
RuntimeSpeQ: Specifying Runtime Monitors forQuantum
Programs

Flavio Melinte-Citea
Department of Informatics, King’s College London

London, United Kingdom
flavio.melinte_citea@kcl.ac.uk

Mohammad Reza Mousavi
Department of Informatics, King’s College London

London, United Kingdom
mohammad.mousavi@kcl.ac.uk

Abstract
With the growing maturity of quantum computing, robust veri-
fication techniques become essential. In this paper, we introduce
RuntimeSpeQ: a specification language for the runtime behaviour
of quantum programs. We then propose a scheme to translate Run-
timeSpeQ into runtime monitors, exploiting two types of runtime
assertions. We evaluate our approach in terms of fault detection
and equivalence checking capabilities as well as reusability of spec-
ifications. The results show promising runtime fault detection ca-
pabilities, with several faults detected before the final steps of the
programs. Our experiments show that our monitors found 40% of
faults in erroneous implementations of Quantum Phase Estimation
before the final result was checked, and 90% of faults for Grover’s Al-
gorithm. They also show no false negatives in equivalence checking.
Also, across four different implementations of one case study, we
found that we could reuse the same specification structure by only
making minor changes, such as changing the indices pertaining to
qubits or execution steps, showing the promise of reusability.
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1 Introduction
1.1 Motivation
Quantum computing has a proven theoretical advantage over clas-
sical computing in terms of computational complexity [1]. For the
theoretical bounds to be realised, we are awaiting the arrival of pow-
erful and scalable fault tolerant quantum computers. However, the
practical advantages of quantum computing are likely to be demon-
strated earlier using powerful hybrid architectures that integrate
quantum computing and classical (high-performance) computing
[2]. Such hybrid architectures typically involve repetitive calls to a
compact parametrised quantum circuit using parameters that are
determined and improved in a classical optimisation loop.

Both for future fault-tolerant (larger and deeper) quantum com-
putations and current hybrid computations, we need runtime mech-
anisms that can monitor the behaviour of the computation and, if
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indicated, perform adaptations and adjustments. This vision has a
long tradition in classical computing, in terms of runtime monitor-
ing, runtime verification, and runtime adaptation.

1.2 Problem Definition
The area of runtime monitoring is, however, very much under-
researched in the domain of quantum computing. While there are
some early research ideas about the implementation and placement
of runtime assertions [3–6], to our knowledge, there are no full-
fledged runtime monitoring or runtime verification frameworks for
quantum circuits (and beyond that for hybrid architectures). We
refer to the Related Work section for a more detailed analysis of
available results.

In this paper, we bridge this identified gap and come up with a
language for runtime monitoring of quantum circuits and provide
a prototype implementation of it for some small case studies. The
main objectives of the paper are thus: 1) to design a language for
runtime monitoring of quantum circuits that allows for reusable
and flexible specification of monitors; 2) a way of implementing
such monitors from their specifications, and 3) to evaluate the
effectiveness of the proposed framework in terms of fault detection
and reusability of our monitoring specifications across different
implementations.

We envisage that by integrating existing ideas and frameworks
from classical runtime monitoring, our framework will provide a
solid foundation for runtime monitoring and adaptation of hybrid
quantum-classical architectures, as well as future fault tolerant
quantum computations.

1.3 Research Questions
To evaluate the effectiveness of our approach, we propose the fol-
lowing research questions and answer them through a designed
experiment that is carried out using our prototype implementation:
RQ1: How successful is our approach at finding faults during run-

time?
To ensure that our monitors find faults during runtime, as
that is their main purpose, we measure the percentage of
faults detected, as well as whether they are capable of early
diagnosis.

RQ2: Can the generated monitors identify equivalent programs?
Beyond fault detection, we want to know how generalisable
the verification results are over implementations that are
equivalent, relative to the specification. That is, if two pro-
grams satisfy the same specification, do they both pass the
verification? This is useful for checking different implemen-
tations, such as optimised versions of the same algorithm. For
this purpose, we are interested in the rate of false positives
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across equivalent implementations (relative to a specifica-
tion).

