSS. We now introduce a further strengthening of the notion of (strong) determinism.

900 L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907

Definition 35 (Functional Transition Relation). A transition relation T is called functional when, if p
l

→ p′
∈ T and p

l′
→ p′′

∈

T , then l = l′ and p′
≡ p′′.

In a functional transition relation each closed term affords atmost one transition. Below, we limit ourselves to presenting
a modification of the format offered in Definition 12 that guarantees that the induced transition relation is functional.

Definition 36 (Functional Determinism Format). A TSS T is in the functional determinism format if the following conditions
hold.

1. In each deduction rule Φ

t
l

→ t ′
, each variable v ∈ vars(t ′) is source dependent.

2. For each pair of distinct deduction rules Φ0

t0
l

→ t ′0
and Φ1

t1
l′
→ t ′1

and for each pair of substitutions (σ , σ ′) such that σ(t0) ≡

σ ′(t1), it holds that
(a) either l = l′ and σ(t ′0) ≡ σ ′(t ′1)
(b) or σ(Φ0) contradicts σ ′(Φ1).

The proof of Theorem 14 can be re-used to show the following result. Namely, the conditions in the definition of the
functional determinism format indeed guarantee that the induced transition relation is functional.

Theorem 37. Consider a TSS with (C,U) as its least three-valued stable model. If the TSS is in the functional determinism format,
then C is functional.

Wehave notmade any attempt tomaximize the level of generality of the above rule formats. Our aimwas rather to show
how to obtain rule formats for other forms of determinism onemight be interested in guaranteeing as variations of the ones
we considered in this section.

4. Idempotence

Our agenda in this section is to present a rule format that guarantees the idempotence of certain binary operators. In
the definition of our rule format, we rely implicitly on the work presented in the previous section. Indeed, as Definition 40
and the examples to follow will make clear, a widely applicable rule format for idempotence makes an essential use of the
determinism of certain transition relations.

4.1. Format

For the sake of clarity, we begin by defining formally the notion of idempotence for a binary operator.

Definition 38 (Idempotence). A binary operator f ∈ Σ is idempotent with respect to an equivalence ∼ on closed terms if and
only if, for each p ∈ C(Σ), it holds that f (p, p) ∼ p.

Idempotence is defined with respect to a notion of behavioral equivalence. There are various notions of behavioral
equivalence defined in the literature, which are, by and large, weaker than bisimilarity defined below. Thus, to be as general
as possible, we prove our idempotence result for all notions that include, i.e., are weaker than, bisimilarity.

Definition 39 (Bisimulation). Let T be a TSS with signature Σ . A relation R ⊆ C(Σ) × C(Σ) is a bisimulation relation if
and only if R is symmetric and for all p0, p1, p′

0 ∈ C(Σ) and l ∈ L

(p0 R p1 ∧ T ⊢ p0
l

→ p′

0) ⇒ ∃p′
1∈C(Σ)(T ⊢ p1

l
→ p′

1 ∧ p′

0 R p′

1).

Two terms p0, p1 ∈ C(Σ) are called bisimilar, denoted by p0 ↔ p1, when there exists a bisimulation relation R such that
p0Rp1.

It is well known that bisimilarity is indeed an equivalence. (See, for instance, [19] for a textbook proof of this fact.)
Bisimilarity can be extended to open terms by requiring that t0 ↔ t1 when σ(t0) ↔ σ(t1) for all closing substitutions
σ : V → C(Σ). In the remainder of this paper, we restrict our attention to the notions of equivalence on closed terms
that include strong bisimilarity. However, all our results carry over (without any change) to the notions on open terms that
include strong bisimilarity on open terms in the above sense. Indeed, if f (x, x)↔ x and ↔ is included in ∼, then f (x, x) ∼ x
also holds.

Definition 40 (The Idempotence Rule Format). Let γ : L × L → L be a partial function such that γ (l0, l1) ∈ {l0, l1} if it is
defined. We define the following two rule forms.

1l. Choice rules. A choice rule is a rule of the following form.

{xi
l

→ t} ∪ Φ

f (x0, x1)
l

→ t
, i ∈ {0, 1}

L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907 901

2l0,l1 . Communication rules. A communication rule is a rule of the following form, where γ (l0, l1) is defined.

