
A Multi-Lingual Benchmark for Property-Based Testing of
Quantum Programs

Gabriel Pontolillo
Department of Informatics, King’s College London

London, United Kingdom
gabriel.pontolillo@kcl.ac.uk

Mohammad Reza Mousavi
Department of Informatics, King’s College London

London, United Kingdom
mohammad.mousavi@kcl.ac.uk

ABSTRACT
We present a multi-lingual benchmark for (property-based) testing
of quantum programs.We report on themethodology used to design
our benchmark and the rationale behind its design decisions.

Our benchmark covers three major quantum programming lan-
guages, namely Qiskit, Cirq, and Q#.We curate our benchmark from
languages documentations, open source repositories, and academic
papers. In order to demonstrate the common logic of the algorithms
included in our benchmark, we start from an implementation in one
language (often Qiskit) and produce comparable implementations
in the other two languages. We produce several properties and mu-
tants for each program as a benchmark to measure the effectiveness
of property-based testing frameworks. We reflect on the high-level
quantum programming concepts offered in the three languages of
our benchmark and their possible impact on testability and quality
assurance.
ACM Reference Format:
Gabriel Pontolillo and Mohammad Reza Mousavi. 2022. A Multi-Lingual
Benchmark for Property-Based Testing of Quantum Programs. In The 3rd
International Workshop on Quantum Software Engineering (Q-SE’22), May
18, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3528230.3528395

1 INTRODUCTION
Quantum computing is a rapidly expanding field of research, yet
our ability to design and develop complex quantum software is still
limited. Classical software engineering practices need to be adapted
to quantum software engineering, enabling a more structured ap-
proach for building high-quality quantum software [35]. Testing is
a major component of quality assurance in software development
and it is comparatively understudied in the quantum community
[24]. Quantum programs are difficult to comprehend and even more
challenging to test; hence, we need advanced testing and quality
assurance methodologies across various quantum and classical pro-
gramming languages as quantum programs and protocols increase
in complexity.

1.1 Problem statement
As a step to facilitate and support further research in testing quan-
tum programs, a multi-lingual benchmark of programs, with their
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Q-SE’22 , May 18, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9335-5/22/05.
https://doi.org/10.1145/3528230.3528395

properties, and faulty variants (i.e., mutations), is needed. Bench-
mark programs can be used to evaluate general testing method-
ologies and procedures across multiple languages. A concrete set
of programs that can be easily tested across multiple languages
will help researchers that are either adapting classical techniques
or developing new ways to test quantum programs. Particularly,
property-based testing has potential for testing quantum software
and would benefit from equivalent programs to appraise its ef-
ficacy and versatility and has the potential of bringing together
model-based and search-based testing techniques in this domain.

1.2 Contributions
In this paper we present a set of benchmark programs, developed
in Qiskit, Cirq, and Q#. The benchmark programs were translated
to make them comparable to each other, making it easier to un-
derstand where the languages differ in addition to facilitating the
development and translation of tests across the languages. In our
repository, we provide a usage example for our benchmark using
simple property-based tests, evaluating their efficacy with mutation
testing with several mutants of the provided benchmark programs.
We share insight in the languages whilst translating quantum algo-
rithm code. The similarities and differences that were encountered
are laid out and substantiated with examples from the benchmark
code. These observations could inform further research as well
as decision making regarding the language used for quantum pro-
gramming and its consequences for testing. The current benchmark
is available on an open Github repository via the following link
https://bit.ly/3qa6cbJ.

Note that the development of the benchmark is an ongoing and
long-term effort, but we decided to inform the community about
our effort in its early stages through the present paper, so that the
community may start using the benchmark and contributing to it,
leading to a synergistic effect.

1.3 Structure
The rest of the paper is organised as follows: Section 2 provides
an overview of the related work. Section 3 lists the decisions made
when choosing the languages and evaluating the different informa-
tion sources used to develop the benchmarks. The structure of the
repository is explained in Section 4. We share our findings while
developing the benchmark in Section 5, comparing the languages
with the concept of testability in mind. Section 6 concludes the
paper and presents the directions of our ongoing research.

https://orcid.org/0000-0002-4529-2903
https://orcid.org/0000-0002-4869-6794
https://doi.org/10.1145/3528230.3528395
https://doi.org/10.1145/3528230.3528395
https://doi.org/10.1145/3528230.3528395
https://bit.ly/3qa6cbJ

Q-SE’22 , May 18, 2022, Pittsburgh, PA, USA Gabriel Pontolillo and Mohammad Reza Mousavi

2 RELATEDWORK
The challenge of extending and adapting rigorous software engi-
neering method to the area of quantum computing has been identi-
fied in the literature [5, 24] . In the recent years, several researchers
have responded to this challenge and extended techniques such
as fuzz testing [33], runtime assertion checking [15], search-based
testing [34], mutation testing [17], and property-based testing [13]
to quantum software.