RQ3: How easily can specifications be adapted for different imple-
mentations of the same algorithm?
Finally, we explore the flexibility of our specification lan-
guage. For practical purposes, specifications need to be able
to be adapted and reused with ease. The design of the lan-
guage needs to be abstract enough to go beyond specific
implementation details, and expressive enough to capture
semantic variations. To this end, we will compare different
variations of the same algorithm to evaluate how specifica-
tions need to be adapted to be satisfied.

1.4 Structure
The remainder of the paper is structured as follows: We review
the related work in Section 2 in order to position our research. We
describe the RuntimeSpeQ language in 3, as well as how monitors
can be generated from specifications. Section 4 details how we
designed the experiments to address our research questions. The
results of those experiments are covered in Section 5. Finally, we
conclude the paper and discuss ideas for future work in Section 6.

2 Related Work
2.1 Runtime Verification
This research is based on the long-standing tradition of classical
runtime verification [7–9]. Our specification language is inspired
by stream runtime verification languages such as LOLA [10] and
Striver [11], as well rule-based languages such as EAGLE [12]. These
languages are aimed at maximising reuse while providing sufficient
expressiveness, which aligns with our design goals.

2.2 Quantum Software Testing and Verification
Many classical software verification techniques have been adapted
to quantum programs. For example, fuzz testing, introduced by
Wang et al. through QuanFuzz [13], a quantum fuzz testing tool
that uses branch coverage to guide test input generation. Such a
tool could be used to generate inputs for runtime monitors.

Some testing techniques that rely on property specification in-
clude property-based testing and metamorphic testing. Initial work
on quantum property-based testing was done by Honarvar et al.
with QSharpCheck [14], a tool for the Q# language. QuCheck [15] is
an improved version targeting the Qiskit language. Abreu et al. [16]
proposed a metamorphic testing approach which encodes metamor-
phic relations into circuits in Qiskit. Independently, Paltenghi and
Pradel [17] developed their own approach, MorphQ. In evaluating
our approach, we use some earlier datasets and approaches for
property-based testing [15].

Runtime verification has its roots in model checking [18], so
they share some similarities, including property specification. Feng
et al. [19] propose a model checking approach for quantum pro-
grams. They introduce quantum Markov chains as a model for
quantum computations and quantum computation tree logic to spec-
ify properties. While for efficiency reasons, we use runtime asser-
tions, described below, in our monitoring rules, we expect more
sophisticated logical specifications (and potentially their temporal
extensions) can be embedded into our rule-based specifications.

2.3 Quantum Runtime Assertions
Various approaches have been proposed for implementing runtime
assertions for quantum programs. These assertions can be used to
implement quantum runtime monitors.

The first is Stat byHuang andMartonosi [3], who propose statisti-
cal assertions using “quantum breakpoints” to make measurements
at various points in the program; they use statistical analysis on
measurement outcome distributions to determine whether asser-
tions hold.

Another approach, introduced by Zhou and Byrd [20], makes use
of ancilla qubits and controlled operations to obtain information
indirectly about relevant qubits, avoiding the use of Huang and
Martonosi’s “quantum breakpoints” which stop the computation.

Li et al. make use of projective measurements in their Proq [5]
assertion scheme, which similarly avoids stopping the computation
early. It relies on the fact that projecting into a subspace will leave
the state unchanged if the state is already in that subspace.

More recently, Oldfield et al. introduced Bloq [21], a runtime
assertion scheme based on expectation value measurements of Pauli
operators. Their contribution is complementary to those of this
paper, and our approaches could potentially be integrated in the
future.

For the purposes of our experiments, we implemented our moni-
tors using a combination of Proq and Stat. This combination gave
us a lot of flexibility regarding the types of assertions we could
implement, as Proq allows for precise equality assertions, while Stat
allows for more general ones about probability distributions. How-
ever, we designed our specification language to be abstract enough
to allow for monitors to be implemented in different assertion
schemes. This opens up possibilities to extend our implementation
in the future and gain more efficiency.

