Delta Debugging for Property-Based Regression Testing of
Quantum Programs

Gabriel Pontolillo

Department of Informatics, King’s College London
London, United Kingdom
gabriel.pontolillo@kcl.ac.uk

ABSTRACT

Manually debugging quantum programs is a difficult and time-
intensive process. In this paper, we introduce an automated de-
bugging technique, based on delta debugging and property-based
testing, for quantum programs. Our technique automatically iden-
tifies the changes made within an update to a quantum program
that cause a property-based regression test to fail. To evaluate our
technique, we inject faults and semantic preserving changes into
three quantum algorithms. We discuss the viability and efficacy
of our approach after measuring the percentage of faults and se-
mantic preserving changes. Our results indicate that our method
has a high true positive (called sensitivity) and true negative rate
(called specificity) and is robust in terms of the amount of changes
introduced to the program. Moreover, the sensitivity of the method
increases significantly with the number of properties. While the
specificity remains stable when increasing the number of properties
and inputs.

ACM Reference Format:

Gabriel Pontolillo and Mohammad Reza Mousavi. 2024. Delta Debugging for
Property-Based Regression Testing of Quantum Programs. In Proceedings of
Make sure to enter the correct conference title from your rights confirmation
emai (Conference acronym 'XX). ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

1.1 Motivation

We are witnessing increased availability of powerful quantum com-
puting facilities as a service; also there are increasingly promising
prospects of applying quantum computing in fields such as material-
and drug discovery [1], scheduling [2], and optimisation [3, 4]. With
these promising prospects comes an inherent challenge of quality
assurance of complex quantum programs. Quantum programs and
programming frameworks are becoming increasingly complex and
this complexity calls for novel and rigorous testing and debugging
frameworks. In particular, there is very little available in terms of
debugging tools and techniques for quantum programs [5] and it is
unknown how fault localisation can be supported in this context.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference acronym XX, June 03-05, 2018, Woodstock, NY

© 2024 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Mohammad Reza Mousavi
Department of Informatics, King’s College London
London, United Kingdom
mohammad.mousavi@kcl.ac.uk

In this paper, we address this gap and investigate, to our knowl-
edge, the first application of delta debugging, an automated debug-
ging technique, to quantum programs. We augment our proposed
technique with property-based testing [6], which is an established
testing approach recently extended to the domain of quantum pro-
grams [7].

Applying (delta) debugging to quantum programs turns out to
be very challenging due to various reasons:

(1) the input- and output-space of a quantum program are both
infinite, each qubit taking values from an infinite Bloch
sphere; as a consequence, determining whether the observed
failure is the same as the original one is challenging;

(2) unlike traditional debugging, observing the intermediate

state causes a state in superposition or entanglement to

collapse, permanently altering the state [5];

the input-space of quantum programs is not always just a val-

uation of qubits, some algorithms [8, 9] take an oracle as an

input and this complicates finding the process of simplifying
the deltas and finding the root cause; and

the dimension of the input-space increases exponentially

with the number of inputs; in particular, entanglement poses

serious problems in debugging and makes it difficult to sim-
plify test inputs.

—
SY)
=

—
N
=

We hypothesise that property-based testing provides a convenient
technique to mitigate some of these challenges. Namely, one can
rely on properties to generate complex, yet meaningful inputs, and
tell apart different types of failure by considering which properties
have been violated and how they have been violated.

To simplify the experimental setup, we apply delta-debugging
to a regression testing scenario, where the root cause for failure
is to be found among a (varying) number of introduced changes.
Given the computational cost of debugging, this simplified setting
allowed us to manage the time needed for our experiments. We
explore some future directions to generalise our approach in the
conclusions.

1.2 Research Questions

To evaluate our hypothesis and the proposed setup, we consider a
benchmark of three quantum algorithms [8]. We inject behaviour
changing faults [9], along with semantic preserving changes and
analyse the outcomes of automated debugging on the resulting
regression to answer the following research questions:

RQ1: Is delta debugging effective at locating faults in quantum pro-
gram updates?
We further analyse this research question in terms of two sub-
questions: RQ1.1 pertaining to the sensitivity (true positive

https://orcid.org/0000-0002-4529-2903
https://orcid.org/0000-0002-4869-6794
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

rate), and RQ1.2 pertaining to specificity (true negative rate),
as specified further below:

RQ1.1: Does the output of delta debugging include the actual failure-

inducing change (sensitivity)?

RQ1.2: Does the output of delta debugging exclude the semantic-

preserving changes (specificity)?
For these research questions, we are interested to see how the
two metrics change with the amount of introduced changes.

RQ2: Does the effectiveness of the technique correlate with the
number of properties evaluated within the property-based
test function?

Similar to the previous question, we divide effectiveness in
terms of sensitivity and specificity as follows:

RQ2.1: Does the sensitivity of delta debugging correlate with the

number of evaluated properties?

RQ2.2: Does the specificity of delta debugging correlate with the

number of evaluated properties?

RQ3: Does the effectiveness of the technique increase with the
number of inputs generated per property-based test?
Again, we divide effectiveness in terms of sensitivity and
specificity as follows:

RQ3.1: Does the sensitivity of delta debugging correlate with the

number of generated inputs for test?

RQ3.2: Does the specificity of delta debugging correlate with the

number of generated inputs for test?

By posing these research questions, we establish whether our
proposed approach is effective in finding and isolating the root
causes among the rest of changes that do not contribute to the
initially-observed failure (RQ1). Also, we study how fault-isolation
improves by adding more properties (RQ2) and whether generating
more inputs leads to be better fault-isolation (RQ3).