Despite these recent advancements, there is still a major gap
concerning benchmark programs [4]. The QBugs framework [4]
identifies the gap concerning benchmark programs and example in
quantum computing and proposes to curate a set of realistic bugs
from GitHub repositories. Once realised our benchmark can be ex-
tended by injecting such real faults into the multilingual algorithms.
This will lead to a richer evaluation framework for future testing
and program analysis techniques.

Muskit [17] provides a method to automatically generate and
analyse mutants of quantum programs. The mutants in our bench-
mark are very much inspired by the ideas presented in Muskit. We
could not use Muskit directly to generate mutants as it requires our
code to be structured monolithicly, without function definitions.

3 DESIGN DECISIONS
This section goes through the methodology and decisions made
when designing our benchmark, including the choice of languages,
and the sources used to curate the algorithms and their implemen-
tations.

3.1 Choice of Languages:
In order to choose the quantum programming languages for our
benchmark, we defined two objectives:

(1) Popularity: we performed an analysis of open source repos-
itories on Github and gathered data on the popularity of
quantum programming languages in open source projects.
To this end, we performed a search using the following query
on Github:
“Quantum programming" OR
“Quantum computing" OR
“Quantum computation" OR
“Quantum algorithm"
We analysed the top 100 results based on the three rank-
ing criteria provided by its search functionality. We then
analysed the results based on the language or library used
in each repository. We did count the result for all program-
ming languages if multiple languages were used for a single
repository. The results of our analysis are depicted in Fig-
ure 1; for reproducibility, we have also included the results
in the benchmark repository. It appears from our analysis
that Qiskit, Q#, and Cirq are among the most popular lan-
guages and libraries; other contenders that we would like
to include in the future are Rigetti’s PyQuil and Microsoft
LiQui|⟩. Note that in these figures, among the other most pop-
ular languages and libraries, OpenQASM is a circuit-based
abstraction for quantum programming in Qiskit (and hence,

Figure 1: Relative popularity of different programming lan-
guages on Github repositories (data last retrieved on 15 Janu-
ary, 2022).

can be seen as a part of Qiskit) and PennyLane is a Python li-
brary mostly used for quantum machine-learning. The latter
deserves its specific type of benchmark and test sets.

(2) Robust support and infrastructure: We would like our invest-
ment to sustain as a resource for the research community
and hence, would like to invest our effort on programming
languages that are backed by considerable corporate- or com-
munity effort. To start with we considered the technologies
developed by IBM, Google, and Microsoft and are consider-
ing further languages by Amazon and Rigetti.

Based on these objectives, we settled on IBM’s Qiskit, Google’s
Cirq, and Microsoft’s Q# as our first set of quantum programming
languages for our benchmark programs.

A Multi-Lingual Benchmark for Property-Based Testing of Quantum Programs Q-SE’22 , May 18, 2022, Pittsburgh, PA, USA

Table 1: The Different Sources Used for the Benchmark Algorithms

Algorithm Language documentation
and tutorials

Open repositories Academic Papers

Superdense Coding Qiskit Tutorial [29], Q# Tutorial
[32]

Cirq github [12] How to implement SDC from
the inventors [2]

Quantum Fourier Transform Qiskit Tutorial [26], Cirq
Tutorial [6]

Q# Quantum Kata [18] Description and circuit diagram
of QFT in sec. 5.1 [25]

Quantum Phase Estimation Qiskit Tutorial [28] Cirq github [11], Q# Quantum
Kata [20]

QPE circuit diagram in sec. 5 [8]

Quantum Key Distribution Qiskit Tutorial [27] Cirq github [10], Q# Quantum
Kata [19]

QKD step-by-step in sec. 2 [3]

Shor’s Algorithm Qiskit Tutorial [30], Cirq
Tutorial [7]

Q# github [21] Shors’ algorithm paper [31],
Step-by-step implementation of
the algorithm [16]

3.2 Algorithm Sources:
Benchmark quantum algorithmswere selected by searching through
academic papers, open source repositories and language documen-
tation. We started with a set of common algorithms was included
in the suite. We considered the code from the identified sources,
chose one that clearly reflected the specification (or provided our
own implementation in case none fit that criterion), translated it
across the languages line-by-line and kept as close as possible to
the original as the syntax of each library or language permitted,
and performed conformance testing to make sure that the different
implementations are consistent.

Below we list the sources used to create our benchmarks and
how they contributed:

(1) Language documentation and tutorials: They have proven
to be the most fruitful source of quantum algorithms. Pro-
gramming language documentation usually contains com-
mon algorithms, though most of their focus tends to be in
simpler programs for beginners to learn their language.
Code from IBM’s Qiskit tutorials [1] was heavily utilised for
the benchmarks as the ‘original’ copy to convert to Cirq and
Q#, due to its great documentation and simplicity.

