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Abstract. This paper proposes a theoretical framework for separation of concerns in

the formal specification of reactive and real-time systems. This framework consists of the

syntax and the semantics of three languages (and all meaningful combinations thereof)

that each address a separate concern. The first language, Gamma (a variant of an exist-

ing language) is used to define the functionality of a system (by means of a set of basic

data transformations). Our additions are a simple language of intervals specifying timing-

properties of basic transformations and a language (called Schedules) for specifying the

coordination of the basic Gamma transformations. Each of these languages formally mod-

els a separate aspect of a system and statements in these languages can be reused, changed

or analyzed in their own right. Our key contribution is that we provide a formal framework

in which different combinations of aspects have a well-defined semantics.

ACM CCS Categories and Subject Descriptors: F.3 [Logics and Meanings of Pro-

grams]; D.3.1 [Formal Definitions and Theory]; D.1.3 [Concurrent Programming]

Key words: separation of concerns, reactive systems, coordination, real-time systems,

shared data-space, formal methods

1. Introduction

1.1 Motivation

Separation of concerns in software design has been proposed in several classic

computer science texts since the very beginning of this discipline [Dijkstra 1976].

A major motivation for advocating this principle has been to conquer the com-

plexity of designing software by means of breaking it into a number of design

issues, aspects or concerns (e.g., timing, scheduling, persistency or security) that

can be addressed separately [Elrad et al. 2001, Tarr et al. 1999]. Hence, providing

abstract and simple formalisms that are tailor-made for a single concern of require-

ment specification, design, or programming, is of great importance. Tailor-made
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formalisms can enable a more focused design method that allows designers to con-

centrate on each aspect of a design separately. Furthermore, they ease changing an

aspect without being directly involved with other ones. Also, separation of con-

cerns facilitates reuse of each aspect in other designs. Recently, a renewed interest

appeared in separating different concerns and providing appropriate ways of focus-

ing on each concern. A distinguished example of this trend can be seen in Post

Object Oriented Programming languages (POPs) [Elrad et al. 2001;Harrison and

Ossher 1993] and in particular in the Aspect Oriented Programming (AOP) [El-

rad et al. 2001] and Multi-Dimensional Separation of Concerns [Tarr et al. 1999]

methods.

The ultimate goal of the research commenced by this paper is to have a set of

declarative and abstract specification languages for each aspect of a system (e.g.,

functionality, timing, distribution, coordination, etc.). Any meaningful combina-

tion of aspect designs can then be weaved together to reflect inter-connections of

aspects. Different aspect models (specifications of different aspects) can be refined

in order to move towards a more restricted model (and ultimately towards an im-

plementation; in this paper, however, we are only concerned with modeling and

do not consider implementation issues). System properties can be deduced from

individual aspects with proven properties. For example, if some class of properties

is only dependent on the functionality aspect (i.e., it only refers to basic reactions

or input-output behavior and weaving other aspects such as timing and scheduling

preserves the properties), then we can simplify the procedure of verifying these

properties by only examining the semantics of the functionality model. After a

correctness analysis of the set of designs, an executable behavioral model can be

derived from it. For validating non-functional aspects (i.e., aspects not concerned

with the pure input-output or reactive behavior such as timing), a set of monitor-

ing components might be generated from a specification so that these aspects of

specification can be checked at run-time, too.

This paper takes a step toward this ultimate goal by providing a formal frame-

work of separation of concerns for real-time systems using the shared-data-space

metaphor. This metaphor prescribes that the independent (possibly parallel) com-

ponents performing basic functionality do not carry any explicit reference to one

another and instead only communicate via a shared data-space. Fig. 1 shows a

schematic view of the proposed method. The novelty of this work compared to

the approaches mentioned above is that, first, it exploits the idea of separation of

concerns at the specification and design level, and, second, it establishes a robust

theoretical basis that allows rigid analysis and verification of (timed) designs. This

is facilitated by having separate, yet composable, semantics for the different con-

cerns/aspects.