3 Language Overview
RuntimeSpeQ is a specification language that describes the runtime
behaviour of quantum programs at a high level. Specifications in
the language only consider the states at each logical “step” in the
program.

We consider a program to be composed of a series of such “steps”,
which may correspond to an arbitrary number of operations in the
underlying circuit. The first and final steps correspond to the initial
and final states of the system, while the rest are determined by the
placement of barriers. As such, the second step will correspond to
the first barrier in the circuit, the third step will correspond to the
second barrier, and so on.

A program trace is a sequence of states produced by a program,
each corresponding to a step in the program. A trace is said to
satisfy a specification if every rule defined in the specification holds
at every step in the program trace. For simplicity, we will say that a
program satisfies a specification if all of its possible traces satisfy it.
We consider two programs to be equivalent under a specification if
they both satisfy that specification.

A RuntimeSpeQ specification is made up of three types of ex-
pressions:

• Input variable definitions
• Constant definitions
• Rule definitions
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Input variables are variables used in the rule definitions, which
depend on the specific instance of the algorithm being specified.
For example, the number of qubits can be provided as an input
variable, or the expected output of the algorithm.

Constants, on the other hand, have the same value across different
executions of the program and different monitoring sessions.

Rules are Boolean expressions made up of a trigger and amonitor.
At every step where the trigger condition holds true, the monitor
must also hold for the whole rule to hold true.

3.1 Syntax
Specifications are structured as follows:

𝑇𝑣1 𝑣1
· · ·

𝑇𝑣𝑛 𝑣𝑛
𝑇𝑐1 𝑐1 = 𝑥1

· · ·
𝑇𝑐𝑛 𝑐𝑛 = 𝑥𝑛

𝑡1 →𝑚1
· · ·
𝑡𝑛 →𝑚𝑛

where

• Each 𝑣𝑥 is an input variable of type 𝑇𝑣1 .
• Each 𝑐𝑥 is a constant of type 𝑇𝑐1 , and 𝑥𝑛 is its corresponding
value.

• Each pair 𝑡𝑥 ,𝑚𝑥 are Boolean expressions and represent the
trigger and the monitor for the rule 𝑡𝑥 →𝑚𝑥 .

RuntimeSpeQ can access both the current step number in the
trace and its corresponding state. The current step is accessed
through a special step variable. Meanwhile, the state of a qubit
at the current step can be accessed through state[𝑥], where 𝑥 is
the index of the given qubit. In the case of a register, the syntax
is state[𝑥 , 𝑦], where 𝑥 and 𝑦 represent the (inclusive) lower and
(exclusive) upper bounds of the register, respectively.

The state at a step different from the current one can be accessed
through the offset operator @, where step[𝑥]@t refers to the state
of the qubit with index 𝑥 at step t. This t can either be a number
or an arithmetic expression based on the state variable. If an offset
leads to a step lower than 0, the state at step 0 will be accessed
instead. Likewise, an offset beyond the trace length will access the
final state.

There are various kinds of assertions that can be made within
rules. This includes:

• Equality assertions between states: 𝑠1 = 𝑠2 and 𝑠1 ≠ 𝑠2. It
should be noted that states are only asserted to be equal up
to a global phase.

• Assertions about the current step number (e.g. step = t).

• Probability assertions, using the syntax prob(s, x) to refer
to the probability of measuring value 𝑥 when in state 𝑠 (e.g.
|𝑝𝑟𝑜𝑏 (𝑠, 𝑥) − 𝑝 | ≤ 𝜖), as well as most(s) to refer to the most
probable measurement outcome (e.g.𝑚𝑜𝑠𝑡 (𝑠) = 𝑥 )

• The following general assertions about states: classical(s)
which checks whether s is a classical state or not, and uni-
form(s) which checks whether s is a uniform superposition
state.

We started off with this simple set of assertions by analysing a
set of canonical benchmarks from the literature, also in our past
research. We plan to extend this set and we will keep our design
extensible with new assertion types and assertion monitoring mech-
anisms (presented in the next section).