(2) Open source repositories: Open source algorithm repos-
itories often contain multiple quantum algorithms to use,
they are a good source to get used to common coding prac-
tices within a language and see what is possible within a
language. Microsoft’s QuantumKatas are very good tools
to learn quantum algorithms in Q#, they provide annotated
Jupyter notebooks with step-by-step tasks to develop an al-
gorithm, and tests to check if the implementation is correct.

(3) Academic papers: When searching through academic pa-
pers, the quantum algorithm description or implementa-
tion tends to be either limited or complex. Therefore, we
have used academic papers to find new algorithms to add to
the benchmark suite, though the implementation has been
sourced from other locations. For example, ‘Quantum Algo-
rithm Implementations for Beginners’ [9], is a large collabo-
ration project containing a multitude of quantum algorithms,
it contains many figures, circuit diagrams, algorithm descrip-
tions and mathematical explanations to learn from.

An overview of the sources used to curate the algorithms are
reported in Table 1.

4 BENCHMARK STRUCTURE
The repository containing the benchmark algorithms is structured
as follows:

• Introduction to Quantum Computing: A detailed doc-
ument on how to get started with quantum computing. It
is split into five chapters, with the intent to provide a good
starting point for people who have never used quantum pro-
gramming languages. The document includes useful links
and guidance to learn theory, install the languages, docu-
mentation and tutorials. The file also explains the structure
of the repository and provides a short guide on running the
provided code and analysing the results.

• Algorithms: The algorithms that have been implemented
across the languages are listed.
– Implementations: Under each algorithm, in three sub-
folders, we provide three implementations of the algo-
rithm, in Qiskit, Cirq, and Q#. One of the implementations,
the "base" is sourced from another location as discussed in
Section 3. Much care went into translating the algorithms
as closely as possible to clearly show the differences in
the languages. Conformance testing was performed on
each translation of the algorithms to provide some assur-
ance that the programs are equivalent; the test results and
analyses to that effect are available in the repository.

– Properties, Mutants, and Test Results: In addition to
the three implementations, we provide in a separate folder,
several properties of the implemented algorithms (to en-
able property-based testing and use them for comparing
different testing frameworks) and fifteen mutants. The
properties we provide are formatted in the following or-
der: pre-condition, operation, and post-condition. Pre-
conditions describe the conditions that must be met by
the input variable valuations in order to correctly test the
property. Operations describe the sequence of functions
that need to be executed. Post-conditions contain assertions
on the attributes of the results.

Q-SE’22 , May 18, 2022, Pittsburgh, PA, USA Gabriel Pontolillo and Mohammad Reza Mousavi

Following the same principles as those in Muskit [17], for
mutation testing, we used the following mutation opera-
tors for each and every algorithm: adding, removing, and
replacing gates.

• Code Comparison and description: We reflected on our
experience with the multi-lingual benchmark and in a sepa-
rate folder provided a comparison of some of the common
examples, pointing out the similarities and the differences
among the different quantum programming frameworks. We
spell out our reflections in the remainder of this paper.

These mutant versions of algorithms were then tested using the
property-based tests that statistically validate classical outputs and
qubit properties induced by functions in the quantum program. The
results of the mutation testing were recorded and tabulated to view
the property based tests’ efficacy at killing mutants.

5 LESSONS LEARNED
In this section, we reflect on the important differences between the
languages that we have encountered while translating algorithms
across each of the benchmark programs; we organise the observed
differences in the following structure:

• Low-level language constructs:
– Quantum Circuits
– Support for Frameworks

• High level language support
– Custom gate creation
– Gate modification
– Mixed quantum and classical constructs
– Quantum state introspection

• Testability
– Test framework support
– Performance

5.1 Low level language support:
Quantum Circuits: In Qiskit and Cirq, there is a direct corre-
spondence between the algorithms provided in terms of quantum
circuits and the code. However, in Q# the correspondence is more
blurred with the use of object-oriented concepts and operations that
directly manipulate qubits. Moreover, it does not currently offer a
practical way to print or work with the quantum circuit. (IQsharp
provides a command %trace to print the quantum circuits in note-
book files, which we could not reproduce in our experiments.) The
additional complexity of the Q# constructs, may be a drawback
for programmers who have learned programming using quantum
circuits. For such programmers, a visual description of a recursive
or iterative quantum algorithm via a quantum circuit is likely to be
more intuitive. With the inability to print the quantum circuit, it
is challenging to quickly check whether the algorithm is iterating
correctly without performing temporary measurements or using
dumpmachine() to retrieve the quantum state, both of which may
not work well depending on the complexity of the algorithm or
quantum state.