1.3 Contributions

The contributions of the paper are summarised below:

e We develop an integrated technique for delta debugging and
property-based testing, which is applicable to regression
tests on Qiskit programs.

e We optimise the developed technique for quantum-specific
phenomena, e.g., by reusing the delta debugging steps for
multiple properties.

e We evaluate our developed technique on three fundamental
algorithms and analyse its true positive rate (sensitivity) and
true negative rate (specificity) by varying the number of
changes, properties, and inputs.

A lab package is available online, comprising the implemented
technique, its documentations, generated data, and its analysis [10].

1.4 Structure

The remainder of this paper is structured as follows. We review the
related work and position our research in Section 2. In Section 3,
we define our proposed techniques and its various steps. We specify
the experimental setup to answer our research questions in Section

4 and analyse and discussed the outcomes of our experiments in 5.

Finally, we conclude the paper and present the directions of future
work in Section 6.

Gabriel Pontolillo and Mohammad Reza Mousavi

2 RELATED WORK

Delta Debugging. The initial idea [11] [12] as well as the detailed
elaboration of delta-debugging in Python [13] are the starting points
of our research. We re-used some of the publicly available code for
delta debugging [13] and extended it to work with our property-
based tests and quantum circuits.

Debugging Quantum Programs. Metwali and van Meter [5] de-
veloped a tool that facilitates debugging quantum programs by
allowing for dividing the circuits into parts and inspecting the in-
termediate outcomes to triangulate the fault. While their tool is
meant to be used for manual debugging (potentially facilitated by
automated tests), our technique is aimed to automate the process
of debugging. The tool developed by Matwali and van Meter can be
useful in the future development of our technique where we will
triangulate faults by modifying the intermediate states.

Li et al. [14] propose the insertion of projection-based runtime
assertions within quantum programs for the identification and
localisation of faults. The quantum state can be verified in various
locations within the circuit by inserting projective assertions as
an alternative to statistical assertions. Projective assertions have
potential to be used for the verification of postconditions within
property based tests and can be used as a future extension of our
technique.

Testing Quantum Programs. Wang et al. propose QuCAT [15], a
tool for the combinatorial testing of quantum programs. Combina-
torial testing, such as the one proposed in QuCAT, could be applied
for the ’smart’ generation of test inputs, as opposed to the random
generation applied for our property based tests, though it would
only be useful if the precondition heavily limits the input space.

Wang et al. [16] propose QuanFuzz, a grey box approach to
fuzz testing quantum programs. QuanFuzz first analyses the code
to identify key areas of the program, particularly measurement
operations on qubits. This idea can be used to improve the input
generation and replace our random inputs for property-basded
testing.

Honarvar et al. [7] took the first step in applying property-based
testing to quantum programs. They provide QSharpCheck, a prop-
erty based testing framework for the Q# language. We take a similar
approach for the property based tests used within the property
based test oracles, though we go beyond their basic approach in
order to simultaneously apply multiple property-based tests along
with a statistical correction to control the family-wise error rate.

Tao et al. [17] propose Gleipnir for the calculation of error bounds
of quantum programs on noisy hardware. Their methodology com-
putes a new error metric: the (4, §)-diamond norm which constrains
the input state to generate tighter error bounds, compared to the un-
constrained diamond norm. The constrained diamond norm error
metric, may have applications for the verification of post-conditions
within property based tests, where the constraints of the generated
input states are known.

3 PROPOSED TECHNIQUE

Our approach can be summarised as an integration of property-
based testing and delta debugging for quantum programs. Proper-
ties are an essential part of our approach, because they are used

Delta Debugging for Property-Based Regression Testing of Quantum Programs

as test oracles, not only for distinguishing failing and passing runs
but also for distinguishing different failures from each other.

We make recursive calls to the delta debugging algorithm, which
is initialised with a passing and failing quantum program (repre-
sented by the empty set of changes D1, and the difference between
the passing and failing programs D2, respectively) and an auxiliary
parameter specifying the granularity of the search initially set to 2
(the coarsest granularity, see below for more information).

At each delta-debugging call, we perform the following four
steps:

(1) Calculate the difference A = D2’\D1’ between the currently

passing D1’ and failing D2’ sets of deltas.

(2) Split A into n subsets: Ag ... A,

(3) For each subset of deltas A;, apply the property based test
oracle on D1’ U A; and D2’\A;, generating intermediate
circuits, and testing them to identify whether the same failure
as C2 is observed.

(4) Prepare the next recursive delta-debugging call.

Below, we spell out all the key functions required for the initial,
and following recursive calls to the delta debugging function.

3.1 Circuit serialisation

The quantum circuits are serialised to a list of quantum circuit
instructions (explained below), this is so we can apply a diffing
algorithm to identify the deltas between two circuits C1, C2 (pre-
update, post-update respectively). As of Qiskit 0.45.0, quantum
circuits are stored as a list-like object of quantum circuit instruc-
tions, such as quantum gates, barriers, and measurements. When a
gate is added to a circuit in Qiskit, it is appended to the end of the
list.

Semantically equivalent circuits or sections within circuits may
generate different deltas due to the order that the quantum gates
are inserted. These different representations hamper the delta-
debugging process and their effect is comparable to (a large number
of) semantic preserving changes within the failing update, which
we investigate in RQ1 (see Sec. 5.1, Figs. 3, 4 for the effect of such
changes in the effectiveness of our approach).