3.1.1 Examples. The following is an example of a specification
with a single rule:

true → state[0] = |0⟩
This specification states that, at every step of the program, the

state of the qubit at index 0 will be equal to |0⟩ (up to a global
phase). Here, 𝑠𝑡𝑎𝑡𝑒 [0] refers to the state of the qubit at index 0 at
the current step. The program in Figure 1 satisfies the specification,
as the state of the qubit at index 0 will remain |0⟩ throughout the
computation.

Figure 1: Example quantum circuit

Because specifications only describe the behaviour at each bar-
rier, the program in Figure 2 will also satisfy the specification. This
is because the program has three steps: at step 0, the state of the
system is |000⟩; at step 1 it becomes |010⟩, and at step 2 it goes
back to |000⟩. Thus, relative to this, albeit limited, specification, this
program is equivalent to the program in Figure 1.

Figure 2: Example quantum circuit

The following is another example specification:
(step = 0) ∨ (step = 2) → state[0, 2] = |000⟩
(step = 1) → state[0, 2] = |010⟩

This specification states that the state of the system at steps 0 and
2 will be equal to |000⟩, and |010⟩ at step 1. Thus, the program in
Figure 2 will also satisfy it, but not the program in Figure 1.

3.2 Generating Monitors
Our approach to generating monitors is to translate rules into
runtime assertions. RuntimeSpeQ was designed to allow translation
into various different assertion schemes, but in this section we will
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only cover the two that were used for our experiments: Stat [3] and
Proq [5].

Stat is able to make general assertions about the state of a system
by analysing probability distributions post-measurement. This is
achieved using “quantum breakpoints”, which are points in the
program where the computation is stopped to perform measure-
ments. The drawback of this approach is that only one assertion
can be verified per execution, so the required number of system
runs increases for each assertion needed.

The two types of Stat assertions that are of interest to us are
classical and superposition assertions. Classical assertions verify
whether a state is a specific classical state, while superposition
assertions assert that the state is in a uniform superposition.

Classical assertions verify whether the probability distribution
at the location of the assertion is unimodal with a peak at a specific
value. For example, asserting that the state at a specific step is the
classical state |00⟩ requires: 1) making multiple measurements at
that step; 2) obtaining a probability distribution from those measure-
ments; 3) performing a goodness-of-fit test with the hypothesis that
the distribution is unimodal with a peak at |00⟩, and 4) verifying
that the p-value is large enough.

Superposition assertions work in a similar way, except the hy-
pothesis is that the distribution is uniform.

Proq can make precise assertions about system states through
the use of projective measurements. Projective measurements can
be implemented using a rotation to the computational basis, a mea-
surement, then a rotation back to the asserted basis. For example,
asserting that qubit is in state |+⟩ requires: 1) applying a Hadamard
gate; 2) making a measurement; 3) applying the Hadamard gate
again to restore the state (if it was indeed |+⟩), and 4) verifying
whether the measurement result was 0. The advantage is that mul-
tiple assertions can potentially be verified in a single run, but at
the cost of increased circuit depth.

The rest of this section will cover how RuntimeSpeQ rules can
be translated into a combination of Stat and Proq assertions, with
some extensions to both of these schemes where required.

Equality assertions. Asserting that a system state is equal to a state
vector |𝜓 ⟩ can be done by Proq, as long as a circuit to produce |𝜓 ⟩ is
provided. In the case where two system states are being compared
(e.g. 𝑠𝑡𝑎𝑡𝑒 [𝑥]@5 = 𝑠𝑡𝑎𝑡𝑒 [𝑥]@3), a segment from the circuit under
test can be used (e.g. the segment of the circuit up to step 3).

Proq cannot, however, assert that two states are not equal. Unless
the states are orthogonal to each other, the projective measurement
will modify the state of the system, and the program will have to be
stopped. Because of this, we propose combining Proq with Stat to
implement this type of assertion. This can be done by performing
Stat’s classical assertion on the result of a projective measurement.
For example, if we want to assert that the state at a specific step
is different from |+⟩, we can add a Hadamard gate, and then a Stat
classical assertion for the value 0. If the state is indeed different
from |+⟩, this assertion should fail.