{x0
l0
→ t0, x1

l1
→ t1} ∪ Φ

f (x0, x1)
γ (l0,l1)
→ f (t0, t1)

, t0 ≡ t1 or (l0 = l1 and
l0
→ is deterministic).

In each case,Φ can be an arbitrary, possibly empty, set of (positive or negative) formulae.
In addition, we define the starred version of each form, 1∗

l and 2∗

l0,l1
.

1∗

l . Choice rules.

{xi
l

→ x′

i}

f (x0, x1)
l

→ x′

i

, i ∈ {0, 1}

2∗

l0,l1
. Communication rules.

{x0
l0
→ x′

0, x1
l1
→ x′

1}

f (x0, x1)
γ (l0,l1)
→ f (x′

0, x
′

1)

, x′

0 ≡ x′

1 or (l0 = l1 and
l0
→ is deterministic).

As above, in a communication rule of the form 2∗

l0,l1
, we assume that γ (l0, l1) is defined.

A TSS is in idempotence format with respect to a binary operator f if each deduction rule is g-defining for some operator g ,
and each f -defining rule is of the forms 1l or 2l0,l1 , for some l, l0, l1 ∈ L, and for each label l ∈ L there exists at least one rule
of the forms 1∗

l or 2∗

l,l.
We should note that the starred versions of the forms are special cases of their unstarred counterparts; for example a

rule which has form 1∗

l also has form 1l.
Intuitively, the presence of rules of the form 1∗

l or 2∗

l,l for each label l guarantees that, for each closed term p, the term
f (p, p) can mimic the behaviour of p. Conversely, the constraint that each rule for f is of the forms 1l or 2l0,l1 , for some
l, l0, l1 ∈ L, ensures that transitions from f (p, p) can be simulated by transitions from p.
Theorem 41. Assume that a TSS is complete and is in the idempotence format with respect to a binary operator f . Then, f is
idempotent with respect to any equivalence ∼ such that ↔ ⊆ ∼.
Proof. First define the relation ≃f ⊆ C(Σ)× C(Σ) as follows.

≃f = {(p, p), (p, f (p, p)), (f (p, p), p) | p ∈ C(Σ)}.
To prove the theorem, it suffices to show that ≃f is a bisimulation relation. If it is, then f (p, p)↔ p for any closed term p
and, since ↔ ⊆∼, we obtain the theorem.

Let (C,U) be the least three-valued stable model for the TSS under consideration. First, consider a closed term p such
that p

l
→ p′

∈ C for some l and p′. (Note that U = ∅ since the TSS is complete.) Next, we argue that f (p, p)
l

→ p′′ for some
p′′ such that p′

≃f p′′. Since p
l

→ p′
∈ C , there exists a provable transition rule of the form N

p
l

→ p′
for some set of negative

formulae N such that C � N . (In particular, that means that p l9 /∈ N .) In this case we make use of the requirement that
there exists at least one rule of a starred form for label l. If there exists a rule of the form 1∗

l , i.e.,

xi
l

→ x′

f (x0, x1)
l

→ x′

, i ∈ {0, 1}

then we can instantiate it, using the transition p
l

→ p′ as premise, to prove that f (p, p)
l

→ p′
∈ C . In particular, it does not

matter whether i = 0 or i = 1. Since ≃f is reflexive, p′
≃f p′ holds. If there exists a rule of the form 2∗

l,l, we observe that
γ (l, l) = l, so the transition rule becomes

x0
l

→ x′

0 x1
l

→ x′

1

f (x0, x1)
l

→ f (x′

0, x
′

1)

,

where x′

0 ≡ x′

1 or
l

→ is deterministic. Now we can use the existence of p
l

→ p′ to satisfy both premises and obtain that

f (p, p)
l

→ f (p′, p′). By the definition of ≃f , we also have that p′
≃f f (p′, p′). In either case, if p

l
→ p′

∈ C , then there exists a

p′′ such that f (p, p)
l

→ p′′
∈ C and p′

≃f p′′.

Nowassume that f (p, p)
k

→ p′
∈ C . Then there exists a provable transition rule N

f (p,p)
k

→ p′
for some set of negative formulae

N such that C � N . Since each rule is g-defining for some g and all rules for f are either of the form 1l or 2l0,l1 , this provable
transition rule must be based on a rule of those forms. We analyze each possibility separately, showing that in each case
p

k
→ p′′ for some p′′ such that p′

≃f p′′.