Example. Instantiation of a quantum circuit is shown in Table 4,
lines 2 and 3. The Python libraries differ slightly when we specify
a quantum register of length four for the circuit in Qiskit whereas

we separately instantiate four qubit objects in Cirq to be used as
registers. In Q# we only need to instantiate the qubits and the
quantum circuit object is left implicit.
The mathematics for producing a controlled phase is comparable
in Qiskit and Q# is the same; however, due to the notational
differences, the implementation of the mathematics in Q# is less
readable in our view. (We comment on the scarcity of standard
mathematical functions in Q# below.)

Support for Frameworks:We experienced a considerable dif-
ference between the three languages in terms of the available sup-
port for mathematical functions and programming frameworks.
In our experience, the available libraries for Q# are much more
limited (due to its specific language design as well as its recent
introduction) while there are abundant Python libraries for various
types of mathematical analysis for Cirq and Qiskit.

Example. At line 14 in Table 3, we can see the application of
a quantum gate that applies a phase across the languages. The
gates are named quite differently, but they all apply a user specified
rotation about the Z-axis. In Table 3 the simple task of applying a
measurement gate is a single line of code for the Python libraries,
line 4. The Q# version spans through lines 4-7, with usage of its
own mutable and set statements.

Formatting the QFT results as dictionaries that contain the result
string and count as key value pairs (or similar), can be done with
all languages, though it is more challenging for Q#. In Table 4 this
can be done in two lines with Qiskit and Cirq (lines 7 and 8). To the
best of our knowledge: the best approach for Q# is to use a host C#
program that calls the Q# operation multiple times, while counting
the results and placing them in a dictionary (lines 9-23).

5.2 High level language support:
Custom Gate Creation: It is possible to create custom-gates
through decomposition across all languages; the main difference
concerns the creation of gates in Cirq as classes, which should
implement a standard interface of methods. In Qiskit and Q#, how-
ever, custom gates are implemented as functions and operations,
respectively.

Example. Table 5 and Table 6 contain code for modular expo-
nentiation gate definition and application respectively.

• Qiskit:We use a normal Python function, where we create a
quantum circuit and append quantum gates to registers. Call-
ing the "to_gate()" (line 5) method will convert the defined
quantum circuit into a quantum gate.

• Cirq: We create Python class that inherits from "Cirq.Gate"
(line 1), implementing the "_decompose()" (line 10) method
allows us to define a quantum circuit composed of other
quantum gates.

• Q#: We simply define an operation that applies quantum
gates to qubits passed in.

Gate modification: The higher-level quantum focus of Q# is
exemplified by the "Adj" and "Ctl" labels that can be added to oper-
ation type signatures to specify what functors are supported. The
"Adjoint" functor is then added to an operation, which will cause
the automatically generated adjoint of the operation to be called. It

A Multi-Lingual Benchmark for Property-Based Testing of Quantum Programs Q-SE’22 , May 18, 2022, Pittsburgh, PA, USA

Table 2: Rotation to change basis of measurement

Line Qiskit Cirq Q#
1 def set_measure_x(circuit, n): def set_measure_x(circuit, qubits, n): operation set_measure_x(qubits: Qubit[]): Unit{
2 for num in range(n): for num in range(n): for index in 0 .. Length(qubits)-1 {
3 circuit.h(num) circuit.append(cirq.H(qubits[num])) H(qubits[index]);
4 }
5 }

Table 3: Quantum Fourier Transform recursive circuit

Line Qiskit Cirq Q#
1 def qft_rotations(circuit, n): def qft_rotations_cirq(circuit, qubits, n): operation GenerateQFT(qubits: Qubit[], num: Int) : Result[] {
2 if n == 0: if n == 0: if (num == 0){
3 set_measure_x(qc, 4) set_measure_x(circuit, qubits, 4) set_measure_x(qubits);
4 qc.measure_all() circuit.append(cirq.measure(*qubits, key=’this’)) mutable results = [];
5 for index in 0 .. Length(qubits) - 1 {
6 set results += [M(qubits[index])];
7 }
8 return circuit return circuit return results;
9 }
10 n -= 1 n -= 1 mutable n = num-1;
11 circuit.h(n) circuit.append(cirq.H(qubits[n])) H(qubits[n]);
12 for qubit in range(n): for qubit in range(n): for index in 0 .. (n - 1) {
13 let divisor = PowD(2.0, IntAsDouble(n-index));
14 circuit.cp(pi/2**(n-qubit), qubit, n) circuit.append((cirq.CZ**(1/2**(n-qubit)))(qubits[qubit],qubits[n])) (Controlled R1)([qubits[index]], ((PI()/divisor), qubits[n]));
15 }
16 return qft_rotations(circuit, n) return qft_rotations_cirq(circuit, qubits, n) return GenerateQFT(qubits,n);
17 }