3.2 Delta Generation and Application

To apply delta debugging, we need a set of passing deltas D1 (ini-
tially 0, pertaining to the passing program), and a set of failing
deltas D2 (initially dif f(C1,C2), the difference between the ini-
tially passing and failing circuit). We utilise a simple diffing algo-
rithm from [18], including their function definitions (with minor
modifications).

We first generate the longest common sub-sequence (LCS) matrix
f(i,j), where i = ||C1||, j = ||C2]||, containing the lengths of the
LCS of circuit instructions between the serialised circuits C1, C2.

0, ifi=0orj=0
f.J) =91+ f(i-1,j-1), if C1l;-1 = C2j_4
max(f(i—1,j), f(i,j— 1)), otherwise

We then utilise the LCS matrix to generate the list of diffs be-
tween the two serialised circuits C1, C2:

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

dif f(C1,C2) = dif ' (||C1]], [IC2]])

€, ifi=0and j=0
Insert(i,C2(j — 1))dif f’(i,j—1), ifi=0

Remove(i,C1(i — 1)) dif f'(i—1,j), ifj=0
diff'(i-1,j-1), if Cli_y = C2j
Insert(i,C2(j — 1))dif f'(i,j—1), iff(i-1,j) < f(i,j—1)
Remove(i, C1(i — 1)) dif f'(i = 1)), if f(i—1j) > f(i,j—1)

dif f' (i, j) =

The diff algorithm iterates through the indexes i, j, checking if
the circuit instructions at C1;-1, and C2j_1 are equal, or the end
of either (i = 0,j = 0) or both (i = 0 and j = 0) serialised circuits
has been reached. If none of the above conditions are met, adjacent
elements in the LCS matrix are compared to take the path that
outputs the smallest number of deltas.

Next, the function apply(A, c) receives a serialised to a list of
quantum instructions ¢ that describe a quantum circuit (typically
C1) and applies an ordered set of deltas A to generate an intermedi-
ate circuit.

apply(A, c) = apply’ (A, c,0)

c, ifA=¢€

apply’ (A, c’,n+1), if A=Remove(i).A An=ic=g.c
apply’ (A, ¢,n) = 1 g.apply’ (A, c’,n+1), if A =Remove(i).N An<ic=g.c

g.apply’ (AN, ¢, n), if A = Insert(i,g).A" An=i

g.apply’ (A, ¢’,n+1), if A=Insert(i,g).N An<ic=g.c

Where:
A = €|Remove(i).A |Insert(i, g).\
c=elg.c’

g represents a circuit instruction.
i represents an index to insert the circuit instruction before, or the
index of the circuit instruction to remove.

apply(D2,C1) = C2 and apply(0, C1) = C1 holds.

3.3 Property-Based Testing

Once we calculate the deltas, we can re-run the tests for different
subsets of deltas and localise the faults by focusing on smaller deltas
that feature the same failure.

Determining whether a failure is the same as the initially-
observed failure is vital to our technique. When testing interme-
diate circuits during delta debugging, different failures may be
observed that cause the same property to be violated. As a conse-
quence, we may not simply return a "failure" whenever a property
does not hold, we must first check that the failure is the same as
the initially-observed failure, as observed in C2.

We classify two failing circuits as featuring the same failure when
the same distribution of outputs is be observed when executing and
measuring their outputs for all tested properties. We compare the
distribution of outputs by applying the Fisher’s exact test to the
observed X, Y, and Z basis measurements on all qubits.

The identification of a property failure is contained within the
property based test oracle; using the oracle and the following verifi-
cation step, we distinguish between different failures.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

The test(A) function, used in the delta-debugging call in Section
3.4, applies our property-based tests oracle as follows.
test(A) = testOracle(A, P, n)

PASS, if PropertyBasedTests(A,P,n) = 0

testOracle(A, P, n) = i
verify(R,A), if PropertyBasedTests(A,P,n) =R ={(i,p)} #0

Where PropertyBasedTests(A, P,n) is a function that applies
(using the apply function in Section 3.2) A onto C1 to create an
intermediate circuit and tests the intermediate circuit using the set
of properties P, generating n inputs per property.

The PropertyBasedTests(A, P, n) function returns a set of pairs
of inputs i that failed a property p {(i, p)}. If two properties were
to fail, one with one input, and one with two inputs, we would get:
{(|¢), EqualProperty), (|'), PhaseProperty), (|®), PhaseProperty)}.

FAIL, if V(i,p) € R : measure(A, p,i) ~ measure(D2, p, i)

verify(R,A) =
fy() {INCONCLUSIVE, otherwise

Where measure(A, p, i), initialises the state to i, applies A to C1
to create the intermediate circuit, as well as potential modifications
on the circuit caused by the property based test p, and measures
the output states (as defined by p). This state is then compared
against the output of the original failure, given the same input and
modifications caused by the property based test (measure(D2, p, i)
creates the original failing circuit).

The measure(A, p, i) function returns a triple containing the
(x,y, z) basis measurements, ’~’ is checked by applying a statistical
test of equality on the two distributions of measurements.

To assert equality, we apply Fisher’s exact test to each qubit’s X,
Y, and Z basis measurements individually. This implementation is
imperfect and is reminiscent of the projection-based assertions in
the literature [14]; this typoe of test is not capable of distinguishing
between states such as: [®*) and |®~). We opted for this approach
in our experiments to enhance scalability and reduce the computa-
tional overhead of performing full quantum state tomography on
multiple qubit states.