902 L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907

If the rule is based on a rule of form 1l, its positive premises must also be provable. In particular, it must hold that
p

k
→ p′

∈ C , since both x0 and x1 in the rule are instantiated to p. The other premises are of no consequence to this conclusion
and, again, we observe that p′

≃f p′.
Now consider the casewhere the transition is a consequence of a rule of the form2l0,l1 . If t0 ≡ t1, say both are instantiated

to p′′, we must consider two cases, namely k = l0 and k = l1. If k = l0, then the first premise of the rule actually states that
p

k
→ p′′. If k = l1, then the second premise similarly states that p

k
→ p′′. In either case, we note that p′

≡ f (p′′, p′′)must hold
and, again by the definition of ≃f , we have that f (p′′, p′′) ≃f p′′.

If, however, t0 ≢ t1, the side condition requires that l0 = l1 = k, which also implies that γ (l0, l1) = l0 = k, and that

the transition relation
l0
→ is deterministic. In this case it is easy to see that the right-hand sides of the first two premises,

namely t0 and t1, evaluate to the same closed term in the proof structure, say p′′. The conclusion then states that k = l0 and
p′

≡ f (p′′, p′′). It must thus hold that p
k

→ p′′
∈ C and f (p′′, p′′) ≃f p′′, as before.

From this we obtain that if f (p, p)
k

→ p′
∈ C then there exists a p′′ such that p

k
→ p′′

∈ C and p′
≃f p′′. Thus, ≃f is a

bisimulation, as required. �

4.2. Relaxing the restrictions

In this sectionwe consider the constraints of the idempotence rule format and show that they cannot be droppedwithout
jeopardizing the meta-theorem. We remark at the outset, however, that the requirement that all deduction rules be g-
defining for some g is not strictly necessary in order to prove Theorem41. Its presence simplifies our technical developments
and does not reduce the applicability of our results. Indeed, all of the examples of use of our rule format for idempotence
we are aware of use only g-defining rules.

First of all we note that, in rule form 1l, it is necessary that the label of the premise matches the label of the conclusion. If
it does not, in general, we cannot prove that f (p, p) simulates p or vice versa. This requirement can be statedmore generally
for both rule forms in Definition 40; the label of the conclusion must be among the labels of the premises. The requirement
that γ (l, l′) ∈ {l, l′} exists to ensure this constraint for form 2l,l′ . A simple synchronization rule provides a counter-example
that shows why this restriction is needed. Consider the following TSS with constants 0, τ , a and ā and two binary operators
+ and ∥:

α
α

→ 0

x
α

→ x′

x + y
α

→ x′

y
α

→ y′

x + y
α

→ y′

x
a

→ x′ y
ā

→ y′

x ∥ y
τ

→ x′
∥ y′

where α is τ , a or ā. Here it is easy to see that, although (a+ ā) ∥ (a+ ā) has an outgoing τ -transition, a+ ā does not afford
such a transition.

The condition that for each l at least one rule of the forms 1∗

l or 2∗

l,l must exist comprises a few constraints on the rule
format. First of all, it says there must be at least one f -defining rule. If not, it is easy to see that there could exist a process p
where f (p, p) deadlocks (since there are no f -defining rules) but p does not. It also states that there must be at least one rule
in the starred form, where the targets are restricted to variables. To motivate these constraints, consider the following TSS.

a
a

→ 0

x
a

→ a

f (x, y)
a

→ a
.

The processes a and f (a, a) are not bisimilar as the former can perform an a-transition but the latter is stuck. The starred
forms also require that Φ is empty, i.e., there is no testing. This is necessary in the proof because, in the presence of extra
premises, we cannot in general instantiate such a rule to show that f (p, p) simulates p. Finally, the condition requires that,
if we rely on a rule of the form 2∗

l,l′ and t0 ≡/ t1, then the labels l and l′ in the premises of the rule must coincide. To see why,
consider a TSS containing a left synchronize operator ⌋⌋—that is, one that synchronizes a step from each operand but uses the
label of the left one. Here we let α ∈ {a, ā}.

α
α

→ 0

x
α

→ x′

x + y
α

→ x′

y
α

→ y′

x + y
α

→ y′

x
a

→ x′ y
ā

→ y′

x⌋⌋ y
a

→ x′
⌋⌋ y′

.

In this TSS the processes (a+ ā) and (a+ ā)⌋⌋ (a+ ā) are not bisimilar since the latter does not afford an ā-transitionwhereas
the former does.