Probability assertions. Although Stat makes assertions about proba-
bility distributions, rather than single probabilities, the same idea
of quantum breakpoints can be applied for probability assertions.
In this case, if we make an assertion about the probability of some
outcome at a specific state (e.g. prob(state[0, 𝑛], 𝑥) ≥ 𝑦) we make

multiple measurements at the inserted breakpoint, then estimate
the probability based on those measurements. As for assertions re-
lating to the most probable outcome (e.g. most(state[0, 𝑛]) = 𝑥 ), we
can just retrieve the outcome that was measured the most amount
of times.

General assertions. The uniform assertion corresponds to the super-
position assertion in Stat, which checks for a uniform distribution.
The classical assertion in RuntimeSpeQ can be implemented simi-
larly to Stat’s classical equality assertion, except instead of checking
that the distribution is unimodal with the peak at a specific point,
the peak point is unspecified.

Step assertions. By default, the trigger of a rule is verified for every
step in the program. For example, the rule

uniform(state[0, 𝑛])→ state[0, 𝑛] = |0⟩
will require first verifying at which steps the state of the system
is in a uniform superposition; only after that can the assertion
corresponding to the monitor be verified. Step assertions can be
used to determine in which steps to insert assertions. The rule

(step > 0) ∧ (step < 4)→ state[0, 𝑛] = |0⟩
will insert equality assertions at steps 1, 2 and 3. Using the @
operator can override this. An extreme example would be

(step > 0) ∧ (step < 4)→ state[0, 𝑛]@5 = |0⟩
where the only assertion generated will be inserted at step 5.

4 Experiment Design
4.1 Subject Systems
To evaluate our research questions, we picked two algorithms for
our experiments: Quantum Phase Estimation (QPE) and Grover’s
Algorithm. We chose QPE because it is the cornerstone of much
of the current NISQ and future fault-tolerant algorithms that are
likely to deliver short and long term quantum advantage. QPE is
a challenging algorithm for verifying runtime properties, as its
main step modifies each qubit once, and it relies on phase kickback,
which results in runtime states that are vastly different and difficult
to verify. The latter was chosen as an algorithm with multiple iter-
ations, with some expected progress between them, which makes
for a good case study for evaluating runtime monitors, due to its
extended runtime behaviour.

For each of the two algorithms, we wrote a specification, which
we then manually translated into assertions. These assertions were
evaluated against various Qiskit implementations of each algorithm.
We tested each assertion separately, 30000 times per implementation
tested. The steps after translation are all automated and can be
found in our lab package [22]. We ran our experiments using Qiskit
2.2.1, the Qiskit Aer Simulator, and Python 3.10.12, on an Ubuntu
22.04 laptop.

4.1.1 Quantum Phase Estimation. QuantumPhase Estimation (QPE)
is an algorithm for estimating the phase 𝜃 of a unitary𝑈 , with re-
spect to an eigenvector |𝜓 ⟩ with eigenvalue 𝑒2𝜋𝑖𝜃 .

Given𝑈 and |𝜓 ⟩, the algorithm will output 2𝑛𝜃 , where 𝑛 is the
number of qubits used for the estimation, and 𝜃 is an estimate of 𝜃
with error 𝜖 .
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Figure 3: An implementation of Quantum Phase Estimation

Figure 3 shows the schematic for an implementation of QPE. The
steps of the algorithm are as follows:

(1) The top register is initialised to |0⟩𝑛 , while the bottom regis-
ter is set to |𝜓 ⟩.

(2) Hadamard gates are applied to the top register, bringing it
to the state |+⟩𝑛 .

(3) For each qubit 𝑞 𝑗 in the top register, the controlled version
of𝑈 2𝑛− 𝑗−1 is applied, with 𝑞 𝑗 as the control and the bottom
register as the target. Due to phase kickback, this will have
an effect on the top register, but it will remain in a uniform
superposition. As for the bottom register, since |𝜓 ⟩ is an
eigenvector of𝑈 , the state of the register will remain equal
to |𝜓 ⟩ (up to a global phase).