3.4 Delta Debugging

Once all the deltas between the passing and failing circuit are
identified, and the property based test oracle is defined with all of
the circuit’s properties to evaluate, we may call the delta debugging
function to localise the changes A 4y, that cause the initial failure
C2. We utilise the delta debugging algorithm [12, 13], as specified
below.

dd(D1,D2) = dd’ (D1, D2, 2)

dd’(D1',D1' U A;,2), if 3i =€ {1,...,n} - test(D1" U A;) = FAIL
dd’ (D2’ \A;, D2, 2), if i =€ {1,...,n} - test(D2'\A;) = PASS
dd’(D1' U A, D2’,max(n"1,2)), if3Ji=€{1,..., n} - test(D1” U A;) = PASS

dd’(D1',D2’,n) =
dd’ (D1, D2’\A;, max(n1,2)), if3Ji=€{1,..., n} - test(D2’\A;) = FAIL
dd’ (D1, D2’, min(2n, |Al)), ifn < |A]
(D1,D2), otherwise

The conditions within the algorithm simultaneously maximise
the passing set of deltas (D1), whilst minimising the failing set of
deltas (D2).

The algorithm works by evaluating various subsets of deltas,
using a binary search, in order to isolate the failure causing deltas.

Gabriel Pontolillo and Mohammad Reza Mousavi

The subsets of deltas are evaluated with a test(A) function (specified
in the previous section), which may return a pass, fail or inconclusive
result. Inconclusive results are returned by the test function if the
observed failure is different to the failure observed in C2. The results
of the test function are cached on completion, if the same subset of
deltas need to be tested again by the algorithm, the cached result is
returned instead.

The test function we apply is identified in Section 3.3, as the
property-based test oracle, which aims to distinguish between dif-
ferent failures, and thus more accurately steer the delta debugging
algorithm.

Once the passing and failing set are respectively maximised
and minimised and no further progress is possible, the relative
complement is taken between the sets, which yields the isolated
fault A a1 = (D2\D1).

For further information on delta debugging, please refer to Zeller’s
work [12]

4 EXPERIMENT DESIGN

Our research questions (RQ1-3) require an assessment of the ef-
fectiveness of the technique when varying the number of semantic
preserving changes injected (RQ1), the number of properties (RQ2),
and number of inputs per property (RQ3). We measure the effective-
ness of delta debugging through the measurement of two variables:

o Percentage of faults identified (sensitivity): Given by the per-
centage of delta debugging outputs that include the inserted
fault .

o Percentage of semantic preserving changes removed (speci-
ficity): Given by the percentage of inserted deltas that are
omitted from the delta debugging output.

In the remainder of this section, we first introduce the subject
systems that were used to design our experiments. Then we de-
scribe the experimental setup and finally, we specify the experiment
design for each and every research question.

4.1 Subject Systems

We used three commonly used quantum programs as our subject
systems, Quantum Fourier Transform (QFT), Quantum Teleporta-
tion (QT) and Quantum Phase Estimation (QPE), which we briefly
discuss below.

Three faulty implementations were tested for each subject sys-
tem, and an array of experimental groups from the below tables
was prepared to evaluate the different research questions:

of Ch
° zanges # of Inputs || # of Properties
1 1
4 2 2
8
4 3
16

The independent variables assigned to each experimental group
determined the experimental setup for delta debugging. Delta de-
bugging was applied with: a correct implementation of a quantum
algorithm, a faulty implementation of the same quantum algorithm
(injected with the defined amount of semantic preserving changes,
specified below), and a property based test oracle using the defined

Delta Debugging for Property-Based Regression Testing of Quantum Programs

number of properties and inputs per property based test. Each ex-
periment was repeated 50 times, recording the number of detected
faults and semantic preserving changes in the delta debugging
output.

4.1.1 Quantum Fourier Transform (QFT). QFT and its inverse are
commonly applied in other algorithms, e.g., those using quantum
phase estimation [19], such as Shor’s algorithm [20] and quan-
tum counting [21]. The algorithm performs the transformation
[j) — \/LN ZkN:?)l e% |j) where n is the number of qubits in |j)
and N = 2" is the number of qubits in |j). The same transforma-
tion is applied as the discrete fourier transform, though instead of
transforming a vector of complex numbers, the amplitudes of state
|j) are transformed. To implement this in a circuit, the Hadamard
gate is applied to each qubit, followed by controlled phase shifts.
We identified, formally specified, and coded three properties of
QFT for our property-based tests: 1) linear shift, 2) phase shift, 3)
identify after applying reverse QFT on QFT. Due to space limitations,
we refer to the lab package [10] for their detailed specification.

4.1.2 Quantum Teleportation (QT). The quantum teleportation pro-
tocol transmits an arbitrary and unknown single qubit quantum
state |/) by sending two classical bits of information. A potential
application for quantum teleportation is within quantum communi-
cation [22]. To achieve this, a qubit pair is first entangled and shared
between two parties (sending and recieving). The sending party
performs a sequence of operations followed by a computational
basis measurement their half of the entangled pair and the qubit
containing the quantum state to teleport. The computational basis
measurements are sent to the receiving party, which determine the
operations to apply on their half of the entangled pair, after the
operations are applied, the receiver’s qubit assumes the |¢/) state.

The quantum teleportation implementation that we use trans-
mits the qubit from register one into register three, and applies con-
trolled Pauli-X and controlled Pauli-Z gates to abstract the sending
and receiving of classical information, and conditionally applying
the respective Pauli gates.

We specified three essential properties of QT: 1) identify of input
and output, 2) application of unitaries, 3) appending zero bit strings.