For rules of form 2l,l′ , we require that either t0 ≡ t1, or that the mentioned labels are the same and the associated
transition relation is deterministic. This requirement is necessary in the proof to ensure that the target of the conclusion fits
our definition of ≃f , i.e., the operator is applied to two identical terms. Consider the following TSS where α ∈ {a, b}.

a
a

→ a a
a

→ b b
b

→ b

x
α

→ x′ y
α

→ y′

x | y
α

→ x′
| y′

.

L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907 903

For the operator |, this violates the condition t0 ≡ t1 (note that
a

→ is not deterministic). We observe that a | a
a

→ a | b.
The only possibility for a to simulate this a-transition is either with a

a
→ a or with a

a
→ b. However, neither a nor b can be

bisimilar to a |b, because both a and b have outgoing transitionswhile a |b is stuck. Therefore a and a |a cannot be bisimilar. If

t0 ≡/ t1, we must require that the labels match, l0 = l1, and that
l0
→ is deterministic. We require the labels to match because,

if they do not, then given only p
l

→ p′ it is, in general, impossible to prove that f (p, p) can simulate it using only a 2∗

l,l′ rule.
For example, consider the following TSS.

a
a

→ a

x
a

→ x′ y
b

→ y′

f (x, y)
a

→ f (x′, y′)

.

Then f (a, a) does not afford an a-labelled transition, unlike a. Therefore f is not idempotent.
The determinacy of the transition with label l0 = l1 is necessary when proving that transitions from f (p, p) can, in

general, be simulated by p; if we assume that f (p, p)
l

→ p′, then we must be able to conclude that p′ has the shape f (p′′, p′′)
for some p′′, in order to meet the bisimulation condition for ≃f . As another example of the use of determinism in rule 2∗

l,l′ ,
consider the standard choice operator+ and prefixing operator . of Milner’s Calculus of Communicating Systems (CCS) with
the | operator from the last example, with α ∈ {a, b, c}.

α
α

→ 0 α.x
α

→ x

x
α

→ x′

x + y
α

→ x′

y
α

→ y′

x + y
α

→ y′

x
α

→ x′ y
α

→ y′

x | y
α

→ x′
| y′

.

If we let p = a.b + a.c , then p | p
a

→ b | c and b | c is stuck. However, p cannot simulate this transition with respect to ≃f .
Indeed, p and p | p are not bisimilar.

4.3. Predicates

There are many examples of TSSs where predicates are used. The definitions presented in Sections 2 and 4 can be easily
adapted to deal with predicates as well. For example, the notion of bisimulation (Definition 39), and thus the notion of
idempotence (Definition 38), are extended naturally to the setting with predicates, by requiring that, for each two closed
terms and each predicate, one term satisfies the predicate if and only if the other one satisfies the predicate. To extend the
idempotence rule format to a setting with predicates, the following types of rules for predicates are introduced:

3P . Choice rules for predicates.
{Pxi} ∪ Φ

Pf (x0, x1)
, i ∈ {0, 1}

4P . Synchronization rules for predicates.
{Px0, Px1} ∪ Φ

Pf (x0, x1)
.

As before, we define the starred version of these forms, 3∗

P and 4∗

P .

3∗

P . Choice rules for predicates.
{Pxi}

Pf (x0, x1)
, i ∈ {0, 1}

4∗

P . Synchronization rules for predicates.
{Px0, Px1}

Pf (x0, x1)
.

With these additional definitions, the idempotence format is defined as follows.
A TSS with predicates is in idempotence format with respect to a binary operator f if

• each rule is g-defining for some operator g , and
• each f -defining rule, i.e., a deduction rule with f appearing in the source of the conclusion, is of one the forms 1l, 2l0,l1 , 3P

or 4P , for some l, l0, l1 ∈ L or for some predicate symbol P . Moreover, for each l ∈ L, there exists at least one f -defining
rule of the forms 1∗

l or 2∗

l,l, and for each predicate symbol P there is an f -defining rule of the form 3∗

P or 4∗

P .

A simple modification of the proof of Theorem 41 yields the following result stating the correctness of the idempotence
format in a setting with predicates.
Theorem 42. Assume that a TSS with predicates is complete and is in the idempotence format with respect to a binary operator
f . Then, f is idempotent with respect to any equivalence ∼ such that ↔ ⊆ ∼.