Table 4: Quantum Fourier Transform driver code

Line Qiskit Cirq Q#
1 backend = Aer.get_backend(’aer_simulator’) simulator = cirq.Simulator() operation runQFTGenerator() : Result[] {
2 qubits = cirq.LineQubit.range(4) use qubits = Qubit[4];
3 qc = QuantumCircuit(4) circuit = cirq.Circuit()
4 qc.x(0) circuit.append(cirq.X(qubits[0])) X(qubits[0]);
5 qft_rotations(qc,4) qft_rotations_cirq(circuit, qubits, 4) return GenerateQFT(qubits, Length(qubits));
6 }
7 job = execute(qc, backend, shots=1000000) results = simulator.run(circuit , repetitions =1000000) // inside the main of host.cs
8 print(job.result().get_counts()) print(results.histogram(key="this")) // use a for loop to get more shots
9 using (var qsim = new QuantumSimulator()){
10 Dictionary<string, int>resCount = new Dictionary<string, int>();
11 for (int i = 0; i<100000; i++){
12 String resString = runQFTGenerator.Run(qsim).Result.ToString();
13 int value;
14 if (resCount.TryGetValue(resString, out value)){
15 resCount[resString] = value+1;
16 } else {
17 resCount.Add(resString, value+1);
18 }
19 }
20 foreach (KeyValuePair<string, int>vals in resCount){
21 Console.WriteLine("Key = 0, Value = 1", vals.Key, vals.Value);
22 }
23 }

Table 5: Shor’s algorithm modular exponentiation gate

Line Qiskit Cirq Q#
1 def c_amod15(a, power): class aMod15Gate(cirq.Gate): operation c_amod15(a: Int, power: Int, qubits: Qubit[]): Unit is Ctl{
2 ... def __init__(self, a, power): ...
3 U.swap(0,1) super(aMod15Gate, self) SWAP(qubits[0],qubits[1]);
4 ... self.a = a ...
5 U = U.to_gate() self.power = power }
6 U.name = "%i%̂i mod 15" % (a, power)
7 c_U = U.control() def _num_qubits_(self):
8 return c_U return 4
9
10 def _decompose_(self, qubits):
11 ...
12 yield cirq.SWAP(q0,q1)
13 ...
14
15 def _circuit_diagram_info_(self, args):
16 return "a mod 15"

Table 6: Applying Shor’s modular exponentiation gate

Line Qiskit Cirq Q#
1 qc.append(c_amod15(a, 2**q),[q] + [i+n_count for i in range(4)]) qc.append(aMod15Gate(a, 2**q) (Controlled c_amod15)([qubits[q]],

.on(qubits[8],qubits[9],qubits[10],qubits[11]) (a, PowI(2,q), [qubits[n_count],qubits[n_count+1],

.controlled_by(qubits[q])) qubits[n_count+2],qubits[n_count+3]]));

Q-SE’22 , May 18, 2022, Pittsburgh, PA, USA Gabriel Pontolillo and Mohammad Reza Mousavi

is also possible to call the inverse of a gate in Qiskit if the decom-
posed gates constituents have the inverse already implemented. The
inverse of a gate is also obtainable in Cirq, provided that the gate
implements the "pow" function with parameter -1. The "Ctl" label al-
lows the "Controlled" functor to be added to a operation call, which
allows control qubits to be added to any quantum operation in Q#.
The same functionality is also available in Cirq and Qiskit through
"Operation.controlled_by()" and "Gate.control()" respectively.

Example. Table 5 shows how to specify that a custom gate can
be "controllable" and Table 6 shows how to pass the control qubits
into a gate.

• Qiskit: We specify that a gate can be controlled by another
qubit calling ".control()" on a gate (Table 5 line 7). The control
qubit is the first qubit passed in through "append()" (Table
6),

• Cirq:We do not need to specify that a gate is controllable
in the class definition, after specifying the qubits that are
passed through the circuit using ".on()", the "controlled_by()"
method can be called to specify the control qubits (Table 6
line 1).

• Q#:We can specify that an operation is controllable using
the "Ctl" label in the type declaration (Table 5 line 1). To
use the modified operation, we write "Controlled" before the
function call, and pass in an extra list of qubits as the first
parameter, these qubits will be the set of control qubits for
the operation (Table 6 line 1).

Quantum state introspection: While these operations are not
possible on real quantum computers, retrieving the exact quantum
states of the qubits is useful when implementing and debugging
quantum algorithms. It is possible to print the state vector of the
exact quantum state with all three languages, additionally Qiskit
also provides options to also visualise the quantum state across
multiple qubits and states, through plotting the q-sphere or Bloch
vector.