4.1.3 Quantum Phase Estimation (QPE). Phase estimation algo-
rithm is applied as a component within multiple quantum algo-
rithms [19], such as Shor’s algorithm and quantum counting, The
algorithm evaluates the phase 6 of a unitary operator U with re-
spect to an eigenvector |i/) with eigenvalue 27:¢_ The algorithm
works by initialising and applying H®" on the upper register with n
estimation qubits, and initialising the lower register to |/). For each
qubit in the upper register {go, g1, .. ., qn_1}, the unitary U%" " is
controlled by qubit g;, and applied to the lower register. Finally, the
inverse of the quantum fourier transform (QFT) is applied to the
upper register, which is then measured in the computational basis
to receive an estimate of 0.

The implementation of the QPE algorithm used in our case study
assumes a fixed unitary U, though our three properties are not de-
pendent on this specific unitary: 1) application to eigenvectors with
the same eigenvalue, 2) to eigenvectors with different eigenvalues,
and 3) initialisation with eigenstate.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

0

Figure 1: Bell state circuit

Figure 2: Bell state circuit with a Z-identity injected

4.2 Experimental Setup
We applied the delta debugging algorithm, based on [13], modifying

the Python implementation to work with our implementation of
diff [18], as well as the property-based test oracles that we propose.

For each case study and their faulty implementations, all re-
maining independent variable combinations from Section 4.1 were
concurrently executed, and repeated 50 times using a Python mul-
tiprocessing pool, and stored in a CSV format.

We ran our experiments using Qiskit 0.44.2 and Python 3.11 on
a Windows 11 desktop (Ryzen 7 5700x, 16 GB RAM, RTX 3060 Ti).

4.3 ROQ1: Effect of Changes

We are particularly interested in measuring how the effectiveness
scales with an increasing number of changes introduced in an update.
This is to gain insight on whether the technique will be effective at
locating faults when small or large changes are made to quantum
programs.

When performing our experiments on the subject systems, we
used the “most complete" application of the technique (three prop-
erties evaluated, with four inputs generated per property). Based on
that we varied the number of semantic preserving changes injected
into the failing implementation of the algorithms, and recorded the
percentage of faults identified, as well as the percentage of semantic
preserving changes removed

Semantic preserving changes were injected into the circuit by
randomly selecting a location within the circuit before, or after
an already-present gate at any quantum register (represented by
the dotted lines in Fig. 1). A circuit identity, consisting of a pair of
identical Pauli gates is then inserted in the chosen location. This
process is repeated until the required number of gates is are injected
into the circuit. An example that injects two semantic preserving
changes can be seen in Fig. 2, a pair of Pauli-Z gates are inserted
after the original Hadamard gate in register Q.

4.4 RQ2: Effect of Properties

Answering this research question gives us insight whether there is
value in increasing the number of properties to evaluate within the
property-based test oracle, or if a single property within the oracle
is sufficient for the technique to be effective at locating faults.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

We performed experiments evaluating one, two, and three prop-
erties within the property based test oracle, and measured the
percentage of faults identified and changes removed, aggregating
the results across all faults.

4.5 ROQ3: Effect of Inputs

Our property based test oracle employs multiple individual property
based tests that each generate multiple inputs to test. RQ3 seeks
to identify the effects of generating different amounts of inputs to
evaluate within the property based tests.

The number of inputs generated for each property based test
was varied between one, two, and four between experiments. As
we are interested in the impact of varying the number of inputs on
the "best case" implementation of delta debugging, we analysed the
data where we evaluated all three properties included in the oracle.

4.6 Inserting a minimal fault

Three failing implementations of each quantum program were cre-
ated by inserting a minimal fault into the correct implementation
of the circuit. The insertion of the fault was manual, and consisted
in the insertion or removal of a quantum gate. Mutation testing
techniques for quantum programs also include mutation operators
that replace quantum gates [23] [24]. We did not include any faults
involving the replacement of quantum gates, as they are comprised
of both an insertion, and removal delta, of which; one or both deltas
may be the minimal fault. To keep the experiments fair, we con-
trolled for the number of faults within the failing implementations
of the quantum circuits, and thus omitted the replacement of gates
when creating the faulty implementations.

5 RESULTS
5.1 RQ1:Is delta debugging effective?

We divided this question into the following sub-questions pertain-
ing to the sensitivity and specificity of the method, respectively,
which are analysed below.

RQ1.1: Does the algorithm include the actual faults? We are not
only interested in analysing sensitivity, but also its variation against
an increasing amount of changes. The results in Figure 3 suggest
that the sensitivity of our proposed technique is very high and is
robust against increasing changes. In this figure, the percentage
of faults identified remains stable across all three algorithms (QT,
QFT and QPE) when increasing the number of semantic preserving
changes injected (respectively 86%, 97.3%, 91.3% at N=2 to 85.3%,
92.7%, 88% at N=16. When considering data for all three algorithms,
grouping the different numbers of semantic preserving changes
injected, the median percentage of faults identified was 96%, with a
standard deviation of 11.9% (min 58%, max 100%). The Pearson cor-
relation coefficient was -0.08, with a p-value of 0.62, suggesting no
significant correlation between the number of semantic preserving
changes injected and percentage of faults identified.