904 L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907

4.4. Examples

In this section, we present a number of examples from the literature that witness the applicability of the idempotence
format.

Example 43. Amost prominent example of an idempotent operator is non-deterministic choice, denoted by ‘+’. It typically
has the following deduction rules, where a ranges over the collection of labels.

x0
a

→ x′

0

x0 + x1
a

→ x′

0

x1
a

→ x′

1

x0 + x1
a

→ x′

1

.

Clearly, these are in the idempotence format with respect to +.

Example 44 (External Choice). The well-known external choice operator ‘�’ from Hoare’s Communicating Sequential
Processes (CSP) [17] has the following deduction rules.

x0
a

→ x′

0

x0 � x1
a

→ x′

0

x1
a

→ x′

1

x0 � x1
a

→ x′

1

x0
τ

→ x′

0

x0 � x1
τ

→ x′

0 � x1

x1
τ

→ x′

1

x0 � x1
τ

→ x0 � x′

1

.

Note that the third and fourth deduction rule are not instances of any of the allowed types of deduction rules. Therefore, no
conclusion about the validity of idempotence can be drawn from our format. In this case this does not point to a limitation
of our format, because this operator is not idempotent in strong bisimulation semantics as observed in, e.g., [11].

Example 45 (Strong Time-Deterministic Choice). The choice operator that is used in the timed process algebra ATP [24] has
the following deduction rules.

x0
a

→ x′

0

x0 ⊕ x1
a

→ x′

0

x1
a

→ x′

1

x0 ⊕ x1
a

→ x′

1

x0
χ
→ x′

0 x1
χ
→ x′

1

x0 ⊕ x1
χ
→ x′

0 ⊕ x′

1

.

The idempotence of this operator follows from our format since the last rule for ‘⊕’ fits the form 2∗
χ,χ because, as we

remarked in Example 27, the transition relation
χ
→ is deterministic.

Example 46 (Weak Time-Deterministic Choice). The version of the choice operator ‘+’ that is used in most ACP-style timed
process algebras has the following deduction rules.

x0
a

→ x′

0

x0 + x1
a

→ x′

0

x1
a

→ x′

1

x0 + x1
a

→ x′

1

x0
1

→ x′

0 x1
1

→ x′

1

x0 + x1
1

→ x′

0 + x′

1

x0
1

→ x′

0 x1
19

x0 + x1
1

→ x′

0

x0
19 x1

1
→ x′

1

x0 + x1
1

→ x′

1

.

The third deduction rule is of the form 2∗

1,1 (since the transition relation
1

→ is deterministic, as remarked in Example 28).
The others are of forms 1∗

a and 11. This operator is idempotent, and this follows from our Theorem 41.

Example 47 (Conjunctive Nondeterminism). The operator ‘∨’ as defined in Example 25 by means of the deduction rules

x cana

x ∨ y cana

y cana

x ∨ y cana

x aftera x′ y aftera y′

x ∨ y aftera x′
∨ y′

satisfies the idempotence format (extended to a setting with predicates). The first two deduction rules are of the form 3∗

cana
and the last one is of the form 2∗

a,a. (Here we have used the fact that the transition relations aftera are deterministic, as
concluded in Example 25.)

L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907 905

Example 48 (Delayed Choice). Delayed choice can be concluded to be idempotent in the restricted setting without ‘+’ and
‘·’ by using the idempotence format and the fact that in this restricted setting the transition relations

a
→ are deterministic.

(See Example 26.)

x↓

x ∓ y↓

y↓

x ∓ y↓

x
a

→ x′ y
a

→ y′

x ∓ y
a

→ x′
∓ y′

x
a

→ x′ y a9

x ∓ y
a

→ x′

x a9 y
a

→ y′

x ∓ y
a

→ y′

.

The first two deduction rules are of form 3∗

↓
, the third one is a 2∗

a,a rule, and the others are 1a rules. Note that for any label a
and for the predicate ↓ a starred rule is present.

For the extensions discussed in Example 26, idempotence cannot be established using our rule format since the transition
relations are no longer deterministic. In fact, delayed choice is not idempotent in those cases.

Aswitnessed by the examples discussed in this section, our format for idempotence is widely applicable. Indeed, it covers
all the practical cases from the literature that we have discovered so far, which is an indication of its expressiveness and
relevance. However, the constraints of this format can be slightly generalized to cater for more possible applications in the
future, such as the (artificial) example presented below.