1.2 Summary of approach

In our approach, the basic functionality of a system is designed using an abstract

formal model of computation called Gamma [Banâtre et al. 2001]. A Gamma pro-

gram consists of a set of basic data transformations called rules. Timing informa-

tion is associated to Gamma rules in the form of separate intervals. The resulting
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Fig. 1: Separation of concerns in design.

timed-functionality modeling language is called Timed-Gamma. Composed be-

havior of the system is expressed in a coordination language named Schedules,

specifying the order of (timed) computations using constructs such as sequential

composition and parallel composition. More details follow in Section 4.

1.3 Related work

Separation of computation and coordination has been extensively investigated in

the area of coordination languages (for an overview, see [Papadopoulos and Arbab

1998;Gelernter and Carriero 1992]). These languages can be generally classified

into two main categories: data- and control-driven languages [Papadopoulos and

Arbab 1998].

In data-driven coordination languages [Brogi and Jacquet 2003], the main goal is

to abstract from the communication mechanisms by providing a shared data-space

as the communication medium among components. This allows for spatial and

temporal decoupling of components and provides a level of separation of concerns.

Linda [Carriero and Gelernter 1989] and Gamma [Banâtre et al. 2001] are well-

known examples of such languages.

On the other hand, control-driven coordination languages provide the possibility

of defining exogenous control strategies over a set of components. In other words,

these languages provide the primitives to compose basic functionality units (e.g.,

simple reactions producing some output as a result of a certain input) as black-box

components. Manifold [Arbab 1996], ToolBus [de Jong and Klint 2003] and Syn-

chronizers [Frølund and Agha 1993] are examples of control-driven coordination

languages / architectures.

In our approach, we try to benefit from the merits of both of these categories.

First, we lay a layer of abstraction in our communication platform (i.e., the way

basic functionality units are composed) by using the shared-data-space metaphor

of Gamma. Using Gamma one can define basic functionality units producing a
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certain output (e.g., a tuple) in case a certain input (again in the form of a tuple)

is present in the shared data-space. Then, we introduce our Schedules language to

specify control and coordination strategies of the basic functionality units, follow-

ing the ideas of Chaudron and de Jong [1996, 1998]. Furthermore, by extending

this paradigm to timed settings, we allow for timing analysis of both functionality

and coordinated behavior models.

With respect to timed-coordination languages, a few attempts have been made to

extend coordination languages with time (such as [Papadopoulos and Arbab 1996;

Bergstra and Klint 1998; Nielsen et al. 1998; Jacquet et al. 2000; Hannemann and

Hooman 2001; Arbab and Rutten 2003; Arbab et al. 2004; Hooman and van de

Pol 2005]). In the area of data-driven coordination languages, Jacquet et al. [2000]

presents four different timed extensions of the concurrent Linda coordination lan-

guage (namely, with relative delay, i.e., delay after finishing the last task, absolute

wait, i.e., waiting till a certain moment of time, relative durational primitives, i.e.,

primitives that take a certain amount of time before their execution can or must be

completed and absolute durational primitives, i.e., primitives that have to delay till

a certain moment of time). Although relative durational primitives are conceptu-

ally close to our extension of Gamma rules, they differ from ours in a number of

ways. First, they force time-stamping the data-space and only allow introduction

and consumption of temporary elements to/from the data-space. Second, Gamma

has a built-in transaction-based mechanism (in terms of rules) which is absent in

Linda. Furthermore, time transitions are synchronized among all durational primi-

tives in [Jacquet et al. 2000] while we allow for both synchrony and asynchrony of

time transitions.

Also in [Hannemann and Hooman 2001; Hooman and van de Pol 2005] a frame-

work is proposed for compositional reasoning about real-time shared-data-space

systems in PVS. In this approach, data elements are time stamped when introduced

in the shared data-space. We do not require time-stamping in our framework since

it is not necessary when only timing information of basic transformations suffices

for the specification of a system. Nevertheless, one can implement time-stamping

and temporary (temporal) data items in our framework.

