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Abstract—Quantum software testing is essential for the quality
assurance of quantum programs. However, existing techniques
face many challenges, such as constructing test oracles and
distinguishing genuine faults from noise-induced errors. Property-
based testing is a promising solution for dealing with the test oracle
issue, which verifies general properties rather than requiring
inputs and outputs. However, its effectiveness in noisy quantum
environments has not been studied. To this end, we evaluate the
feasibility of applying property-based testing in noisy quantum
computers by integrating it with a state-of-the-art machine
learning-based noise mitigation method called QOIN. Our results
show that on average, QOIN mitigates noise for individual circuits,
though it may introduce outliers. Crucially, this does not guarantee
property preservation: we show that some properties align better
with QOIN, while others remain closer under unmitigated noise.
To address this, we apply a hybrid approach that selectively
applies QOIN during property-based testing. We show that this
hybrid approach improves alignment with the ideal execution
and significantly reduces false positives in assertion outcomes
across most executed mutants. This provides a solid foundation
for applying property-based testing to noisy quantum systems.

Index Terms—Quantum Computing, Quantum Software Testing,
Property-Based Testing, Noise Mitigation, Machine Learning

I. INTRODUCTION

Quantum computing offers the prospect of significantly
advancing fields such as medicine and materials science by
solving problems that are currently intractable on classical
computers [1]. However, realizing this potential is hindered by
fundamental obstacles such as quantum noise. In the current era
of noisy quantum computing, hardware is inherently affected
by noise, which can substantially degrade the reliability and
accuracy of quantum computations. This presents a major
obstacle to developing a reliable discipline for testing quantum
software.

Quantum software testing aims to efficiently detect bugs in
quantum programs to ensure a certain level of correctness [2].
However, testing quantum software is particularly challenging
due to the fundamental principles of quantum mechanics,
such as superposition and entanglement [3]. Noise further
complicates this process, making it difficult to determine
whether a test case failed due to a software fault or quantum
noise despite the software being correct. Existing quantum
software testing approaches primarily adapt classical testing
techniques, including combinatorial testing [4], coverage-based

test selection [5]–[7], search-based testing [8], [9], mutation
testing [9]–[11], and metamorphic testing [12], [13]. However,
these methods have two major limitations: (1) they typically
assume an ideal, noise-free quantum simulator, which are
inefficient for large real problems; lack of a proper treatment
of noise makes these testing techniques unsuitable for real,
noisy quantum computers, and (2) they rely on explicit test
oracles to determine whether a test case passes or fails, which
is difficult to construct due to the black-box nature of quantum
programs.

To address the challenge of explicit test oracles, property-
based testing (e.g., QSharpCheck [14] and QuCheck [15]) has
recently been explored as a potential alternative to methods
that require explicit oracles. Unlike testing methods that rely
on predefined test oracles, property-based testing verifies
whether a quantum program satisfies general properties across
a range of automatically generated test cases, reducing the need
for manually specified oracles. This approach mitigates the
difficulty of constructing explicit test oracles by focusing on
high-level properties rather than specific outputs. Prior studies
have demonstrated its effectiveness in ideal, noise-free quantum
simulators [15], [16]; however, its feasibility in the presence
of quantum noise remains an open question.

This paper addresses whether property-based testing can
be effectively applied to noisy quantum environments by
integrating it with a noise mitigation technique. We utilize
QOIN [17], a state-of-the-art machine learning-based noise
mitigation technique. QOIN reduces the impact of noise on
quantum program outputs and can be integrated with existing
quantum software testing methods. It has demonstrated effec-
tiveness in mitigating noise across various quantum programs
executed on simulated noisy computers from IBM, Google,
and Rigetti [17]. Therefore, we investigate whether combining
property-based testing with QOIN enables its application in
noisy, simulated quantum environments. By doing so, we aim
to extend the applicability of property-based testing beyond
idealized, noise-free conditions. The contribution of the paper
is summarized below:

- We extend the state-of-the-art property-based testing
method (QuCheck) to support noisy quantum computers
by integrating a noise mitigation technique (QOIN).

- We empirically evaluate the extended QuCheck method



Fig. 1. A three-qubit entanglement quantum circuit written in Qiskit with its
corresponding circuit representation.

on five real quantum programs using a noisy simulator
of IBM’s latest quantum computer, IBM_Fez, to demon-
strate its effectiveness in noisy environments.

The remainder of this paper is organized as follows:
Section II provides necessary background and reviews prior
research on property-based testing for quantum programs,
machine learning for noise mitigation, and the general effects
of noise on quantum computation. Section III outlines the
design and execution of our experiments. Section IV presents
the outcomes of our study, followed by an interpretation and
discussion of these findings. Finally, Section VI summarizes
our contributions and suggests directions for future research.

II. BACKGROUND AND RELATED WORK

A. Quantum Computing Basics and Quantum Circuit

In classical computers, the information is stored and pro-
cessed using bits that exist exclusively in one of two states: 0 or
1. In contrast, quantum computers operate with quantum bits, or
qubits, which can exist in a superposition of the states |0⟩ and
|1⟩ with associated complex amplitudes. In polar form, each
amplitude has both a magnitude and a phase. Mathematically, a
qubit is represented in Dirac notation as:|ψ⟩ = α0|0⟩+ α1|1⟩,
where α0 and α1 are the amplitudes corresponding to states |0⟩
and |1⟩, respectively. The probability of measuring the qubit
in a particular state is given by the square of the magnitude of
the corresponding amplitude, and these probabilities sum to 1.

Quantum gates are modeled as unitary operators that act on
the quantum state of qubits, applying transformations defined by
unitary matrices [18]. For example, the Hadamard gate creates
a superposition by transforming a qubit from a basis state into
an equal combination of |0⟩ and |1⟩. Quantum computers are
programmed by constructing quantum circuits, where the logic
of the program is implemented as a sequence of quantum gates
applied to qubits. Throughout this paper, we will use the term
circuit to refer to a quantum program for improved readability.

Figure 1 shows a three-qubit entanglement circuit in
Qiskit [19] with its corresponding circuit representation.