(4) The inverse of the Quantum Fourier Transform is applied to
the top register, producing an estimation of 2𝑛𝜃 .

Given this description of the algorithm, we wrote the following
specification of the algorithm:

int 𝑛,𝑚
real 𝜃 , 𝜖
state |𝜓 ⟩
true → state[n, n + m] = |𝜓 ⟩
(step = 0) → state[0, n] = |0⟩𝑛
(step = 1) → state[0, n] = |+⟩𝑛
(step = 2) → uniform(state[0, n])
(step = 3) → |most(state[0, n])

2𝑛 − 𝜃 | ≤ 𝜖

In this specification, 𝑛 is the size of the top register, while𝑚 is the
size of the bottom register, and 𝜖 is the error bound. |𝜃⟩ is assumed
to be known for the instance, but the final rule could be rewritten
to use some known estimate 𝜃 instead.

4.1.2 Grover’s Algorithm. Grover’s Algorithm is an algorithm that
solves the problem of unstructured search. The idea is as follows:
there is a set 𝑆 of solutions, and a function 𝑓 , such that 𝑓 (𝑥) = 1
if 𝑥 ∈ 𝑆 , and 0 otherwise. The algorithm takes as input a unitary
𝑈𝑓 |𝑥⟩ = (−1) 𝑓 (𝑥 ) |𝑥⟩, and has a very high probability of returning
a value from 𝑆 as output.

Figure 4 shows the general structure of Grover’s algorithm. Not
shown is the additional register that may be required depending
on the choice of𝑈𝑓 . The steps of the algorithm are:

(1) All qubits are initialised to |0⟩.
(2) Hadamard gates are applied to all qubits, changing their state

to |+⟩.

Figure 4: An implementation of Grover’s algorithm

(3) The Grover iteration is applied (shown as𝐺 in Figure 4). It
consists of two steps:

(a) Apply the unitary 𝑈𝑓 . This “marks” all solution states
within the superposition with a negative phase.

(b) Apply the “amplitude amplification” subroutine. This in-
creases the amplitude of “marked” states, and thus their
likelihood of being measured.

(4) Repeat step 3 for a number of iterations. This number de-
pends on the size of the search space, as well as the size of
𝑆 .

(5) Measure all qubits. The outcome will have a high probability
of being an element from 𝑆 .

Based on the above description of the algorithm, we came up with
the following specification for the special case 𝑆 = {𝑥}:

int 𝑛, 𝑥, 𝑘
(step = 0) → state[0, 𝑛] = |0⟩𝑛
(step = 1) → state[0, 𝑛] = |+⟩𝑛
(step > 1) → prob(state[0, 𝑛], 𝑥) >

prob(state[0, 𝑛], 𝑥)@(step - 1)
(step = 𝑘 + 1) → most(state[0, 𝑛]) = 𝑥

Here 𝑛 is the number of qubits, 𝑥 is the singular element in 𝑆 , and
𝑘 is the number of iterations. This specification could be adapted to
cases where 𝑆 has more elements by adding a corresponding rule
for each element, as well as rewriting the final rule into:

(step = 𝑘 + 1)→ f(most(state[0, 𝑛])) = 1

4.2 Mutation Analysis
To answer RQ1 and RQ2 we made use of mutation analysis, a
technique for evaluating the effectiveness of test suites. The idea
behind this technique is to apply small changes to a program to
generate “mutants”. The test suite is then evaluated against each
mutant to obtain a mutation score, which represents the percentage
of mutants “killed” (which means mutants that failed the tests). The
higher this mutation score, the more effective the test suite is.

Some mutants are impossible to kill, as they do not introduce
any faults. These are known as equivalent mutants. The rest are
non-equivalent.

To run our experiments, we used a set of equivalent and non-
equivalent mutants from previous work [15].