5.3 Testability:
Apart from the recent research effort reported in Section 2, there is
very little domain-specific support for testing quantum programs.
Below we compare the three programming languages included in
our benchmark from the testing framework support and perfor-
mance perspectives. Performance is particularly important, because
due to the statistical nature of tests, testing is an extremely resource
consuming part of development in this domain.

Test framework support: Cirq and Qiskit inherit the wealth
of generic testing frameworks available for Python. However, such
support is much more limited for Q#. Cirq and Qiskit can import
frameworks such as Hypothesis to run property-based tests (which
should be extended to cater for the statistical nature of quantum
properties), while for Q# only a research prototype for property-
based testing is available [13], which is less mature, and is missing
features like shrinking and test case reproducibility.

Performance: There is a disparity in the performance of the lan-
guages, Q# falls behind in comparison to Cirq and Qiskit, running
equivalent programs in the different languages takes the longest
amount of time. Figure 2 provides an overview of our performance
comparison using the Quantum Phase Estimation example in our

Figure 2: Performance Comparison of the Three Implemen-
tations of the Quantum Phase Estimation in Our Benchmark
in the Three Programming Languages: Qiskit, Cirq, and Q

benchmark. Note that although the diagram is drawn in logarithmic
scale the differences are immense and even the time of executing
the test program wrapper and the post-processing time required to
check properties is negligible (and hence excluded from the analy-
sis) compared to the simulation time. The details of the experiment
are also included in the Github repository.

6 CONCLUSIONS
Wepresented amulti-lingual benchmark for quantum programming
and property-based testing of quantum programs. Our benchmark
comprises comparable code (in content and structure) across three
major quantum programming languages, namely, Circq, Qiskit, and
Q#. We reflect upon the insight we gained about differences across
these programming languages.

This is the first step towards a community effort in order to
support the evaluation of research in quantum program testing and
analysis. We aim to develop both this benchmark and our property-
based testing framework for the major quantum programming
languages.

There are other examples [14] of online code. Providing proper-
ties for such programs and incorporating them into our benchmark
is a part of our planned future work. Additionally, we did not incor-
porate specific concerns of noise and error correction such as those
for noisy intermediate-scale quantum algorithms. Incorporating
these concerns into our benchmark is another avenue for our future
work.

Acknowledgments. Mohammad Reza Mousavi and Gabriel Pon-
tolillo have been partially supported by the UKRI Trustworthy
Autonomous Systems Node in Verifiability, Grant Award Reference
EP/V026801/2. We thank the anonymous reviewers for their helpful
and constructive comments; we also thank José Miguel Rojas for his
effort in compiling the initial list of examples for the benchmark.

REFERENCES
[1] S. Andersson, A. Asfaw, A. Corcoles, L. Bello, Y. Ben-Haim, M. Bozzo-Rey,

S. Bravyi, N. Bronn, L. Capelluto, A. C. Vazquez, J. Ceroni, R. Chen, A. Frisch,
J. Gambetta, S. Garion, L. Gil, S. D. L. P. Gonzalez, F. Harkins, T. Imamichi,
H. Kang, A. h. Karamlou, R. Loredo, D. McKay, A. Mezzacapo, Z. Minev, R. Movas-
sagh, G. Nannicini, P. Nation, A. Phan, M. Pistoia, A. Rattew, J. Schaefer,
J. Shabani, J. Smolin, J. Stenger, K. Temme, M. Tod, E. Wanzambi, S. Wood,

A Multi-Lingual Benchmark for Property-Based Testing of Quantum Programs Q-SE’22 , May 18, 2022, Pittsburgh, PA, USA

and J. Wootton. Learn quantum computation using qiskit, 2020. URL http:
//community.qiskit.org/textbook.

[2] C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle
operators on einstein-podolsky-rosen states. Phys. Rev. Lett., 69:2881–2884, 11
1992. doi: 10.1103/PhysRevLett.69.2881.

[3] C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. A. Smolin. Experimental
quantum cryptography. J. Cryptology, 5:3–28, 1992. doi: 10.1007/BF00191318.

[4] J. Campos and A. Souto. Qbugs: A collection of reproducible bugs in quantum
algorithms and a supporting infrastructure to enable controlled quantum software
testing and debugging experiments. In 2021 IEEE/ACM 2nd InternationalWorkshop
on Quantum Software Engineering (Q-SE), pages 28–32, 2021. doi: 10.1109/Q-
SE52541.2021.00013.

[5] C. Chareton, S. Bardin, D. Lee, B. Valiron, R. Vilmart, and Z. Xu. Formal methods
for quantum programs: A survey. CoRR, abs/2109.06493, 2021.