TABLE I
THE IDEAL AND NOISY OUTPUTS OF A THREE-QUBIT QUANTUM CIRCUIT

AFTER EXECUTION ON AN IDEAL AND A NOISY SIMULATOR. THE Probability
COLUMN SHOWS THE LIKELIHOOD OF OBTAINING EACH SPECIFIC OUTPUT.

Probability

Output States 000 001 010 011 100 101 110 111

Ideal Simulator 0.5 - - - - - - 0.5
Noisy Simulator 0.443 0.012 0.016 0.008 0.007 0.019 0.021 0.476

The circuit creates entanglement among three qubits, mean-
ing that the measurement outcomes are correlated and cannot be
described independently. In lines 1-7, the circuit is initialized
with three qubits (q1, q2, q3) in the state |000⟩, and three
classical registers (c1, c2, c3) to store the final measurement
results. At line 8, a Hadamard gate is applied to q1, placing it
into a superposition of |0⟩ and |1⟩. Then, at line 9, a controlled-
NOT (CX) gate entangles q1 and q2; since q1 is already in
superposition, the application of CX results in the circuit being
in a superposition of the two-qubit states |00⟩ and |11⟩. At
line 10, another CX gate entangles q2 with q3, extending the
entanglement across all three qubits. At this stage, measuring
the qubits will yield either |000⟩ or |111⟩, each with a 50%
probability. Finally, lines 11-13 apply measurement operations
to all three qubits, storing the results in the corresponding
classical registers (c1 to c3).

B. The Impact of Noise on Quantum Circuit Testing

In the current noisy quantum computing era, quantum devices
are constrained by a limited number of qubits, which are
vulnerable to multiple sources of noise. First, environmental
factors such as magnetic fields and radiation can disturb qubit
states, leading to decoherence, where interactions with the
environment cause information loss and state disturbances [3],
[20]. Second, even in the absence of environmental noise,
qubits can unintentionally interact with one another during gate
execution, a phenomenon known as crosstalk noise [21], which
results in the creation of erroneous quantum states that affect
computations. Third, imprecise calibrations of quantum gates
contribute to noise. Although quantum gate calibration is es-
sential for optimizing performance and minimizing errors, even
minor inaccuracies can induce small phase shifts, amplitude
variations, and other discrepancies. These subtle errors might
not immediately destroy a quantum state but can accumulate
over a series of gate operations, ultimately leading to unintended
outcomes [21]. Noise interferes with the quantum state and
propagates across the circuit during execution, ultimately
leading to unreliable measurement outcomes.

In the context of testing quantum circuits, noise presents
a significant challenge, as it can cause a circuit to produce
incorrect outputs. For example, consider a three-qubit quantum
circuit designed to ideally output two states, |000⟩ and |111⟩
as in Figure 1 with equal probability (see Table I). However,
when executed on a real quantum computer, the circuit’s output
is distributed over all eight possible output states, rather than
just the two expected ones. Noise can cause incorrect output
states to appear or shift the probabilities of correct states,



making it difficult to determine whether a test failure is due
to a genuine bug in the quantum circuit or the effects of noise.
This complicates the testing and validation of quantum circuits.

C. Property-based Testing of Quantum Circuits

A major challenge in testing quantum circuits is the or-
acle problem. Since quantum circuits are designed to solve
complex problems that are intractable for classical computers,
determining the expected output for a given test case is often
difficult. In this context, classical black-box testing methods,
such as property-based testing, offer a more practical approach.
Property-based testing has been successfully applied to quantum
circuits using frameworks like Q# [14] and Qiskit [15], [16].
Prior research has also integrated property-based test oracles
within delta debugging to analyze the outcomes of sub-circuits
constructed from applying subsets of failure-inducing changes
[16]. In these approaches, properties define expected behaviors,
and the testing framework verifies these behaviors against
randomized inputs. However, existing studies have focused
solely on ideal simulators. This paper investigates whether
property-based testing can be extended to noisy quantum
environments, evaluating its effectiveness in the presence of
quantum noise.

In property-based testing, the invariants of a program that
hold for a range of inputs are verified instead of specific test
cases. To specify a property, four components are necessary:
input generation, preconditions, operation, and postcondition.
Inputs are automatically generated during property-based
testing to find counterexamples, an input generator is required
for this, such as random_state(num_qubits), which
generates a random statevector for a given number of qubits.
Furthermore, for a property to be valid, restrictions may
need to be placed on the generated inputs; this is achieved
through a precondition. Operations describe the sequence
of steps that need to be performed; this involves utilizing
the generated inputs and calling the function to be tested.
This is followed by the verification of the postcondition,
which checks whether the invariant still holds. Huang and
Martonosi propose statistical assertions [22] for verifying
characteristics of quantum states, such as superposition and
entanglement, using chi-square tests. More recent work [23]
extends this concept by introducing an assertion framework
that automatically determines where to insert measurements,
computes the number of shots required to guarantee statistical
confidence, and accounts for device noise by adjusting the
expected outcome distribution during assertion evaluation.
QuCheck offers predefined assertions that can be inserted within
a properties’ operation function, such as AssertEqual and
AssertDifferent, which compare the marginal probability
distributions of outputs in pairs of circuits, and are exclusively
evaluated in Section IV-B. Similarly, QuCheck automatically
inserts the necessary measurements for each assertion. However,
it does not compute the number of measurement shots required
to achieve a statistical confidence level. In this work, we apply
a noise mitigation technique to reduce the impact of noise on
the observed marginal distribution, rather than adjusting the

Fig. 2. Example GHZ circuit property. Input: A generator that constructs
a three qubit circuit by randomly applying a Pauli-X gate to each register
(Xx0 ⊗ Xx1 ⊗ Xx2 , where x0, x1, x2 ∈ {0, 1}). Precondition: At least
one Pauli-X gate must be applied (x0 + x1 + x2 > 0). Operation: Apply
the GHZ circuit to the |000⟩ state, then apply the generated Pauli-X circuit,
yielding the state |ψout⟩. Postcondition: Measuring the computational basis
yields two bitstrings b = (x0, x1, x2) and b̄ = (x̄0, x̄1, x̄2) with equal
probability: Pr(Mz(|ψout⟩) = |b⟩) = 0.5, and Pr(Mz(|ψout⟩) = |b̄⟩) =
0.5, where Mz is a measurement in the computational basis, and Pr denotes
the probability of obtaining the specified outcome.

expected outcomes. An example of a property for the GHZ
circuit can be seen in Figure 2.