For the purpose of control-driven coordination languages, in [Papadopoulos and

Arbab 1996], Manifold is used to coordinate real-time components. The main dif-

ferences between our work and [Papadopoulos and Arbab 1996] arise from the fact

that they assume timing is described in the functionality of components (or com-

ponents are instrumented with timing measures and checks). This leads to the fact

that components themselves can take care of timing by requesting, releasing and

passing control. However, we try to separate timing concerns from functionality of

components so that real-time behavior can be reflected automatically in the seman-

tics and can be implemented independently from components using monitors or

observers. Reo [Arbab and Rutten 2003], a successor of the coordination language

Manifold, uses a qualitative notion of time. The notion of time there represents the

causal ordering between communication actions and is very close to the notion of

tags in the tagged signal model of [Lee and Sangiovanni-Vincentelli 1998].

The ToolBus coordination architecture is also extended to discrete timed set-

tings in [Bergstra and Klint 1998]. In the Discrete-Time ToolBus, the user can
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choose between absolute- and relative-time versions of delay and time-out prim-

itives. These primitives are controlled by the central clock of the ToolBus. The

focus in the Discrete-Time ToolBus approach is more on the coordination aspect

(by using so called term scripts). However, in our approach we want to address

aspects of functionality and timing as separate aspects of design. Thus, in the

Discrete-Time ToolBus, functionality of components (tools) are abstracted (treated

as black-box) and timing primitives are added to the coordination language.

RTSynchronizers [Nielsen et al. 1998] is the real-time extension of Synchroniz-

ers [Frølund 1992; Frølund and Agha 1993]. In RTSynchronizers the behavior of

an actor-based system is restricted by specifying real-time constraints over com-

munication (method invocation) patterns. To apply RTSynchronizers to untimed

actor models, arbitrary time delay (time-pass) for each action execution is assumed.

Then the (chaotic) actor execution patterns are restricted using a superimposition

of RTSynchronizers. Intuitively, the work of Nielsen et al. [1998] is in the same

direction as the approach of this paper. However, there are a number of essential

differences. Firstly, Nielsen et al. [1998] do not allow for any assumption about

timing of basic actions. However, in our approach we allow for both unrestricted

timed behavior of rules as well as explicitly added timing performance specifica-

tions to them. Secondly, an RTSynchronizer specifies a mixture of real-time and

coordination requirements (e.g., by mixing constructs for causal ordering and dead-

lines) and thus is not entirely in line with our design philosophy of separation of

concerns.

There are also several extensions of process calculi with timing in the litera-

ture. Overviews of such extensions can be found in [Vereijken 1997; Davies and

Schneider 1995]. Our Schedules languages (considering its timed semantics) can

be categorized as a process calculus with relative intervals and delayable actions. In

most timed-process algebras, atomic actions are treated uniformly (as always being

enabled to execute). Also, timed-synchrony is the dominant choice among timed-

process algebras which means that all parallel components should be executed in

true concurrency (in time). We do not have this uniformity assumption in our rules,

since enabledness is defined based on the contents of the shared data-space. Fur-

thermore, we allow a kind of asynchronous timed parallelism in which actions can

be both serialized (preempted by other actions) and executed in true concurrency.

In our view, keeping timing and resource availability concerns separate from causal

relations of actions (thus, timed asynchrony) is essential, especially in early stages

of the design where the details of the actual implementation domain are not known.

There has been a similar attempt to define an abstract notion of timed parallel com-

position in [Aceto and Murphy 1996]. In this process algebra, non-synchronizing

actions are forced to make asynchronous (interleaving) time transitions and syn-

chronizing actions are specified to perform synchronous (concurrent) time transi-

tions. This distinction is not necessary in our framework, since we do not have

explicit synchronization points.

In [Mousavi et al. 2003], we used our approach to model the well-known steam-

boiler control case-study of Abrial et al. [1996]. Among the attempts to formalize

the steam-boiler case study, those using process algebraic formalisms are close to

our approach. For example, Willig and Schieferdecker [1996] use Time Extended
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Lotos to formalize the steam boiler case. An interesting observation about the case

study is that the specifiers were forced to use another language (a functional pro-

gramming language) to specify their functionality aspect. This shows that process

algebraic approaches are more suitable for specification of behavior/coordination

and timing (usually in a mixed fashion) than for the specification of functional-

ity. Our method tries to provide an integral approach that supports separate aspect

specifications.