Example 49. Consider a TSS with constant aω , and with binary operations f and g with the following rules.

aω
a

→ aω

x0
a

→ x′

0, x1
a

→ x′

1

f (x0, x1)
a

→ g(x′

0, x
′

1)

x0
a

→ x′

0, x1
a

→ x′

1

g(x0, x1)
a

→ f (x′

0, x
′

1)

.

It is not hard to see that both f and g are idempotent. Indeed, the transition relation
a

→ is deterministic and the symmetric
closure of the relation

{(f (p, p), p), (g(p, p), p) | p a closed term}

is a bisimulation. However, the TSS is neither in the idempotence format with respect to f nor in the idempotence format
with respect to g , in the sense of Definition 40. Indeed, neither the rule for f nor the rule for g is of the form 2a,a because the
targets of their conclusions do not have the required form.

Note that f is idempotent because so is g , and vice versa.

The above example points to a (mostly theoretical) limitation of the formatwe proposed in Definition 40. Indeed, in order
for an operation f to be idempotent, it is not necessary that the targets of conclusions of rules of the form 2l0,l1 have f as
head operator. As in the above example, in rules of that type, it would be enough to have a target of the conclusion of the
form g(t0, t1), where g is itself an operator whose idempotence can be shown using the format. In other words, an operation
f is guaranteed to be idempotent if

• its rules satisfy the constraints in Definition 40, but
• the targets of conclusions of rules of the form 2l0,l1 have the form g(t0, t1), where g is itself guaranteed to be idempotent.

By considering the largest set of binary operators that satisfy the (generalized) constraints quoted above, one obtains amore
general format that can easily deal with Example 49. The proof of correctness for the generalized format is almost identical
to the proof of Theorem41. Namely, assume that I is the largest set of binary operators satisfying the generalized constraints,
given above. We claim that each operator f ∈ I is idempotent with respect to any relation ∼ that includes bisimilarity. To
prove our claim, it suffices to show that the relation ≃I ⊆ C(Σ)× C(Σ) defined below is a bisimulation relation.

≃I = {(p, p), (p, g(p, p)), (g(p, p), p) | p ∈ C(Σ), g ∈ I}.

Indeed, if it is, then f (p, p)↔p for any closed term p and f ∈ I . Therefore, f (p, p) ∼ p for any closed term p and each relation
∼ such that ↔ ⊆∼, which establishes our claim.

Proving that ≃I is a bisimulation relation is done following the lines of the proof of Theorem 41.
Aswementioned earlier, we are not aware of any operation from the literaturewhose idempotence cannot be established

using the format in Definition 40, which is easier to apply and to check than its generalization. This is the reason why we
have presented first the simpler, but widely applicable, format. We cannot rule out, however, that practical examples that
can only be handled using the generalized format we just offered may appear in the future.

906 L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907

5. Conclusions

In this paper, we have presented rule formats guaranteeing the determinism of certain transitions and the idempotence
of binary operators. Our rule formats cover all practical cases of determinism and idempotence that we have thus far
encountered in the literature.

We plan to extend our rule formats with the addition of data/store. Such an extension would, for instance, allow us to
account for the determinism of the time transition relations in the hybrid process algebra presented in [9] and to deal with
process calculi with data and (fragments of) programming languages.

Also, it is interesting to study the addition of structural congruences pertaining to idempotence to the TSSs in our
idempotence format.

Last, but not least, we think that it would be worthwhile to investigate the robustness of the properties established using
our syntactic rule formats with respect to taking disjoint extensions of languages in the sense of [2].

Acknowledgements

We thank the anonymous reviewers for their very careful reading of the paper and for their constructive suggestions,
which led to several improvements. Any remaining infelicity is solely our responsibility.

Appendix. Proof of Theorem 9

We show that the problem of deciding whether a universal two-counter machine diverges on input n reduces to
the problem of determining whether some closed term Un is deterministic for label a with respect to the transition
relation associated with a complete, finite transition system specification. To this end, we exhibit a finite transition system
specification with, for each n, a term Un that behaves like a universal two-counter machine on input n and performs a-
labelled transitions as it computes. The a-labelled transition relation will be deterministic, when restricted to the set of
terms that are reachable from Un, iff the universal two-counter machine diverges on input n.