[6] Cirq Documentation Tutorials. Textbook algorithms in cirq, 2021. URL https:
//quantumai.google/cirq/tutorials/educators/textbook_algorithms.

[7] Cirq Documentation Tutorials. Cirq shor’s algorithm, 2021. URL https://
quantumai.google/cirq/tutorials/shor.

[8] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms revisited.
Proc. of the Royal Society, 454(1969):339–354, 01 1998. doi: 10.1098/rspa.1998.0164.

[9] P. J. Coles, S. J. Eidenbenz, S. Pakin, A. Adedoyin, J. Ambrosiano, P. M. Anisi-
mov, W. Casper, G. Chennupati, C. Coffrin, H. N. Djidjev, D. Gunter, S. Karra,
N. Lemons, S. Lin, A. Y. Lokhov, A. Malyzhenkov, D. D. L. Mascarenas, S. M.
Mniszewski, B. Nadiga, D. O’Malley, D. Oyen, L. Prasad, R. Roberts, P. Romero,
N. Santhi, N. Sinitsyn, P. Swart, M. Vuffray, J. Wendelberger, B. Yoon, R. J.
Zamora, and W. Zhu. Quantum algorithm implementations for beginners. CoRR,
abs/1804.03719, 2018. URL http://arxiv.org/abs/1804.03719.

[10] Google’s official Cirq repository. Cirq quantum key distribution, 11 2021. URL
https://github.com/quantumlib/Cirq/blob/master/examples/bb84.py.

[11] Google’s official Cirq repository. Cirq quantum phase estimation, 11
2021. URL https://github.com/quantumlib/Cirq/blob/master/examples/phase_
estimator.py.

[12] Google’s official Cirq repository. Cirq superdense coding, 11 2021. URL https:
//github.com/quantumlib/Cirq/blob/master/examples/superdense_coding.py.

[13] S. Honarvar, M. R. Mousavi, and R. Nagarajan. Property-based testing of quantum
programs in q#. In Proc. of ICSE ’20, pages 430–435. ACM, 2020. doi: 10.1145/
3387940.3391459.

[14] E. Johnston, N. Harrigan, and M. Gimeno-Segovia. Programming Quantum Com-
puters: Essential Algorithms and Code Samples. O’Reilly Media, Incorporated, 2019.
ISBN 9781492039686. URL https://books.google.co.uk/books?id=LZY1vgEACAAJ.

[15] G. Li, L. Zhou, N. Yu, Y. Ding, M. Ying, and Y. Xie. Projection-based runtime
assertions for testing and debugging quantum programs. Proc. of OOPSLA 2020,
4:150:1–150:29, 2020. doi: 10.1145/3428218.

[16] S. J. Lomonaco. Shor’s quantum factoring algorithm, 2000.
[17] E. Mendiluze, S. Ali, P. Arcaini, and T. Yue. Muskit: A mutation analysis tool

for quantum software testing. In 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 1266–1270, 2021. doi: 10.1109/
ASE51524.2021.9678563.

[18] Microsoft’s Quantum Katas. Qft reference implementation, 01 2021.
URL https://github.com/microsoft/QuantumKatas/blob/master/QFT/
ReferenceImplementation.qs.

[19] Microsoft’s Quantum Katas. Q# quantum key distribution, 08 2021.
URL https://github.com/microsoft/QuantumKatas/tree/master/KeyDistribution_
BB84/ReferenceImplementation.qs.

[20] Microsoft’s Quantum Katas. Q# implementation of quantum phase estima-
tion, 01 2021. URL https://github.com/microsoft/QuantumKatas/blob/master/
PhaseEstimation/ReferenceImplementation.qs.

[21] Microsoft’s Quantum Katas. Q# Shor’s algorithm, 08 2021. URL
https://github.com/microsoft/Quantum/blob/main/samples/algorithms/integer-
factorization/Shor.qs.

[22] A. Miranskyy and L. Zhang. On testing quantum programs. In Proceedings of the
41st International Conference on Software Engineering: New Ideas and Emerging
Results, ICSE-NIER ’19, page 57–60. IEEE Press, 2019. doi: 10.1109/ICSE-NIER.
2019.00023. URL https://doi.org/10.1109/ICSE-NIER.2019.00023.

[23] A. Miranskyy, L. Zhang, and J. Doliskani. Is your quantum program bug-free?
In Proceedings of the ACM/IEEE 42nd International Conference on Software Engi-
neering: New Ideas and Emerging Results, ICSE-NIER ’20, page 29–32, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450371261. doi:
10.1145/3377816.3381731. URL https://doi.org/10.1145/3377816.3381731.

[24] A. V. Miranskyy, L. Zhang, and J. Doliskani. On testing and debugging quantum
software. CoRR, abs/2103.09172, 2021. URL https://arxiv.org/abs/2103.09172.