RQ1.2 Does the algorithm exclude semantic-preserving changes?
No strong correlation between the the percentage of semantic pre-
serving changes removed and the number of semantic preserving
changes was observed (see Fig. 4; Pearson correlation coeff. 0.10,
p-value 0.56). Quantum Teleportation showed an increasing trend

Gabriel Pontolillo and Mohammad Reza Mousavi

g
2w
H
T
=
o 70
(_% ——Log. (4 Inp. 3 Prop. Avg. QT)
&
60 ——~-Log. (4 Inp. 3 Prop. Avg. QFT)

—=—Log. (4 Inp. 3 Prop. Avg. QPE)

2 4 6 8 10 12 14 16
Semantic Preserving Changes Injected

Figure 3: Faults identified with increasing semantic-
preserving changes

100 T

975+ e T T T T

95 +

——Log. (4 Inp. 3 Prop. Avg. QT)
925 +
—==-Log. (4 Inp. 3 Prop. Avg. QFT)

—=—Log. (4 Inp. 3 Prop. Avg. QPE)

Semantic Preserving Changes Removed (%)

90

2 4 6 8 10 12 14 16
Semantic Preserving Changes Injected

Figure 4: Semantic-preserving changes removed with increas-
ing semantic-preserving changes

starting at a comparatively lower 93.7% of semantic preserving
changes removed at N=2, eventually overtaking QFT and QPE. The
median percentage of semantic preserving changes was 98.5%, with
a standard deviation of 3.4% (min 81%, max 100%). Overall, the speci-
ficity of the technique remains constant as the number of semantic
preserving changes increases, though it should be noted that the
absolute value of semantic preserving changes present within the
output also increases.

Delta debugging has shown robustness with respect to de-
bugging small and large sets of changes (updates), evidenced
by showing a constant level of sensitivity and specificity when
increasing the number of semantic preserving changes.

5.2 RQ2: Does effectiveness correlate with the
number of properties?

Similar to the previous case, we report effectiveness in terms of
sensitivity and specificity below.

RQ2.1. Does sensitivity correlate with the number of properties? In
Fig. 5, we see a significant increase in the percentage of detected
faults with respect to the increasing number of properties eval-
uated within the property based test oracle (between 55.7% and
67.2% at N=1, and 87.5% and 94.3% at N=3). The median (96%, 96%,
64%) and standard deviation (11.9%, 19.3%, 23.4%) of the percentage
of faults identified for three, two, and one, properties showed a
respective decrease to the variance in the output across all three
case studies, as more properties are evaluated within the oracle.
This trend is statistically verified using the Pearson’s correlation

Delta Debugging for Property-Based Regression Testing of Quantum Programs

Faults Identified (%)

Wi ——Log. (4 inputs Avg. QT)

60 1,77 —=~-Log. (4 inputs Avg. QFT)
—=—Log. (4 inputs Avg. QPE)

2
Number of Properties Evaluated

Figure 5: Faults identified as number of properties within
oracle increases

100 T

95

——Log. (4 inputs Avg. QT)
925 1 .
—==-Log. (4 inputs Avg. QFT)

Semantic Preserving Changes Removed (%)

—=—Log. (4 inputs Avg. QPE)

90

2
Number of Properties Evaluated

Figure 6: Semantic preserving changes removed as number
of properties within oracle increases

test (Pearson’s correlation coeff. 0.55, p-value 4.69E-10, showing a
moderate correlation).

RQ2.2. Does specificity correlate with the number of properties? Un-
like in fault identification, we see little change in the specificity
of delta debugging when the number of properties are increased
(see Fig. 6; between 98.5% and 98.9% at N=1, and 97.4% and 98.2% at
N=3). This trend can be seen across all three case studies (median
98.3%, 98.8%, 99.1%, standard deviation 3.4%, 2.7%, 1.9%). The slight
decline in specificity that can be seen in the graph is not verified
by statistical test (Pearson’s correlation coeff. -0.13, p-value 0.18.

The sensitivity of delta debugging increases with the number
of properties, while its specificity remains constant.

5.3 RQ3: Does effectiveness increase with the
number of generated inputs?

We divide our results for this research question into the results
concerning sensitivity and specificity.

RQ3.1. Does sensitivity correlate with the number of generated in-
puts? Increasing the number of inputs per property showed a weak
positive correlation with percentage of faults identified (Pearson’s
correlation coef. 0.14), though not enough to be statistically sig-
nificant (p-value 0.16). The results for quantum teleportation fell
marginally with an increase to inputs generated per property, which
showed a different trend compared to QFT and QPE (see Fig. 7). The
median (96%, 93%, 94%) and standard deviation (11.9%, 16.5%, 22.8%)
for four, two, and one inputs generated, showed little change to the
median values, though the standard deviation for the percentage of
faults identified increased significantly.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

100

90

80

70
——Log. (3 properties Avg. QT)

Faults Identified (%)
\

60 —==Log. (3 properties Avg. QFT)
—=—Log. (3 properties Avg. QPE)

50

1 2 3 4
Number of Inputs per Property

Figure 7: Faults identified as number of inputs generated per
property increases

100 +

95 +

——Log. (3 properties Avg. QT)
925 +
——~-Log. (3 properties Avg. QFT)

Semantic Preserving Changes Removed (%)

——Log. (3 properties Avg. QPE)
90 '

2 3 4
Number of Inputs per Property

Figure 8: Semantic preserving changes removed as number
of inputs generated per property increases

RQ3.2. Does specificity correlate with the number of generated inputs?
The percentage of fault preserving changes removed portrayed
and even weaker correlation (see Fig. 8) with corresponding to an
increase to the number of inputs per property (Pearson’s correla-
tion coef. -0.05, p-value 0.58) displaying the potential to identify
more faults without the cost of removing less semantic preserving
changes. The median (98.3%, 98.5%, 98.9%) and standard deviation
(3.4%, 3.1%, 2.6%) values remained constant across the different
numbers of inputs generated for each property based test.

No statistically significant correlation between the the num-
ber of inputs and the effectiveness of the technique was ob-
served.