1.4 Case study: requirements

To illustrate different aspects of our method, we treat a simplified version of the

light control system design [Börger and Gotzhein 2000]. Our light control system

is built upon a sensor network that is used for different purposes in a smart building.

We abstract from the sensor layer specification and assume that the sensors give

accurate and in-bound information about the positions of individuals inside the

building, based on some fixed system of coordinates. The building is rectangular

and divided into rectangular rooms with defined boundaries. Individuals may move

within the building with a certain speed and leave or enter the building through a

number of doors.

A control strategy should be devised such that if an individual is detected in a

room, the lights of that room should be switched on. If a person has just left the

room and there is no other person in the room, then lights should turn off. The

goal of the case study is to guarantee that whenever a person is in a room the lights

of that room will turn on within a certain time boundary. Also when the room

is empty, the lights should be turned off within a boundary. We first model the

functionality of the system, then add timing information to it and finally we devise

a coordination (control) strategy to meet the requirements.

1.5 Structure of the paper

The rest of this paper is organized as follows. Section 2 introduces our data and

functionality model as well as the preliminary mathematical concepts behind them.

Section 3 introduces the timing aspect and also defines how the functionality model

and the timing aspect can be composed. Section 4 presents our coordination lan-

guage for ordering the behavior of (Timed -)Gamma programs. Subsequently, Sec-

tion 5 defines equivalence notions among timed-programs and schedules that are

essential in compositional reasoning and refinement. Section 6 defines a sched-

ule that represents the chaotic behaviour of a Gamma program. Finally, Section 7

concludes the results and shows directions of our future research.

2. Functionality

2.1 Motivation: Shared-Data-Space paradigm

The Shared-Data-Space paradigm is a metaphor for component interaction that al-

lows for temporal and spatial decoupling of components. As shown in Fig. 2, com-
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Fig. 2: Shared-Data-Space model.

ponents can access the data-space as the shared communication medium indepen-

dent from each other. Gamma (General Abstract Model for Multiset Manipulation)

[Banâtre and Le Métayer 1993; Banâtre et al. 2001] is a specification/programming

model based on this paradigm. In Gamma, the shared data-space is modeled by the

notion of a multiset (bag) and functionality of components is represented by rules

which model basic transformations on multisets.

Gamma rules are specified independently from each other and they do not make

reference to each other. All possible interactions among basic functionality units

(e.g., ordering or synchronization) are thus abstracted away through the notion of

shared data-space. This also means that rules can be applied in any order to the

shared data-space using all possible levels of true concurrency. As a consequence,

unneeded sequentiality (e.g., immense use of semi-colon notation even in paral-

lel versions of classic programming languages [Dijkstra 1976]) is not imposed on

Gamma programs. In other words, Gamma programs can capture the parallelism

that is logically inherent in the problem definition [Banâtre and Le Métayer 1993].

This abstract nature of Gamma makes it a suitable choice for the specification of

basic functionality units of software components. Using this model allows com-

ponent designers to concentrate on basic units of functionality and leave the com-

posed behaviors as well as other non-functional aspects of them to be devised in

later design phases, and/or by other specification methods (e.g., coordination lan-

guages for specifying composed behavior). A Gamma program encompasses every

arbitrary ordering of basic actions with arbitrary levels of true concurrency.

In the remainder of this section, we first introduce the notion of multiset as a

mathematical model for a shared data-space. Then, we define substitutions and

computations on multisets (as the semantic framework for execution of rules) and

investigate their properties. Consequently, we give the formal syntax of Gamma

programs and elaborate on the intuition behind them. Finally, we specify the func-

tionality aspect of the case-study. We defer giving a complete semantics to Gamma

programs until the next section where we introduce the timing aspect. There, we

present an un-timed interpretation of Timed-Gamma programs. The only reason

for doing so is to prevent the redundancy caused by presenting two similar seman-
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tics. However, elsewhere, we have defined a purely untimed semantics for our

version of Gamma programs [Mousavi et al. 2002], which is reasonably different

from the original semantics of [Banâtre and Le Métayer 1993] due to the presence

of true concurrency. Our true concurrency semantics of Gamma [Mousavi et al.

2002] (in particular the notions of concurrent computation and independence in

this semantics) are especially important for our move to the timed setting.