[25] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge, 2011. ISBN 1107002176.

[26] Qiskit Documentation Tutorials. Qiskit quantum fourier transform, 2021. URL
https://qiskit.org/textbook/ch-algorithms/quantum-fourier-transform.html.

[27] Qiskit Documentation Tutorials. Qiskit quantum key distribution, 2021. URL
https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html.

[28] Qiskit Documentation Tutorials. Qiskit quantum phase estimation, 2021. URL
https://qiskit.org/textbook/ch-algorithms/quantum-phase-estimation.html.

[29] Qiskit Documentation Tutorials. Qiskit superdense coding, 2021. URL https:
//qiskit.org/textbook/ch-algorithms/superdense-coding.html.

[30] Qiskit Documentation Tutorials. Qiskit shor’s algorithm, 2021. URL https:
//qiskit.org/textbook/ch-algorithms/shor.html.

[31] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509,
10 1997. ISSN 1095-7111. doi: 10.1137/s0097539795293172.

[32] D. Vaughan. Quantum messaging with q# and blazor, 2019. URL
https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/september/
quantum-computing-quantum-messaging-with-qsharp-and-blazor.

[33] J. Wang, F. Ma, and Y. Jiang. Poster: Fuzz testing of quantum program. In Proc.
of ICST 2021, pages 466–469. IEEE, 2021. doi: 10.1109/ICST49551.2021.00061.

[34] X. Wang, P. Arcaini, T. Yue, and S. Ali. Generating failing test suites for quantum
programs with search. In Proc. of SBSE 2021, pages 9–25, Cham, 2021. Springer.

[35] J. Zhao. Quantum software engineering: Landscapes and horizons. CoRR,
abs/2007.07047, 2020.

http://community.qiskit.org/textbook
http://community.qiskit.org/textbook
https://quantumai.google/cirq/tutorials/educators/textbook_algorithms
https://quantumai.google/cirq/tutorials/educators/textbook_algorithms
https://quantumai.google/cirq/tutorials/shor
https://quantumai.google/cirq/tutorials/shor
http://arxiv.org/abs/1804.03719
https://github.com/quantumlib/Cirq/blob/master/examples/bb84.py
https://github.com/quantumlib/Cirq/blob/master/examples/phase_estimator.py
https://github.com/quantumlib/Cirq/blob/master/examples/phase_estimator.py
https://github.com/quantumlib/Cirq/blob/master/examples/superdense_coding.py
https://github.com/quantumlib/Cirq/blob/master/examples/superdense_coding.py
https://books.google.co.uk/books?id=LZY1vgEACAAJ
https://github.com/microsoft/QuantumKatas/blob/master/QFT/ReferenceImplementation.qs
https://github.com/microsoft/QuantumKatas/blob/master/QFT/ReferenceImplementation.qs
https://github.com/microsoft/QuantumKatas/tree/master/KeyDistribution_BB84/ReferenceImplementation.qs
https://github.com/microsoft/QuantumKatas/tree/master/KeyDistribution_BB84/ReferenceImplementation.qs
https://github.com/microsoft/QuantumKatas/blob/master/PhaseEstimation/ReferenceImplementation.qs
https://github.com/microsoft/QuantumKatas/blob/master/PhaseEstimation/ReferenceImplementation.qs
https://github.com/microsoft/Quantum/blob/main/samples/algorithms/integer-factorization/Shor.qs
https://github.com/microsoft/Quantum/blob/main/samples/algorithms/integer-factorization/Shor.qs
https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1145/3377816.3381731
https://arxiv.org/abs/2103.09172
https://qiskit.org/textbook/ch-algorithms/quantum-fourier-transform.html
https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html
https://qiskit.org/textbook/ch-algorithms/quantum-phase-estimation.html
https://qiskit.org/textbook/ch-algorithms/superdense-coding.html
https://qiskit.org/textbook/ch-algorithms/superdense-coding.html
https://qiskit.org/textbook/ch-algorithms/shor.html
https://qiskit.org/textbook/ch-algorithms/shor.html
https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/september/quantum-computing-quantum-messaging-with-qsharp-and-blazor
https://docs.microsoft.com/en-us/archive/msdn-magazine/2019/september/quantum-computing-quantum-messaging-with-qsharp-and-blazor

	Abstract
	1 Introduction
	1.1 Problem statement
	1.2 Contributions
	1.3 Structure

	2 Related Work
	3 Design Decisions
	3.1 Choice of Languages:
	3.2 Algorithm Sources:

	4 Benchmark Structure
	5 Lessons learned
	5.1 Low level language support:
	5.2 High level language support:
	5.3 Testability:

	6 Conclusions
	References