Recall that a universal two-counter machine operates on two counters I and J . The machine has a sequence of labelled
instructions ℓ1, . . . , ℓk, which can take one of the following forms:

• halt,
• inc X , where X is either I or J ,
• dec X , where X is either I or J ,
• goto ℓi, where 1 ≤ i ≤ k, and
• if X = 0 then goto ℓi, where X is either I or J , and 1 ≤ i ≤ k.

The meaning of those instructions is the expected one. On input n, the machine starts computing from instruction ℓ1 with
I = n and J = 0. The computation terminates if at any point the distinguished instruction halt is reached. We can assume,
without loss of generality, that the instruction labelled ℓk is the distinguished halt instruction.

We now construct a finite transition system specification U that can ‘‘simulate’’ the above-mentioned universal two-
countermachine. The signature ofU contains a constant z (representing the number zero), a unary prefix operation ‘s’ (which
will be used to implement the successor operation on the natural numbers), and binary operation symbols ℓ1, . . . , ℓk.

The behaviour of the constant z and of the prefixing operation s is described by the rules

z
z

→ z s.x
s

→ x
.

If the ith instruction is the increment of a counter, say inc I , then ℓi has rule

ℓi(x, y)
a

→ ℓi+1(s.x, y)
.

If the ith instruction is the decrement of a counter, say dec I , then ℓi has rules

x
z

→ x′

ℓi(x, y)
a

→ ℓi+1(x′, y)

x
s

→ x′

ℓi(x, y)
a

→ ℓi+1(x′, y)
.

If the ith instruction is an unconditional jump goto ℓj, where 1 ≤ j ≤ k, then ℓi has rule

ℓi(x, y)
a

→ ℓj(x, y)
.

L. Aceto et al. / Science of Computer Programming 77 (2012) 889–907 907

If the ith instruction is a conditional jump, say if I = 0 then goto ℓj, where 1 ≤ j ≤ k, then ℓi has rules

x
z

→ x′

ℓi(x, y)
a

→ ℓj(x′, y)

x
s

→ x′

ℓi(x, y)
a

→ ℓi+1(s.x′, y)
.

Finally, if the ith instruction is halt, then ℓi has rules

ℓi(x, y)
a

→ z ℓi(x, y)
a

→ s.z
.

Define

Un = ℓ1(s.s.s  
n times

.z, z).

Then it is easy to see that the transition relation
a

→ , when restricted to the set of terms that are reachable from Un, is
deterministic if, and only if, the universal two-counter machine does not terminate its computation on input I = n. This
completes the proof.

References

[1] L. Aceto, A. Birgisson, A. Ingolfsdottir, M. Mousavi, M.A. Reniers, Rule formats for determinism and idempotence, in: Proceedings of the Third IPM
International Conference on Fundamentals of Software Engineering, FSEN 2009, in: Lecture Notes in Computer Science, vol. 5961, Springer, 2010,
pp. 146–161.

[2] L. Aceto, B. Bloom, F.W. Vaandrager, Turning SOS rules into equations, Information and Computation 111 (1994) 1–52.
[3] L. Aceto,W.J. Fokkink, C. Verhoef, Structural operational semantics, in: J.A. Bergstra, A. Ponse, S.A. Smolka (Eds.), Handbook of Process Algebra, Elsevier

Science, Dordrecht, The Netherlands, 2001, pp. 197–292 (Chapter 3).
[4] L. Aceto, A. Ingolfsdottir, M. Mousavi, M.A. Reniers, A rule format for unit elements, in: Proceedings of the 36th International Conference on Current

Trends in Theory and Practice of Computing, SOFSEM 2010, in: Lecture Notes in Computer Science, vol. 5901, Springer, 2010, pp. 141–152.
[5] J. Baeten, S. Mauw, Delayed choice: An operator for joining Message Sequence Charts, in: Proceedings of Formal Description Techniques, in: IFIP

Conference Proceedings, vol. 6, Chapman & Hall, 1995, pp. 340–354.
[6] J. Baeten, C.A. Middelburg, Process Algebra with Timing, in: Monographs in Theoretical Computer Series: An EATCS Series, Springer, 2002.
[7] J. Baeten, W.P. Weijland, Process algebra, in: Cambridge Tracts in Theoretical Computer Science, vol. 18, Cambridge University Press, 1990.
[8] J.A. Bergstra, J.W. Klop, Process algebra for synchronous communication, Information and Control 60 (1–3) (1984) 109–137.
[9] J.A. Bergstra, C.A. Middelburg, Process algebra for hybrid systems, Theoretical Computer Science 335 (2–3) (2005) 215–280.