2.2 Multisets and computations

2.2.1 Basic definitions

In this subsection, we define a concise and basic theory of multisets that serves

as a mathematical meaning for the concept of a shared data-space in Gamma.

For a more detailed discussion on multisets and some historical accounts, see

[Syropoulos 2001].

Definition 1. (Multiset) A multiset is a set that allows multiple occurrences of ele-

ments. More precisely, it is defined as a total function from a set U (for universe) of

elements to the set of natural numbers IN representing their number of occurrence.

Hence, a multiset M is defined as:

M : U → IN.

We refer to the set of all multisets of a universe U as IM(U). The empty multiset is

denoted by ∅. We use the notation e ⊏− M to denote membership, [e0, e1, . . .] for

external representation and M0 ⊑ M1 for multisubset. Addition and subtraction of

multisets are denoted by⊞ and⊟, respectively. Union and intersection of multisets

(taking the maximum and minimum number of occurrences of each element) are

denoted by ⊔ and ⊓, respectively. Elements of our multisets are closed terms built

upon a predefined logical structure (a first order language) and are closed under

pairing. Given a fixed set of variables, the set of open terms from this structure

closed under pairing is called the set of basic expressions.

Example 1. Consider the case-study requirements given in Section 1.4. To design

a multiset for this case study, we assume a basic set B that contains the integers.

Associated with this set are the usual basic operators such as addition and the usual

relations such as equality and ordering. The multiset for this case study is defined

to contain elements of the following types:

(1) The architecture of the building (floorplan): The boundaries of the building

are denoted by a tuple (BuildingDim, x1, y1, x2, y2). This means that the rec-

tangular building is placed on a two-dimensional grid with lower-left corner

at position (x1, y1) and upper-right corner at position (x2, y2). The boundaries

of the room are denoted by tuples of the form (RoomDim, i, x1, y1, x2, y2).

Doors are denoted by tuples (Door, x, y) showing their coordinates. It is as-

sumed that the rooms do not overlap and cover the whole building. Also

all doors are on room boundaries. It is assumed (without checking) that any

initial multiset respects these spatial restrictions.
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(2) Individuals: Ordinary persons are denoted by tuples of the form (Person, i,

x, y) where Person is a name, i is the identifier of the person, and the pair x, y

shows the person’s coordinates (tuples are terms that are constructed using

pairing). When a person moves out of the building, this will be denoted by

(PersonOut, i).

(3) Lights and sensors: We assume that there exists a tuple representing the lights

of each room, denoted by (Light, i, status) where i is the room number and

status can be either On or Off. The occupancy status of room i is indicated by

tuples of the form (RoomStat, i, status) where status can be Occ if the room

is occupied or Free otherwise.

2.2.2 Substitution, computation and independence

The basic notion of computation in Gamma is the rewriting of a multiset. The

rewriting of a multiset due to one rule is modeled by a substitution. A compu-

tation consists of an arbitrary number of substitutions. This way, a multiset of

(simultaneous) substitutions models a parallel execution of rules. Note that usually

computation is defined in terms of a sequence of basic steps; our notion of compu-

tation, however, admits simultaneous steps and the ordering of our (simultaneous)

computation steps is later defined in the semantic frameworks to be presented in the

forthcoming sections. This is to admit all possible orderings that can be prescribed

by the coordination specification.

Definition 2. (Substitution and Computation) For multisets N and N′, the expres-

sion N/N′ is called a substitution of N for N′ (typically denoted by α, α1, etc.). A

computation is a multiset of substitutions (typically denoted by σ, σ1, etc.).

Intuitively, applying a computation with a single substitution σ = [N/N′] to mul-

tiset M should result in taking multiset N′ from M and putting back multiset N. In

this operation, some parts of the multiset may be only taken away temporarily by

N′ and put back by N again. We call this the read part following the intuition that

this part is not really taken away but only read. The parts that are permanently

removed and added by a substitution are called take and put parts, respectively.

We lift this intuition to general computations, as follows. The read part of a com-

putation is the union of read parts of its substitutions because a single copy of an

element can be read by several substitutions concurrently. For the take or put parts,

different copies of the elements are removed or added by the individual substitu-

tions.