D. Machine Learning to Mitigate Quantum Noise

Recent advancements in noise mitigation for quantum circuits
have increasingly leveraged machine learning techniques. No-
table approaches include Clifford Data Regression (CDR) [24],
Learning-based Probabilistic Error Cancellation (L-PEC) [25],
ML-QEM [26], QRAFT [27], QLEAR [28], and QOIN [17].
Among these, QOIN represents the state-of-the-art, employing
a machine learning model to map noisy measurement results
to their ideal, noise-free counterparts [17].

Previous research has demonstrated QOIN’s effectiveness
in significantly reducing noise across various quantum circuits
and noisy simulators that emulate the noise characteristics of
IBM, Google, and Rigetti’s quantum hardware. In this work,
we integrate QOIN into the property-based testing framework
by applying it to measurement outcomes before verifying the
defined properties. This integration aims to assess whether
property-based testing remains effective in noisy quantum
environments when combined with machine learning-based
noise mitigation.

III. METHODOLOGY AND EXPERIMENT DESIGN

We performed a comparative analysis across three scenarios
(described below) to extend the applicability of property-based
testing to noisy quantum computers. For reproducibility, the
repository is available at [29].

a) Scenario 1 - Noisy Simulator Without Error Mitigation:
In the first scenario, we analyzed property-based testing on
a noisy simulator to assess the impact of quantum noise on
property evaluations. To establish a baseline, we conducted a
controlled experiment using only a noisy simulator without
applying QOIN for error mitigation. This allowed us to



determine the extent to which quantum noise leads to excessive
assertion failures and whether noise mitigation techniques
like QOIN are necessary for property-based testing to remain
effective in a noisy environment.

b) Scenario 2 - Noisy Simulator with QOIN Integration:
In the second scenario we integrated the QOIN noise error
mitigation method to assess whether the failures observed in
the first scenario, which used only a noisy simulator, could
be corrected through noise mitigation. This scenario will help
us understand the effectiveness and limitations of combining
noise mitigation techniques with property-based testing in noisy
quantum environments.

c) Scenario 3 - Hybrid Approach: In the third scenario,
we evaluated a hybrid strategy that selectively applies QOIN
error mitigation. Property-based testing is first performed on a
noisy simulator without QOIN, reflecting the observation from
Section IV-B that unmitigated noisy executions can sometimes
better approximate noiseless outcomes. When tests fail under
these conditions, the failing cases are re-evaluated with QOIN
applied. This approach aims to distinguish between failures
caused by noise and those stemming from actual faults. By
selectively applying QOIN only when necessary, this scenario
investigates whether test robustness can be improved while
reducing computational overhead.

Throughout the results section, scenario 1 will be referred
to as the “noisy execution” and scenario 2 as the “QOIN
execution” for brevity.

A. Research Questions

To evaluate whether the property-based testing method
(QuCheck) can be effectively applied to noisy quantum
computers by integrating the noise mitigation technique QOIN,
we formulate the following research questions.

1) RQ1: To what extent does QOIN mitigate the impact
of noise on circuit outputs executed in noisy quantum
environments?
In RQ1, we aim to examine how well QOIN mitigates
noise within our selected noisy quantum simulator. While
QOIN has been evaluated in prior work with other noise
backends, it has not been evaluated for the more recent
IBM_Fez. Moreover, we aim to understand how QOIN
interacts with the circuits generated during the property-
based testing of our case studies that include our mutants,
which may yield different results.

2) RQ2: How does noise impact the reliability of post-
condition evaluations in QuCheck, and how effectively
does QOIN mitigate this impact?
In RQ2, we aim to determine the extent to which noise
impacts the properties defined in the QuCheck property-
based testing approach. Additionally, we assess whether
applying QOIN can mitigate noise while preserving these
properties, ensuring the validity of test evaluations despite
the presence of quantum noise.

3) RQ3: How does the effectiveness of the hybrid approach
compare to the ideal approach and the noisy simulation
with and without mitigation?

TABLE II
QUANTUM PROGRAMS USED IN THE EXPERIMENTS, AND THEIR DETAILS

Quantum Program Width Depth Transpiled Depth
Quantum Teleportation (QT) 3 4 - 8 16 - 32

Quantum Fourier Transform (QFT) 2 - 5 4 - 42 10 - 5530
Grover’s Algorithm (GR) 3 - 5 9 - 55 65 - 4306

Deutsch-Jozsa (DJ) 2 - 5 3 - 18 4 - 45
Quantum Phase Estimation (QPE) 2 - 4 3 - 21 4 - 459

In RQ3, we aim to assess the effectiveness of the
hybrid approach, where only the failing test cases are re-
evaluated using the noisy simulator with QOIN applied.
Where effectiveness is measured through the difference
in the number of failed assertions to the ideal execution.
This evaluation will help determine whether the selective
application of QOIN to failed assertions provides a
computationally efficient yet reliable method for property-
based testing in noisy quantum environments.

B. Benchmarks

In this study, we employ the same quantum programs as
in the original QuCheck study [15]. These selected quantum
circuits are: Quantum Fourier Transform, Quantum Phase Esti-
mation, Quantum Teleportation, Deutsch-Jozsa, and Grover’s
Algorithm. These circuits vary in terms of gate depth, as shown
in Table II, and contain different quantum subroutines, such as
phase estimation and amplitude amplification. This provides a
modest, yet diverse set of test cases for evaluating the robustness
of our methodology.

Using the QuCheck property-based testing framework, we
defined three properties for each quantum program, labeled
A, B, and C in Section IV. To evaluate these properties under
noisy conditions, we used 200 randomly generated test inputs
and performed 3000 measurement shots for each test case. In
our previous QuCheck study [15], we observed diminishing
returns in mutation score at approximately 3000 measurement
shots. However, we increased the number of inputs tested from
50 to 200, as we did not observe similar diminishing returns
with respect to input counts. This increase allowed a greater
number of assertions to be executed and evaluated, enabling a
more thorough comparison between each different scenario.