[10] S. Cranen, M. Mousavi, M.A. Reniers, A rule format for associativity, in: F. van Breugel, M. Chechik (Eds.), Proceedings of the 19th International
Conference on Concurrency Theory, CONCUR’08, in: Lecture Notes in Computer Science, vol. 5201, Springer, 2008, pp. 447–461.

[11] P. D’Argenio, τ -angelic choice for process algebras (revised version), Tech. rep., LIFIA, Depto. de Informática, Fac. de Cs. Exactas, Universidad Nacional
de La Plata, 1995.

[12] J. Engelfriet, Determinacy → (observation equivalence = trace equivalence), Theoretical Computer Science 36 (1985) 21–25.
[13] W.J. Fokkink, T.D. Vu, Structural operational semantics and bounded nondeterminism, Acta Informatica 39 (6–7) (2003) 501–516.
[14] J.F. Groote, Transition system specifications with negative premises, Theoretical Computer Science 118 (2) (1993) 263–299.
[15] J.F. Groote, F.W. Vaandrager, Structured operational semantics and bisimulation as a congruence, Information and Computation 100 (2) (1992)

202–260.
[16] M. Hennessy, G. Plotkin, Finite conjunctive nondeterminism, in: K. Voss, H.J. Genrich, G. Rozenberg (Eds.), Concurrency and Nets, Advances in Petri

Nets, Springer, 1987, pp. 233–244.
[17] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[18] R. Lanotte, S. Tini, Probabilistic congruence for semistochastic generative processes, in: V. Sassone (Ed.), Proceedings of the 8th International

Conference on Foundations of Software Science and Computational Structures, FOSSACS’05, in: LectureNotes in Computer Science, vol. 3441, Springer,
2005, pp. 63–78.

[19] A.R. Milner, Communication and Concurrency, Prentice Hall, 1989.
[20] M. Mousavi, I.C. Phillips, M. Reniers, I. Ulidowski, Semantics and expressiveness of ordered SOS, Information and Computation 207 (2) (2009) 85–119.
[21] M. Mousavi, M. Reniers, J.F. Groote, A syntactic commutativity format for SOS, Information Processing Letters 93 (2005) 217–223.
[22] M. Mousavi, M.A. Reniers, Orthogonal extensions in structural operational semantics, in: Proceedings of the 32nd International Colloquium on

Automata, Languages and Programming, ICALP’05, in: Lecture Notes in Computer Science, vol. 3580, Springer, 2005, pp. 1214–1225.
[23] M. Mousavi, M.A. Reniers, J.F. Groote, SOS formats and meta-theory: 20 years after, Theoretical Computer Science 373 (3) (2007) 238–272.
[24] X. Nicollin, J. Sifakis, The algebra of timed processes ATP: theory and application, Information and Computation 114 (1) (1994) 131–178.
[25] G.D. Plotkin, A structural approach to operational semantics, Journal of Logic and Algebraic Programming 60–61 (2004) 17–139.
[26] S. Tini, Rule formats for compositional non-interference properties, Journal of Logic and Algebraic Programming 60–61 (2004) 353–400.
[27] I. Ulidowski, S. Yuen, Process languages with discrete relative time based on the ordered SOS format and rooted eager bisimulation, Journal of Logic

and Algebraic Programming 60–61 (2004) 401–460.
[28] F.W. Vaandrager, Determinism→ (event structure isomorphism= step sequence equivalence), Theoretical Computer Science 79 (2) (1991) 275–294.
[29] M. van Weerdenburg, M. Reniers, Structural operational semantics with first-order logic, Electronic Notes in Theoretical Computer Science 229 (4)

(2009) 85–106.
[30] C. Verhoef, A congruence theorem for structured operational semantics with predicates and negative premises, Nordic Journal of Computing 2 (2)

(1995) 274–302.

	Rule formats for determinism and idempotence
	Introduction
	Preliminaries
	Determinism
	The general determinism format
	The syntactic determinism format
	Examples
	Other forms of determinism

	Idempotence
	Format
	Relaxing the restrictions
	Predicates
	Examples

	Conclusions
	Acknowledgements
	Proof of Thm:undecidabledet
	References