Definition 3. (Computation: Parts and Application) Read, take and put parts of a

computation are defined as follows:

read(∅)
△
= put(∅)

△
= take(∅)

△
= ∅

read([N/N′]⊞ σ)
△
= (N ⊓ N′) ⊔ read(σ)

take([N/N′]⊞ σ)
△
= (N′ ⊟ read([N/N′]))⊞ take(σ)

put([N/N′]⊞ σ)
△
= (N ⊟ read([N/N′]))⊞ put(σ).
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Application of a computation σ to a multiset M is defined as:

M(σ)
△
=

{

(M ⊟ take(σ))⊞ put(σ) if read(σ)⊞ take(σ) ⊑ M

M otherwise.

If read(σ) ⊞ take(σ) ⊑ M, then we call σ consistent with respect to M. We also

denote the fact that σ is consistent with respect to M by M |= σ.

In order to model parallelism in our Gamma semantics, we introduce a notion of

independence on computations. Two computations are independent if both can be

applied simultaneously or in an arbitrary order.

Definition 4. (Independence) Two computations σ0 and σ1 are independent with

respect to a multiset M, denoted by M |= σ0 ⊲⊳ σ1, if and only if read(σ0 ⊞ σ1)⊞

take(σ0⊞σ1) ⊑ M. As an alternative (but formally equal) definition M |= σ0 ⊲⊳ σ1

if and only if σ0 ⊞ σ1 is consistent with respect to M: M |= σ0 ⊞ σ1.

As a consequence, two computations are independent if and only if both can find

enough shared copies of elements to read and enough different copies of elements

to take.

Example 2. Consider the substitution

α0 = [(PersonOut, 1), (Door, 10, 10)]/[(Person, 1, 10, 10), (Door, 10, 10)].

This represents person number 1 leaving the building. In this substitution, the tuple

representing the position of Door is only read. However, the tuples representing

person 1 inside and outside the building are taken and put, respectively. Suppose

that we have another substitution

α1 = [(Person, 2, 10, 10), (Door, 10, 10)]/[(PersonOut, 2), (Door, 10, 10)]

which represents person number 2 entering the building using the same door. If

our initial multiset is M = [(Person, 1, 10, 10), (Door, 10, 10), (PersonOut, 2)], then

computations [α0] and [α1] are independent with respect to M. Hence, they can be

applied to M simultaneously or in any arbitrary order and in any case this results

in the multiset [(Person, 2, 10, 10), (Door, 10, 10), (PersonOut, 1)].

The original presentations of the Gamma formalism [Banâtre and Le Métayer

1993; Hankin et al. 1993] do not have a notion of concurrent computation and

hence neither of the concept of independence. Our notion of independence is more

liberal than the notion of [Chaudron 1998], in that it allows for more concurrent

tasks to execute due to separating read and take parts (i.e., it allows for sharing the

data items that are only read). Apart from the theoretical differences among the

resulting untimed semantics, the notions of concurrent computation and indepen-

dence are of essential importance in defining the semantics for Timed-Gamma.
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2.3 Gamma syntax

The abstract syntax of basic Gamma rules is presented in Fig. 3. A Gamma pro-

gram consists of a name (a string of syntactic class ProgramName), and a non-

empty set of rules, each rewriting the content of the shared multiset. Each rule

consists of a name (represented by the syntactic class RuleName) and a set of terms

at the left- and right-hand side of the substitution arrow 7→ and a condition part that

are to be valuated by the multiset content. In the given syntax, BasicExp and

Condition stand for open terms and logical formulae built upon a given logical

structure on multiset elements (see Definition 1). Either of the multiset expres-

sions in the right or left side of a rule can be empty (represented by the empty

string symbol ǫ).

Program ::= ProgramName = {Rules}

Rules ::= Rule | Rule, Rules

Rule ::= RuleName = MultisetExp 7→ MultisetExp

⇐ Condition

MultisetExp ::= ǫ | MExp

MExp ::= BasicExp | BasicExp, MExp

Fig. 3: Basic Gamma syntax.