C. Quantum Circuit Execution

To execute quantum circuits in our experiment, we utilized
IBM’s Qiskit Aer noiseless simulator [19] as the ideal baseline.
For noisy quantum circuit execution, we configured the
Aer simulator with the noise parameters of the IBM_Fez
quantum computer. All circuits were transpiled using Qiskit’s
transpile function, targeting the backend’s native gate set
([’id’, ’sx’, ’x’, ’cz’, ’rz’]) with optimization
level zero to avoid simplifying equivalent mutants. These
parameters, obtained from IBM’s calibration data or real
quantum hardware [30], include thermal relaxation errors, gate
errors, and measurement errors, enabling the Aer simulator to
replicate the noise effects present in IBM’s quantum computers.



TABLE III
QOIN MODEL TRAINING METRICS

Quantum Program Unique Circuits (N) Storage (s) Execution (s) Training (s)
QT 3645 26.0 315.9 61.1

QFT 4608 465.6 2752.9 86.7
GR 990 54.9 501.1 19.0
DJ 1605 7.3 115.2 57.7

QPE 4977 155.4 1035.9 50.5

D. QOIN model Training

QOIN is a machine learning-based approach that requires
training a model for each noisy quantum computer. To achieve
this, we followed a similar training procedure outlined in the
original study [17]. We generated and stored circuits through the
same process as when running property-based tests, meaning
the same 15 mutants, 3 properties, but with 20 random inputs
per property and 10,240 total shots for both the ideal simulator
and IBM_Fez noise model. These values were selected as a
practical balance between recording sufficient data for model
training and keeping the computational overhead manageable,
as indicated by our preliminary experiments. The number of
unique circuits (N) executed varied by quantum programs
due to: optimizations performed by QuCheck, some properties
requiring the execution of pairs of circuits, and different basis
measurements (i.e., some properties only required Z basis
measurement, thus needed fewer circuits to evaluate). We then
extract three features, POS, ODR, and POF, using the circuit
results, according to [17]. These are used to train a two-stage
model: a LightGBM classifier identifies which basis states
are expected to appear in the ideal simulation, and a linear
regression model estimates their ideal amplitudes. The data
is split into a stratified 70/30 train-test partition. The trained
model is then used during evaluation to reconstruct the ideal
output distribution by filtering and correcting the noisy results.

The number of distinct circuits executed, time taken for
circuit generation and storage, training circuit execution, and
model training are listed in Table III. All experiments were
performed on a Windows 11 desktop equipped with an AMD
Ryzen 7 5700X CPU and an NVIDIA RTX 3060 Ti GPU.

E. Metrics

To answer our research questions, we employed mutation
analysis, a technique that involves introducing syntactic modifi-
cations (mutations) to a program, running tests on these mutated
versions, and measuring the proportion of cases where the tests
fail (mutation score). In particular, we included both equivalent
and non-equivalent mutants to evaluate distinct characteristics
of our testing approach: testing with equivalent mutants enables
us to measure the false-positive rate of property-based testing
in isolation, while non-equivalent mutants help assess its fault-
detection effectiveness. For our experiments, we used the same
mutants from the original QuCheck study [15], comprising
five equivalent mutants and ten additional mutants generated
using QMutPy [31] (hereby referred to as generated mutants).
QMutPy applies different mutation types, such as gate deletions,
substitutions, and insertions, though it does not guarantee
semantic differences in the resulting circuits. QMutPy was

not used for the creation of equivalent mutants because it
does not provide an option to guarantee their creation. Instead,
equivalent mutants were generated by inserting gate identities
into the base quantum circuit at random locations, as this
feature was not explicitly available in QMutPy.

Although generated mutants are designed to measure the
fault-detection capability, an increase in the mutation score
under noisy conditions does not necessarily indicate improved
detection. It may reflect a rise in false positives caused by
noise, which we distinguish by comparing noisy results to an
ideal (noiseless) execution.

For RQ1 and RQ2, we use the Hellinger distance as a metric
to quantify the difference between ideal execution results, noisy
execution results, and QOIN-mitigated results. The Hellinger
distance is a well-established measure for comparing quantum
circuit execution outcomes in noisy environments [28], [32],
[33]. The Hellinger distance (H) between two probability
distributions (P,Q) is a value that ranges between 0 and 1,
where a distance of 0 indicates that the probability distributions
are equivalent.

H(P,Q) =
1√
2

√√√√ n∑
i=1

(
√
pi −

√
qi)

2
,

where P = (p1, . . . , pn) and Q = (q1, . . . , qn) are discrete
probability distributions.

In RQ2, we specifically consider AssertEqual and
AssertDifferent assertions in the QuCheck property-
based testing framework, which evaluate qubit measurement
distributions between circuit pairs, in order to determine
whether QOIN preserves circuit properties while mitigating
noise. Concretely, we compute the Hellinger distance between
circuit pairs in the QOIN-mitigated execution, using both
ideal and noisy executions as reference baselines. For RQ3, we
measure overall effectiveness by the number of failed assertions
in QuCheck.

IV. RESULTS AND DISCUSSION

A. RQ1: Effectiveness of QOIN Noise Mitigation

To assess the effectiveness of QOIN in mitigating noise,
we analyze the distribution of Hellinger distances between the
measurement outcomes of quantum circuits executed under
different simulation conditions. Specifically, we compare the
measurement distributions obtained from (i) an ideal, noiseless
simulator, (ii) a noisy simulator execution without mitigation,
and (iii) a noisy simulator with QOIN mitigation applied. By
contrasting these distributions, we aim to quantify the extent
to which QOIN reduces the divergence introduced by noise.

Figure 3 presents a box plot illustrating the Hellinger
distances between the noiseless execution and the two noisy
execution scenarios (with and without QOIN). The x-axis
represents each quantum circuit evaluated in our benchmark,
aggregating all circuits evaluated across the 15 mutants, and
the three tested properties per circuit.

QOIN’s noise mitigation showed significant improvements
in reducing Hellinger distances to the ideal distribution across



Fig. 3. Hellinger distance between the ideal (noiseless) circuit output
distribution and those from (1) noisy (orange) and (2) noise-mitigated QOIN
(blue) executions. Lower values for the QOIN execution indicate show the
effectiveness of noise mitigation.

the evaluated quantum circuits. Although, the extent of its
effectiveness varied, forming three patterns based on the mean,
median, and maximum distances observed.