5.4 Threats to validity

Below we provide a number of threats to the generaliseability of
the reported analysis.

e Fault and semantic preserving changes injection: Man-
ual fault injection is prone to bias. Our utomated method for
injecting semantic preserving changes may not represent
changes that a person would make when modifying a circuit.
Both of these threats may be mitigated by considering real
code evolution.

¢ Limited input domain for property-based tests: Some
property based tests do not take advantage of the infinite
input domain, for our current implementation of property
based testing, we only seek to modify the input states of
each quantum circuit, rather than inserting different oracles
within (for example QPE).

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

For oracle algorithms, the input to oracle algorithms is gen-
erally the oracle itself. It is possible to randomly generate
oracles as input for such algorithms, We were able to apply
delta debugging to QPE because part of its input is an eigen-
state of the controlled unitary, and we maintained the same
oracle between the passing and failing circuits.

Relaxing these assumptions would require more complex
generators.

6 CONCLUSIONS

In this paper, we proposed an integration of property-based testing
and delta-debugging for automated debugging of quantum pro-
grams. We evaluated the effectiveness of our proposed technique
using a benchmark of three quantum algorithms and nine failing
implementations of those algorithms, created by inserting a single
fault into a correct implementation. Our delta debugging approach
was applied using a correct implementation of the quantum algo-
rithm, alongside a faulty implementation that was injected with
a failure-inducing fault along with a varying number of semantic
preserving changes. We measured the sensitivity of the technique,
i.e., whether the failure-inducing fault was included in the output
and specificity, i.e., whether the semantic-preserving changes were
excluded. Our evaluation considered a varying number of semantic-
preserving changes, properties, and inputs. The proposed technique
has a robust sensitivity and stable specificity with the increasing
number of semantic-preserving changes.
We have identified the following avenues for future work:

o Extending the context of automated debugging beyond re-
gression testing by using various inputs to a faulty circuit as
the context;

e Demonstrating the impact of the verification step within the
property based test oracle;

o Exploring other approaches for the verification of property-
based tests, such as the application of distance metrics;

o Generating faulty implementations by inserting multiple
realistic faults [25], and evaluating;

o Extending the technique to allow for the automated genera-
tion of oracle circuits; and

o Assessing the influence of noise on the technique.

Acknowledgments. The authors have been partially supported by
the EPSRC project on Verified Simulation for Large Quantum Sys-
tems (VSL-Q), grant reference EP/Y005244/1 and the EPSRC project
on Robust and Reliable Quantum Computing (RoaRQ), Investigation
009, grant reference EP/W032635/1. Also King’s Quantum grants
provided by King’s College London are gratefully acknowledged.

REFERENCES

[1] J. L. Tilly, “Methods for variational computation of molecular properties on near
term quantum computers,” Ph.D. dissertation, University College London, 2022.
[2] D. Amaro, M. Rosenkranz, N. Fitzpatrick, K. Hirano, and M. Fiorentini, “A
case study of variational quantum algorithms for a job shop scheduling
problem,” EPJ Quantum Technology, vol. 9, no. 1, p. 5, 2022. [Online]. Available:
https://doi.org/10.1140/epjqt/s40507-022-00123-4
X. Liu, A. Angone, R. Shaydulin, L Safro, Y. Alexeev, and L. Cincio, “Layer vqge:
A variational approach for combinatorial optimization on noisy quantum com-
puters,” IEEE Transactions on Quantum Engineering, vol. 3, no. 01, pp. 1-20, jan
2022.
[4] T.V.Le and V. Kekatos, “Variational quantum eigensolver with constraints (vqec):
Solving constrained optimization problems via vqe,” 2023.

=

Gabriel Pontolillo and Mohammad Reza Mousavi

[5] S.Metwalli and R. V. Meter, “A tool for debugging quantum circuits,” in 2022 IEEE
International Conference on Quantum Computing and Engineering (QCE). Los
Alamitos, CA, USA: IEEE Computer Society, sep 2022, pp. 624-634.

[6] J. Derrick, N. Walkinshaw, T. Arts, C. Benac Earle, F. Cesarini, L.-A. Fredlund,
V. Gulias, J. Hughes, and S. Thompson, “Property-based testing-the protest
project,” in Formal Methods for Components and Objects: 8th International Sympo-
sium. Springer, 2010, pp. 250-271.

[7] S. Honarvar, M. R. Mousavi, and R. Nagarajan, “Property-based testing
of quantum programs in Q# in ICSE’20: 42nd International Conference on
Software Engineering, Workshops. ACM, 2020, pp. 430-435. [Online]. Available:
https://doi.org/10.1145/3387940.3391459

[8] G. Pontolillo and M. R. Mousavi, “A multi-lingual benchmark for property-based
testing of quantum programs,” in 3rd IEEE/ACM International Workshop on
Quantum Software Engineering, Q-SE@ICSE 2022, Pittsburgh, PA, USA, May 18,
2022. IEEE, 2022, pp. 1-7. [Online]. Available: https://doi.org/10.1145/3528230.
3528395

[9] J. Campos and A. Souto, “Qbugs: A collection of reproducible bugs in quantum
algorithms and a supporting infrastructure to enable controlled quantum
software testing and debugging experiments,” in 2nd IEEE/ACM International
Workshop on Quantum Software Engineering, Q-SE@ICSE 2021, Madrid, Spain, June
1-2, 2021. 1EEE, 2021, pp. 28-32. [Online]. Available: https://doi.org/10.1109/Q-
SE52541.2021.00013

[10] G. Pontolillo, “Delta Debugging for Property-Based Regres-

sion Testing of Quantum Programs” 1 2024. [Online]. Avail-

able: https://figshare.com/articles/software/Delta_Debugging_for_Property-

Based_Regression_Testing_of_Quantum_Programs/25075154

A. Zeller, Why Programs Fail: A Guide to Systematic Debugging. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 2005.