For RQ1, we had 10 non-equivalent mutants for each algorithm,
originally generated using QMutPy [23]. We used these mutants to
get a mutation score for each rule, as well as an overall mutation
score for the whole specification. These mutation scores represent
how effective each rule (and the specification itself) is at detecting
faults.
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As for RQ2, we used a separate set of 5 equivalent mutants per
algorithm, originally generated by inserting random gate identities
in the original program. We also ensured the changes did not vi-
olate the respective specification. Similarly to the non-equivalent
mutants, we obtained a mutation score for each rule, as well as the
whole specification; however, in this case, a lower mutation score
is the desired outcome, as equivalent mutants should not be killed
by a correctly implemented monitor.

4.3 Program Variants
As defined in section 2, we consider two programs to be equiv-
alent under a specification if they both satisfy that specification.
Because of this definition, different implementations of the same
algorithm are not guaranteed to be equivalent. We refer to such
implementations as functionally equivalent if they always have the
same output, regardless of whether they are equivalent relative to
the same specifications.

To answer RQ3, we produced 4 different “variants” of Quantum
Phase Estimation, each one of them being functionally equivalent
to our original implementation, but not equivalent relative to the
specification we defined. We then modified our specification of QPE
for each variant separately, and quantified the number of changes
required.

5 Results
5.1 RQ1: Are our runtime monitors successful

at finding faults?
Quantum Phase Estimation. Table 1 shows the mutation score for
each rule in our QPE specification. An immediate observation is
that the mutation score increases from one rule to another. Indeed,
every mutant killed by rule 3 was also killed by rule 4, and every
mutant killed by rule 4 was also killed by rule 5. This suggests that,
at least for this algorithm, rule 5 would have sufficed to kill the
same amount of mutants.

This appears to suggest that errors propagate easily in this al-
gorithm. In classical testability terms, the circuit is non-squeezy
[24], i.e., it effectively propagates errors through the computation.
It could be linked to the reversibility of unitary operations and the
lack of mid-circuit measurements. However, our experiments do
not take into account how errors propagate under noisy conditions.

Furthermore, our approach still has the advantage of being able
to identify the general locations of faults. For example, 30% of
mutants were killed by rule 3, which verifies the correct application
of Hadamard gates at the beginning of the algorithm, meaning that
the faults happened very early in the program.

Another observation is that no mutants were killed by the first
two rules. This is because none of our mutants introduced any
faults that could be identified by these rules. With a larger and
more diverse set of mutants, these results could potentially differ.

Grover’s Algorithm. Our results for Grover’s algorithm, shown in
Table 2, are immediately more promising. Our first observation is
that the third rule, which verifies whether each iteration increases
the amplitude of the solution state, killed more mutants than the
final rule, which only verifies the final output. This suggests that,

Rules Mutation Score
Rule 1 0%
Rule 2 0%
Rule 3 30%
Rule 4 40%
Rule 5 70%
Total 70%

Table 1: Mutation scores for QPE non-equivalent mutants

unlike with the previous algorithm, some faults that can be detected
early may not be identified in the final result.

This could be due to the highly probabilistic nature of Grover’s
algorithm. However, our results could potentially differ if we set
a lower bound for the probability of the solution state being mea-
sured.

The other important observation is that not every mutant killed
by rule 4 was killed by rule 3. This shows that neither rule 3 nor
rule 4 would have been sufficient to kill every mutant.

Based on these results, as well as the high overall mutation score,
we can reasonably say that our approach is effective at finding
faults.

Rules Mutation Score
Rule 1 0%
Rule 2 20%
Rule 3 90%
Rule 4 70%
Total 100%

Table 2: Mutation scores for Grover non-equivalent mutants

5.2 RQ2: Can our runtime monitors identify
equivalent programs?

For every rule specified for each algorithm, our experiments yielded
a mutation score of 0% for equivalent mutants. Based on the high
mutation score obtained from the non-equivalent mutants for the
previous research question, this appears to indicate that our method
can successfully identify equivalent programs, relative to some
specification.