The first group, consisting of the Deutsch-Jozsa (DJ) and
Quantum Phase Estimation (QPE) algorithms, demonstrated
the most consistent improvements. For DJ, the mean Hellinger
distance decreased from 0.0807 in the noisy execution to 0.0042
with QOIN mitigation (Table IV). Notably, the median distance
was reduced to 0, compared to 0.095 in the unmitigated sce-
nario, while the standard deviation also decreased substantially
from 0.0748 to 0.0071. QPE saw similar improvements in
its mean and median distances, with the mean decreasing
from 0.0631 to 0.0348, and median from 0.0277 to 0.0166. In
both cases, the maximum Hellinger distance was reduced. A
potential reason for QOIN’s effectiveness in the DJ algorithm is
the nature of the properties being measured. In DJ A, the lower
register remains in the |−⟩ state at the end of the computation,
while DJ B and DJ C determine whether a function is balanced
or constant. Specifically, for constant functions, the output
should be |0⊗n⟩, whereas for balanced functions, the output
should not be entirely |0⊗n⟩. These relationships are relatively
simple, making them easier for QOIN’s model to recognize
and correct under noise. Furthermore, both algorithms, when
transpiled, had a relatively low gate depth compared to the
other algorithms.

The second group, including Grover’s algorithm (GR) and
Quantum Teleportation (QT), followed a slightly different
pattern. Again, QOIN reduced the mean compared to the noisy
execution (Grover: 0.1263 to 0.0731, QT: 0.0554 to 0.0476)
and median distances (GR: 0.0507 to 0.0066, QT: 0.0267 to
0.0178). Coincidentally, these are the other two algorithms that
contain a property that verify a static invariant: GR A checks
the lower register is |−⟩, QT B checks the upper register is
in the | + +⟩ state after teleportation, which should always
hold in the CZ and CX implementation. However, for GR, the
maximum Hellinger distance rose from 0.7200 in the noisy
execution to 0.8188 with QOIN, while for QT, it increased
from 0.2437 to 0.2875. The increase in maximum Hellinger
distances to ideal observed in the QOIN execution is much

TABLE IV
MEAN, MEDIAN, AND STANDARD DEVIATION OF THE HELLINGER
DISTANCE BETWEEN THE IDEAL EXECUTION AND NOISY/QOIN

EXECUTION ACROSS DIFFERENT QUANTUM ALGORITHMS.

Algorithm Execution Mean Median Std. Dev. Max Min
Quantum Teleportation Noise 0.0554 0.0267 0.0607 0.2437 0.0000

QOIN 0.0476 0.0178 0.0629 0.2875 0.0000
Quantum Fourier Transform Noise 0.1585 0.1405 0.1233 0.6608 0.0017

QOIN 0.1699 0.1235 0.1563 0.8682 0.0000
Grover’s Algorithm Noise 0.1263 0.0507 0.1523 0.7200 0.0000

QOIN 0.0731 0.0066 0.1453 0.8188 0.0000
Deutsch-Jozsa Noise 0.0807 0.0951 0.0748 0.2908 0.0000

QOIN 0.0042 0.0000 0.0071 0.1503 0.0000
Quantum Phase Estimation Noise 0.0631 0.0277 0.0756 0.4329 0.0000

QOIN 0.0348 0.0166 0.0485 0.3123 0.0000

higher for GR (0.099) compared to QT’s maximum increase
(0.044), this may be due to the larger number of max gates
(4306 vs. 32) after transpilation.

Finally, the Quantum Fourier Transform (QFT) followed its
own, more negative trend. While QOIN lowered the median
distance (0.1405 to 0.1235), it increased both the mean (0.1585
to 0.1699) and maximum distances (0.6608 to 0.8682), along
with the standard deviation (0.1233 to 0.1563) to the ideal
execution over the noisy scenario. Interestingly, the noisy
execution for QFT was the only case that did not reach a
minimum of zero Hellinger distance to the ideal execution
(Table IV). The overall reduced performance may stem from
the fact that the properties defined for testing QFT are heavily
phase-dependent. This, combined with the circuits having the
highest maximum gate count after transpilation, could explain
the observed drop in performance.

RQ1: When applying QOIN across five quantum algo-
rithms, we generally observed a reduction in the mean
and median Hellinger distance to the ideal execution
over the noisy execution, indicating less overall noise.
However, the maximum distance sometimes increased,
suggesting that while QOIN can lower average noise,
it may also introduce greater variability in outlier runs.

B. RQ2: Property Preservation under Noise

The AssertEqual and AssertDifferent assertions,
which utilize Fisher’s exact test to compare the distributions
of measurement results in pairs of circuits, were applied as
postconditions in 13 of the 15 properties examined across
the five case studies. To evaluate whether QOIN’s noise
mitigation preserves these properties, we analyzed its effect
on the Hellinger distances between pairs of circuits (hereafter
referred to as the pairwise distance), relative to the Hellinger
distances from the circuits’ ideal executions, further comparing
them to the distances obtained from unmitigated noisy exe-
cutions. The remaining two properties (GR B, GR C) used
AssertMostFrequent, check the most frequent output for
a given basis; this assertion does not compare pairs of circuits,
and thus was excluded from the following figures.

Figures 4 to 7 illustrate the absolute difference in pair-
wise Hellinger distances between the ideal execution with
the QOIN and noisy executions under the AssertEqual



TABLE V
EARTH MOVER’S DISTANCE (EMD) BETWEEN THE DISTRIBUTIONS OF

HELLINGER DISTANCES COMPUTED FROM NOISY AND QOIN EXECUTIONS
AND THOSE FROM THE IDEAL EXECUTION. RESULTS ARE SHOWN
SEPARATELY FOR GENERATED AND EQUIVALENT MUTANTS, AND

CORRESPOND TO THE GROUPED COMPARISONS SHOWN IN FIGURES 4 TO 7.