In some Gamma rules, there is a need to read a term from the multiset in order

to check some conditions on its value, to use its value for substitution of other

elements, or just to check the existence of it. To do this in basic Gamma syntax, one

has to mention the tuple in both right- and left-hand side of the rule. To represent

this notion more concisely, we define the following syntactic shorthand:

Definition 5. (Explicit read) For an arbitrary deduction rule rn, when an expres-

sion e is only read from the multiset and no manipulation on it is required, then we

denote this by rn = e? : lhs 7→ rhs ⇐ c, which is defined to be rn = e, lhs 7→

e, rhs ⇐ c. Similarly, a multiset expression (a list of basic expressions) can be

read using the ?-notation after each basic term.

Example 3. The following Gamma program represents simple rules, explained be-

low, modeling movement of people inside the building and their ability to enter and

leave the building:
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Movement =

{ Move = (RoomDim, k, x1, y1, x2, y2)?

: (Person, i, x, y) 7→ (Person, i, x + x′, y + y′)

⇐ x′2 + y′2 ≤ Speed2 ∧

x1 ≤ x ≤ x2 ∧ y1 ≤ y ≤ y2 ∧

x1 < x + x′ < x2 ∧ y1 < y + y′ < y2,

Moved = (RoomDim, k, x1, y1, x2, y2)?, (Door, x + x′, y + y′)?

: (Person, i, x, y) 7→ (Person, i, x + x′, y + y′)

⇐ x′2 + y′2 ≤ Speed2 ∧

x1 ≤ x ≤ x2 ∧ y1 ≤ y ≤ y2 ∧

x1 ≤ x + x′ ≤ x2 ∧ y1 ≤ y + y′ ≤ y2,

MoveIn = (BuildingDim, x1, y1, x2, y2)?, (Door, x, y)?

: (PersonOut, i) 7→ (Person, i, x, y)⇐ Entrance?,

MoveOut = (BuildingDim, x1, y1, x2, y2)?, (Door, x, y)?

: (Person, i, x, y) 7→ (PersonOut, i)⇐ Entrance?

}

where Entrance? denotes the predicate

((x = x1 ∨ x = x2) ∧ y1 ≤ y ≤ y2) ∨ (x1 ≤ x ≤ x2 ∧ (y = y1 ∨ y = y2)),

i.e., the door involved is an outer door of the building.

Rule Move specifies that coordinates of a person may change due to the move-

ment by at most its speed limit (Speed: a constant) for each step. Meanwhile the

firm boundaries of the room need to be respected. The second rule describes that,

under similar restrictions, a person may move to a door (of this room). The rule

MoveIn specifies that a person residing outside the building can always step in at

an entrance. Finally, rule MoveOut specifies that a person can leave the building if

s/he is standing at a door.

These four rules model the functionality of the underlying sensor network as

outlined in the case-study requirements.

Due to our aim of separation of concerns, the presented syntax of Gamma is

simpler than the original one [Banâtre and Le Métayer 1993]. It contains only

the basic functionality (rule) part of programs and postpones all structuring and

control decisions to defining an appropriate coordination strategy for a program.

Hence, structuring techniques like tropes in [Hankin et al. 1993] and composition

operators in [Chaudron 1998] are omitted.

Example 4. (Light Control: Functionality) In this example, we present a func-

tionality model for the light-control case study. To manage the complexity of the

functionality model itself, we break the functionality model into two Gamma pro-

grams. The first program is the program named Movement as given in Example 3.

The second program defines the functionality of the sensors and the central control

module.
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Control =

{ RoomOcc = (RoomDim, k, x1, y1, x2, y2)?, (Person, i, x, y)?