5.3 RQ3: Can specifications be adapted to
alternative implementations?

From the implementation of Quantum Phase Estimation shown
in Figure 3, we produced 4 different variants by performing the
following changes:

(1) Moving the Hadamard gates at the beginning of the algo-
rithm inside the main section, right before their respective
controlled gates.

(2) Moving the bottom register above the top register.
(3) Placing a barrier after each controlled gate.
(4) All of the above at the same time.
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For the first variant, the only change that matters for the speci-
fication is the fact that the Hadamard gates are no longer applied
before the first barrier. This means that, at that point the state of
the top register should be |0⟩𝑛 . We can represent this with a single
change in the specification:

(step = 1) → state[0, n] = |0⟩𝑛

The second variant introduces the most amount of changes into
the specification, as the lower and upper bounds of each register
are different, which introduces 5 changes, one per rule:

true → state[0, m] = |𝜓 ⟩
(step = 0) → state[m, n + m] = |0⟩𝑛
(step = 1) → state[m, n + m] = |+⟩𝑛
(step = 2) → uniform(state[m, n + m])
(step = 3) → |most(state[m, n + m])

2𝑛 − 𝜃 | ≤ 𝜖

The third variant only adds more barriers, which has no effect
on the state of the system at any point. However, our specifications
depend on barrier placement, so this variant does require changes
to the specification. Specifically, 2 changes are required, as the steps
at which rules 3 and 4 are triggered are different:

(step = n + 1) → uniform(state[0, n])
(step = n + 2) → |most(state[0, n])

2𝑛 − 𝜃 | ≤ 𝜖

The final variant combines the changes of all the previous vari-
ants, so its specification requires 8 changes in total:

true → state[0, m] = |𝜓 ⟩
(step = 0) → state[m, n + m] = |0⟩𝑛
(step = 1) → state[m, n + m] = |0⟩𝑛
(step = n + 1) → uniform(state[m, n + m])
(step = n + 2) → |most(state[m, n + m])

2𝑛 − 𝜃 | ≤ 𝜖

We observe that, despite all of the necessary changes, the struc-
ture of each rule remains the same. This suggests that our specifi-
cations are indeed easy to adapt and reuse. To establish the gener-
alisability of our results, we plan to extend our experiments to a
larger set of subjects in the future.

5.4 Threats to validity
We identify here some of the threats to the generalisability of our
results:

• Small pool of mutants and variants: Our experiments
only included 15 mutants per algorithm for the first two
research questions, and 4 variants of QPE for the third. A
larger, more diverse pool of mutants could lead to different
results, as at least one rule was never violated by any of the
mutants.

• Small instances of algorithms: For the sake of making
our experiments run fast, we gave smaller inputs to our
programs. We do not know how examples of increased size
would affect our results, but it is possible that deeper circuits
could reveal more errors during runtime.

• Usage of barriers:We defined the “steps” of a program in
terms of the locations of barriers. This means that whether
a program satisfies a specification or not depends on how
barriers are placed. In practice, barriers often go unused or
are used inconsistently, so this could represent an obstacle
in the practicality of our approach. In the future, we will

consider how to automatically split program executions into
logical steps.

We do plan to mitigate these risks through more extensive case stud-
ies in an extended version of this paper, which will be prepared for
an archival journal publication. We do believe the current prototype
serves as a suitable proof of concept, and there is enough promise
for the underlying ideas to be explored and expanded further.

6 Conclusions
In this paper, we introduced the specification language Runtime-
SpeQ, and described how monitors for its specifications can be
implemented. We used mutation analysis to evaluate how good our
runtime monitors are at finding faults, as well as their usefulness
in identifying equivalent programs. Finally, we produced different
implementations of the same algorithm to verify how much the
original specification needed to be changed for each.

We identify the following avenues for future work:
• Implementing our specification language as a DSL from
which runtime monitors can be automatically generated.

• Exploring different assertion schemes, as well as efficient
ways to implement and insert assertions.

• Adapting the language to hybrid architectures.
• Extending the language to allow for more types of assertions,
and more sophisticated rules.

• Evaluating the effect of noise on the efficacy of runtime
monitors.
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