A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing input,”

IEEE Transactions on Software Engineering, vol. 28, no. 2, pp. 183-200, 2002.

A. Zeller, “Reducing failure-inducing inputs,” in The Debugging Book. CISPA

Helmholtz Center for Information Security, 2023, retrieved 2023-11-11

18:05:06+01:00. [Online]. Available: https://www.debuggingbook.org/html/

DeltaDebugger.html

[14] G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie, “Projection-based
runtime assertions for testing and debugging quantum programs,” Proc.
ACM Program. Lang., vol. 4, no. OOPSLA, nov 2020. [Online]. Available:
https://doi.org/10.1145/3428218

[15] X. Wang, P. Arcaini, T. Yue, and S. Ali, “Qucat: A combinatorial testing tool for
quantum software,” 2023.

[16] J. Wang, F. Ma, and Y. Jiang, “Poster: Fuzz testing of quantum program,” in 2021

14th IEEE Conference on Software Testing, Verification and Validation (ICST), 2021,

Pp. 466-469.

R. Tao, Y. Shi, J. Yao, J. Hui, F. T. Chong, and R. Gu, “Gleipnir: Toward practical

error analysis for quantum programs,” in Proceedings of the 42nd ACM SIGPLAN

International Conference on Programming Language Design and Implementation.

Association for Computing Machinery, 2021, p. 48-64. [Online]. Available:

https://doi.org/10.1145/3453483.3454029

F. Hartmann, Dec 2020. [Online]. Available: https://florian.github.io/diffing/

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information:

10th Anniversary Edition. Cambridge University Press, Jun. 2012. [Online].

Available: http://dx.doi.org/10.1017/CB0O9780511976667

[20] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM Journal on Computing, vol. 26,
no. 5, p. 1484-1509, Oct. 1997. [Online]. Available: http://dx.doi.org/10.1137/
50097539795293172

[21] G. Brassard, P. H@yer, and A. Tapp, Quantum counting. Springer Berlin
Heidelberg, 1998, p. 820-831. [Online]. Available: http://dx.doi.org/10.1007/
BFb0055105

[22] Q.-C. Sun, Y.-L. Mao, S.-J. Chen, W. Zhang, Y.-F. Jiang, Y.-B. Zhang, W.-].

Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T.-Y. Chen, L.-X. You, X.-F.

Chen, Z. Wang, J.-Y. Fan, Q. Zhang, and J.-W. Pan, “Quantum teleportation

with independent sources and prior entanglement distribution over a network,”

Nature Photonics, vol. 10, no. 10, p. 671-675, Sep. 2016. [Online]. Available:

http://dx.doi.org/10.1038/nphoton.2016.179

D. Fortunato, J. CAMPOS, and R. ABREU, “Mutation testing of quantum programs:

A case study with qiskit,” IEEE Transactions on Quantum Engineering, vol. 3, pp.

1-17, 2022.

E. Mendiluze, S. Ali, P. Arcaini, and T. Yue, “Muskit: A mutation analysis tool for

quantum software testing,” in 2021 36th IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2021, pp. 1266-1270.

P. Zhao, Z. Miao, S. Lan, and J. Zhao, “Bugs4q: A benchmark of existing bugs

to enable controlled testing and debugging studies for quantum programs,”

Journal of Systems and Software, vol. 205, p. 111805, 2023. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0164121223002005

—_
—_

[12

[13

(17

e
2.

[23

[24

[25

https://doi.org/10.1140/epjqt/s40507-022-00123-4
https://doi.org/10.1145/3387940.3391459
https://doi.org/10.1145/3528230.3528395
https://doi.org/10.1145/3528230.3528395
https://doi.org/10.1109/Q-SE52541.2021.00013
https://doi.org/10.1109/Q-SE52541.2021.00013
https://figshare.com/articles/software/Delta_Debugging_for_Property-Based_Regression_Testing_of_Quantum_Programs/25075154
https://figshare.com/articles/software/Delta_Debugging_for_Property-Based_Regression_Testing_of_Quantum_Programs/25075154
https://www.debuggingbook.org/html/DeltaDebugger.html
https://www.debuggingbook.org/html/DeltaDebugger.html
https://doi.org/10.1145/3428218
https://doi.org/10.1145/3453483.3454029
https://florian.github.io/diffing/
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1007/BFb0055105
http://dx.doi.org/10.1007/BFb0055105
http://dx.doi.org/10.1038/nphoton.2016.179
https://www.sciencedirect.com/science/article/pii/S0164121223002005

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Contributions
	1.4 Structure

	2 Related Work
	3 Proposed Technique
	3.1 Circuit serialisation
	3.2 Delta Generation and Application
	3.3 Property-Based Testing
	3.4 Delta Debugging

	4 Experiment Design
	4.1 Subject Systems
	4.2 Experimental Setup
	4.3 RQ1: Effect of Changes
	4.4 RQ2: Effect of Properties
	4.5 RQ3: Effect of Inputs
	4.6 Inserting a minimal fault

	5 Results
	5.1 RQ1: Is delta debugging effective?
	5.2 RQ2: Does effectiveness correlate with the number of properties?
	5.3 RQ3: Does effectiveness increase with the number of generated inputs?
	5.4 Threats to validity

	6 Conclusions
	References