Property Generated Equivalent
Noise EMD QOIN EMD Noise EMD QOIN EMD

QT A 0.0168 0.0281 0.00662 0.0531
QT B 0.0476 0.0187 0.0186 0.00122
QT C 0.0434 0.0750 0.00780 0.00376
QFT A 0.148 0.0809 0.00268 0.0406
QFT B 0.0381 0.0499 0.0356 0.0382
QFT C 0.0895 0.1300 0.0268 0.0753
GR A 0.0659 0.0298 0.0636 0.0394
DJ A 0.0127 0.00270 0.00430 0.00114
DJ B 0.107 0.00212 0.128 0.000
DJ C 0.0733 0.00210 0.0206 0.000
QPE A 0.0254 0.0366 0.0253 0.0367
QPE B 0.0792 0.0291 0.0294 0.00414
QPE C 0.0475 0.0172 0.0627 0.0196

and AssertDifferent properties. Smaller values indicate
closer alignment with the ideal execution.

Although the figures visualize Hellinger distance differences
between circuit pairs, the data is grouped by which execution,
QOIN or noisy, achieved a lower Earth Mover’s Distance
(EMD; see Table V) to the ideal distribution. Specifically,
Figures 4 and 5 show the generated mutants, while Figures 6
and 7 present the equivalent mutants. In both cases, Figures 4
and 6 depict properties where QOIN was closer to the ideal,
and Figures 5 and 7 correspond to properties where the noisy
execution was closer. Smaller Hellinger distance values indicate
a closer alignment with the ideal execution for each pair of
circuits. While the figures plot Hellinger distances on the axes,
we discuss the results in terms of the Earth Mover’s Distance,
which quantifies how similar the distributions of these Hellinger
distances are.

The Observed trends indicate that the effectiveness of QOIN
is heavily influenced by the property under test, as different
properties of the same quantum program exhibit very different
mitigation results. For example, in Quantum Teleportation, the
QOIN Hellinger distance distribution aligns more closely with
the ideal for property QT B. However, for QT A and QT C,
the noisy (unmitigated) execution is closer to the ideal than
QOIN. Across all 13 properties, QOIN improved alignment
with the ideal in 8 cases, regardless of mutation type.

For generated mutants, QOIN outperformed the noisy
execution in QT B, achieving an earth mover’s distance (EMD)
of 0.019 compared to 0.048 for the noisy execution (values from
Table V; visualized in Figure 4). Similarly, QOIN improved
results for QFT A (0.081 vs. 0.15), GR A (0.030 vs. 0.066),
QPE B (0.029 vs. 0.079), QPE C (0.017 vs. 0.047), and all
DJ properties: A (0.0027 vs. 0.013), B (0.0021 vs. 0.11), and
C (0.0021 vs. 0.073).

Conversely, the noisy execution performed better in five
properties, specifically QT A (0.017 vs. 0.028), QT C (0.043
vs. 0.075), QFT B (0.038 vs. 0.050), QFT C (0.090 vs. 0.13),
and QPE A (0.025 vs. 0.037) (Figure 5).

For the equivalent mutants, QOIN’s distribution of Hellinger
distances was closer to ideal than the noisy executions’

Fig. 4. Absolute difference in Hellinger distance between circuit pairs, for
generated mutants where the QOIN execution achieved a lower Earth Mover’s
Distance (EMD) to the ideal.

Fig. 5. Absolute difference in Hellinger distance between circuit pairs, for
generated mutants where the noisy execution achieved a lower Earth Mover’s
Distance (EMD) to the ideal.

distribution in several cases (Figure 6). Specifically, it reduced
the earth mover’s distance compared to the noisy execution
for QT B (0.0066 vs. 0.053), QT C (0.0038 vs. 0.0078), GR
A (0.039 vs. 0.064), QPE B (0.0041 vs. 0.029), and QPE C
(0.020 vs. 0.063). Similarly, all Deutsch-Jozsa (DJ) properties
benefited from QOIN mitigation, with properties A (0.0011 vs.
0.0043), B (0.00 vs. 0.13), and C (0.00 vs. 0.021) showing
strong improvements.

Conversely, the noisy execution outperformed QOIN for QT
A (0.0066 vs. 0.053) and QFT properties, including QFT A
(0.0027 vs. 0.041), QFT B (0.036 vs. 0.038), QFT C (0.027
vs. 0.075), and QPE A (0.025 vs. 0.037) (Figure 7).

Overall, the performance trends for equivalent mutants
mirrored those of the generated mutants. If QOIN was effective
in reducing noise for a particular property in the generated
mutant set, it remained effective for the equivalent mutants as
well. However, two exceptions were observed: QT C, which
was closer to the ideal execution under QOIN in this set,
and QFT A, where the noisy execution without mitigation
performed better than QOIN. These results suggest that QOIN’s
effectiveness is not significantly affected by the semantic
equivalence of mutants but may be influenced by the underlying
circuit structure and the type of property being evaluated.



Fig. 6. Absolute difference in Hellinger distance between circuit pairs, for
equivalent mutants where the QOIN execution achieved a lower Earth Mover’s
Distance (EMD) to the ideal.

Fig. 7. Absolute difference in Hellinger distance between circuit pairs, for
equivalent mutants where the noisy execution achieved a lower Earth Mover’s
Distance (EMD) to the ideal.

To provide a more comprehensive view of the variability
and extremities in pairwise Hellinger distances, we report the
1% and 0.1% highest and lowest values for each test scenario
in Tables VI and VII. These metrics allow us to examine the
range of deviations observed in the measurement distributions
between pairs of circuits, which may disproportionately skew
statistical test outcomes. By analysing these extremes, we assess
whether the QOIN distribution is able to approach the ideal
distribution, and provide an improvement over performing no
mitigation.

Across generated mutants (Table VI), QOIN demonstrated
closer upper-bound distances to ideal (evaluating both 1% and
0.1% high values) than the noisy execution in 20 out of 26
cases, whereas noisy was closer in 6 out of 26 cases, and tied
in no cases. This total of 26 cases arises from assessing 13
distinct properties at two threshold levels (1% and 0.1%). As
for the lower bound cases (1% and 0.1% low values), QOIN
demonstrated closer upper-bound distances to ideal than the
noisy execution in 16 out of 26 cases, whereas noisy was closer
in 2 of 26 cases, and tied in 8 of 26 cases.

In particular, under QOIN mitigation, all Deutsch-Jozsa’s
properties were very close across the high and low extremes
(dist. < 0.006 to ideal). However, in a few cases, such as QFT

A and QPE A, the noisy execution was comparable to or was
closer to ideal than the QOIN execution.

Across equivalent mutants (Table VII), the QOIN and noisy
execution each produced distances closer to the ideal in 13 out
of 26 instances for the upper-bound deviations (1% and 0.1%
high values). However, for the lower-bound deviations (1%
and 0.1% low values), QOIN demonstrated closer distances to
the ideal in 18 out of 26 cases, while the noisy execution was
never closer, and ties occurred in 8 cases.

A notable trend emerged in QOIN’s behavior: extreme values
were very close to the ideal (within a distance of 0.01) when
evaluating invariants such as lower register minus (DJ A, GR
A) and lower register plus (QT B). An exception was observed
in the equivalent mutant execution of GR A, which exhibited
a substantial deviation from the ideal.

The shift from equivalent to generated mutants had minimal
impact on the overall trends in the central tendency graphs
(Figures 4 to 7), affecting only two properties. However, this
shift had a much more pronounced effect on the extremities of
the pairwise Hellinger distance distribution (Tables VI and VII).
A clear example is the QOIN execution of GR A, where the
results changed from being identical to ideal in Table VI, to a
difference of at least 0.34 across the 1% and 0.1% highs in
Table VII.

RQ2: QOIN preserves many quantum properties but
not all. While it generally reduces the overall distance
to the ideal execution, these improvements do not
consistently extend to pairwise similarity in central
tendencies or distribution extremes. In some cases, the
unmitigated noisy approach better preserves certain
properties, suggesting that a hybrid strategy which
combines QOIN-mitigated and noisy executions may
be more robust for property-based testing.

C. RQ3: Effectiveness of the hybrid approach

In Section IV-A, we observed discrepancies between the
QOIN and noisy simulator executions. While QOIN sometimes
outperformed the unmitigated noisy execution, there were
instances where the latter better preserved properties. To
leverage the strengths of both scenarios, we applied a hybrid
strategy that, as will be shown in this section, outperforms both
noisy execution and QOIN mitigation individually. The hybrid
approach first executes circuits using the noisy simulator. If
an assertion fails, the circuit is executed again with QOIN
mitigation. If the assertion still fails, it is considered a true
failure; otherwise, it is classified as passing.

Figure 8 shows the absolute difference in the number of failed
assertions compared to the ideal execution for the generated
mutants, while Figure 9 shows the net difference for the
equivalent mutants. This distinction is necessary because, for
the equivalent mutant set, running with a noisy simulator only
increased (or tied) the number of failed assertions. Whereas
for some cases in the generated set, we surprisingly observed
more assertion failures under the ideal execution, indicating



TABLE VI
GENERATED MUTANTS’ PAIRWISE HELLINGER DISTANCE: 0.1% LOW, 1% LOW, 1% HIGH, 0.1% HIGH

Property Qoin Ideal Noise

0.1% low 1% low 1% high 0.1% high 0.1% low 1% low 1% high 0.1% high 0.1% low 1% low 1% high 0.1% high

QT A 0.0 0.0 0.859 1.0 0.0 0.000275 0.783 0.94 0.0 0.000476 0.671 0.766
QT B 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.00331 0.00546 0.811 0.819
QT C 0.0 0.00173 1.0 1.0 0.000239 0.00287 0.829 0.943 0.0105 0.0144 0.662 0.744
QFT A 0.00217 0.00726 0.86 0.937 0.00362 0.00754 0.573 0.636 0.00398 0.0101 0.397 0.504
QFT B 0.0 0.0 1.0 1.0 0.0 0.0 0.881 0.924 0.00167 0.00614 0.698 0.857
QFT C 0.0 0.0 1.0 1.0 0.0 0.0 0.882 0.988 0.00354 0.00735 0.609 0.767
GR A 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.000471 0.786 0.797
DJ A 0.0 0.0 0.781 0.787 0.0 0.0 0.789 0.797 0.0 0.0 0.68 0.686
DJ B 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.000788 0.00612 0.966 0.99
DJ C 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.00161 0.998 0.999
QPE A 0.0 0.0 0.269 0.285 0.0 0.0 0.0237 0.03 0.0 0.000257 0.16 0.2
QPE B 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.000472 0.768 0.9
QPE C 0.0 0.0 0.545 0.62 0.0 0.0 0.513 0.542 0.0 0.0006 0.361 0.386

TABLE VII
EQUIVALENT MUTANTS’ PAIRWISE HELLINGER DISTANCE: 0.1% LOW, 1% LOW, 1% HIGH, 0.1% HIGH

Property Qoin Ideal Noise

0.1% low 1% low 1% high 0.1% high 0.1% low 1% low 1% high 0.1% high 0.1% low 1% low 1% high 0.1% high

QT A 0.0 0.0 0.242 0.255 0.0 0.0 0.0233 0.0282 0.0 0.000237 0.048 0.057
QT B 0.0 0.0 0.0238 0.0289 0.0 0.0 0.0278 0.0339 0.0 0.00172 0.0714 0.077
QT C 0.0 0.0 0.0727 0.0993 0.0 0.00024 0.0388 0.0427 0.00806 0.0112 0.0546 0.0672
QFT A 0.00124 0.0053 0.277 0.321 0.0023 0.00518 0.0622 0.0683 0.00426 0.00727 0.0621 0.0675
QFT B 0.0 0.0 0.461 0.989 0.0 0.0 0.0599 0.0691 0.00467 0.00498 0.204 0.232
QFT C 0.0 0.0 0.399 0.416 0.0 0.0 0.0632 0.0672 0.00293 0.00621 0.17 0.196
GR A 0.0 0.0 0.37 0.404 0.0 0.0 0.0222 0.0264 0.0 0.000471 0.38 0.396
DJ A 0.0 0.0 0.013 0.0172 0.0 0.0 0.0184 0.0229 0.0 0.0 0.0316 0.0438
DJ B 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.804 0.809 0.968 0.975
DJ C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.046 0.0505
QPE A 0.0 0.0 0.262 0.286 0.0 0.0 0.0232 0.0283 0.0 0.000361 0.153 0.187
QPE B 0.0 0.0 0.0642 0.0841 0.0 0.0 0.0347 0.0437 0.0 0.000471 0.179 0.202
QPE C 0.0 0.000707 0.571 0.592 0.0 0.000236 0.526 0.544 0.0 0.000943 0.365 0.379

that noise may mask the effect of circuit mutations, causing
them to erroneously pass. Different hatching patterns are used
to indicate the specific properties associated with each failed
assertion. In both figures, the X-axis plots individual mutants,
grouped by testing scenario, and the Y-axis shows the absolute
difference in the number of failed assertions relative to the
ideal execution. Lower values indicate closer alignment with
the ideal simulator.

For the generated mutants (Figure 8), we can see the impact
of the variable effectiveness of QOIN (blue) as shown in
Section IV-B, with properties failing at different rates depending
on the individual mutant and execution scenario. The hybrid
approach (purple) performed similarly to the better execution
between QOIN and noisy for each mutant. However, there
were notable improvements with the hybrid approach in: QT
mutants 8 and 9, QFT mutants 4 and 9, and QPE 2 and 8,
where it provided a significant advantage.

Figure 9 further highlights the rationale for the hybrid
approach. While some properties align more closely with ideal
under the noisy execution, others align more closely with the
QOIN execution. By first running the noisy simulation and
then applying QOIN mitigation only for failed assertions, the
hybrid approach can achieve a closer alignment with the ideal.
In some cases, it even outperforms both the noisy and QOIN
executions when used individually. This is particularly visible
in the equivalent mutants of the QT algorithm. With the QOIN
execution, two properties failed (QT B and QT C), whereas in
the unmitigated noisy execution, QT A and QT B failed. Since
QT A does not fail when testing the property with QOIN, it is

filtered out when re-tested under QOIN by the hybrid approach.
Similarly, since QT C did not fail in the initial noisy execution,
it is also eliminated from the hybrid output. Finally, the shared
failing property (QT B) showed improvement because of fewer
assertions failing when repeated with QOIN mitigation.

RQ3: The hybrid approach demonstrated the ability
to improve alignment with the ideal execution for
the equivalent mutants, often outperforming both the
QOIN and noisy individual scenarios. Notably, it
significantly reduced false positives during property-
based testing, particularly in the Quantum Teleportation,
Grover’s Algorithm, and Quantum Phase Estimation
algorithms. A comparable, but lesser effect was seen
in the generated mutant set, where the hybrid approach
performed similarly to the better option between the
QOIN and noisy executions. However, it less frequently
significantly outperformed both individual approaches,
although still showcasing exceptions with notable
improvements over both individual strategies.

V. THREATS TO VALIDITY

There are various threats to the validity of this study that
may affect the generalisability of the results:

• Quantum program subset: The quantum programs used
as case studies may not be representative of the wider
set of all quantum programs. To improve coverage, future
work could include a broader and more diverse set of



Fig. 8. Absolute Difference in Failed assertions relative to the Ideal execution’s Number of Failed Assertions for generated mutants

Fig. 9. Difference in Failed assertions relative to the Ideal execution’s Number of Failed Assertions for equivalent mutants

quantum programs with further varying circuit structures
or qualities.

• Program size: Certain programs, such as Grover’s algo-
rithm, do not have a fixed size and thus require an oracle
as input. Because our experiments were conducted using
a simulator, the program width and depth were limited to
keep the circuits feasible. Scaling these programs up will
help determine whether the observed trends hold at larger
scales and potentially reveal new insights that smaller
examples may not capture.

• Noise model selection: Quantum programs may perform
differently according to the noise conditions that they are
exposed to. Only one noise model was used for all our
experiments. Testing multiple noise models, each with
different levels or types of noise, could help determine
how consistently the observed trends hold under different

realistic conditions.
• Use of simulator: A noisy simulator was used due to

limited access to a real quantum computer, which may
not fully capture the behavior of an actual computer.
This study used a static noise snapshot to train the
QOIN model. However, real quantum computers exhibit
noise fluctuations, so applying QOIN in such settings
would likely require periodic retraining to maintain its
performance. Assessing the sensitivity of the model to
these fluctuations in noise is an important direction for
future work. Repeating these experiments on physical
quantum computers would provide a more accurate picture
of how the tested programs behave under real-world
conditions, and how this affects property-based testing.

• Property subset: A limited set of three properties
per quantum program were evaluated, these may not



represent the entire space of possible property-based tests.
Evaluating additional properties would help determine
whether the observed results are valid for a wider variety
of property-based tests.

VI. CONCLUSION

This work examined whether property-based testing can
be adapted to noisy quantum environments through machine-
learning-based noise mitigation. By evaluating five base quan-
tum programs under mutation testing and employing the QOIN
approach, we found QOIN is able to reduce median and mean
noise on a per-circuit basis, though with mixed results when
evaluating pairs of circuits that are compared within assertions.
These results inspired a hybrid approach, which selectively
applies QOIN when a property fails during property-based
testing. The hybrid approach was found to significantly reduce
the false positive rate introduced by the noise model compared
to each individual approach.

While the hybrid strategy takes a step forward in bridging
the gap between ideal and real-world conditions, there is
still a noticeable gap in assertion failures compared to the
ideal execution when the properties are evaluated under
noisy conditions. This work serves as a stepping stone for
integrating targeted noise mitigation techniques within property-
based testing for quantum programs, underscoring its potential
effectiveness in the future with enhanced noise-mitigation
techniques. Nevertheless, some limitations remain. We relied
on a single simulated noise model and a limited set of
quantum programs, potentially limiting the generalizability of
our findings. Moreover, the performance overheads of QOIN
for higher qubit counts warrant further investigation.

In future work, the properties could be implemented to
better interact with machine-learning based noise mitigation.
Rather than comparing separate circuits, one circuit could be
constructed that contains the qubits to compare, which may
mitigate the mixed results observed when comparing pairs
of circuits evaluated within property-based tests. Furthermore,
exploring different noise mitigation approaches that can be
inserted into the property-based testing loop could provide a
better perspective on the viability of this approach.
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