: (RoomStat, k, status) 7→ (RoomStat, k,Occ)

⇐ x1 ≤ x ≤ x2 ∧ y1 ≤ y ≤ y2,

RoomEmp = (RoomStat, k, status) 7→ (RoomStat, k,Free),

TurnOff = (RoomStat, k,Free)? : (Light, k,On) 7→ (Light, k,Off),

TurnOn = (RoomStat, k,Occ)? : (Light, k,Off) 7→ (Light, k,On)

}

In this program, rule RoomOcc changes the status of a room to occupied, if a

person is detected in that room. Rule RoomEmp declares the room to be empty. (It

is worth mentioning that Gamma rules cannot check for absence of an element, e.g.,

a person, in the multiset. This fact will be more clear when we give the semantics

of Gamma programs in the next section.) Note that we have omitted the condition

part of this rule. Throughout the rest of the paper, we leave out the condition part

of a rule, if it is True. As their names suggest, rules TurnOff and TurnOn are in

charge of turning the lights on and off. The functionality model of the system is

defined as the union of the Gamma programs Movement and Control.

The above model specifies basic functionality units that different parts of the sys-

tem can offer (e.g., sensor network, control subsystem and behavior of individuals).

These form the basic ingredients of our system design. The semantics of Gamma

programs allows for arbitrary executions of the above program called the chaotic

behavior. The chaotic behavior contains all possible concurrent as well as sequen-

tial executions of rules. The chaotic behavior of the above functionality model has

no assumption about timing of rules (e.g., the relationship between the speed of

individuals and their position change is not specified). Furthermore, it abstracts

from ordering and concurrency in execution of actions; that is, it contains several

undesired patterns of behavior (e.g., turning the lights off with a person present

in the room or putting extra limits on movements of individuals due to sequential

execution of their movement rules). To specify these aspects of design and restrict

the design model, we introduce timing and coordination modeling languages in the

following sections.

3. Timing

3.1 Motivation

Abadi and Lamport [1994] argue that adding a new state variable named now will

extend the semantics of un-timed systems to a real-time setting, in practice. How-

ever, the rest of their paper shows, ironically, that this new variable is too different

from a normal state variable and that fixing the right semantics for it may need

relatively long logical formulas (for example to express that time cannot decrease

along a run).
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In addition to the basic properties of time (as a state variable), the timed behav-

ior of real-time systems is governed by their performance and timeliness specifi-

cations, which is a separate quality aspect. Thus, it makes sense to specify timing

information (requirements) as a separate aspect and observe how it reflects on the

semantics of the functional and coordination aspects when composed with their

respective models.

This section provides a background on our timing aspect design. The timing as-

pect can itself be divided into a number of sub-aspects. A major classification in

this area is to divide timing specifications into: performance- and deadline-related

properties [Balir et al. 1998]. Performance-related properties are concerned with

actual timing that processes have to spend on their resources (computation time,

communication time, etc.). Deadline-related properties specify the desired real-

time properties of the system and define its overall correctness criteria. In this

paper, we mainly address performance-related properties and among them mainly

computation time (nevertheless, the framework can be generalized to other per-

formance properties as we point out in the remainder). However, we defer the

specification of deadline-related properties to a temporal-logic-based specification

language as we sketch in [Mousavi et al. 2002]. Enforcing these properties should

be done through a refinement or synthesis technique. In the remainder, we first

introduce preliminary notations and definitions needed to define timing. Then, we

present our interval language and show how it can be combined with the function-

ality model by presenting an operational semantics for Timed-Gamma.

3.2 Basic definitions

Definition 6. (Basic time domain) The basic time domain is a set denoted by Time

on which a total ordering < with least element 0 and an addition function + with

zero element 0 are defined.

To model unspecified upper bounds of intervals, we introduce a new element

to the basic time domain, denoted by ∞, and refer to the new time domain as:

Time∞
△
= Time ∪ {∞}. We extend the ordering relation and addition function on

Time∞ such that for all t ∈ Time, t < ∞, t +∞ = ∞ + t = ∞, and∞ +∞ = ∞ and

not∞ < ∞.

We do not need any more assumptions on the time domain Time. Thus, we leave

other properties of the time domain open (e.g., discreteness vs. denseness).

An interval is a convex subset of Time∞. We refer to the lower and upper bound

of an interval I with lb(I), and ub(I), respectively.

Definition 7. (In-bound operator) We define that t ∈ Time is in-bound with respect

to the interval I, denoted by t ≺ I if and only if t ≤ lb(I) ∨ t ∈ I. This operator

is defined in order to avoid subtleties involved with having both open and close

intervals.

A timing specification is related to the functionality (and the coordination) do-

main by mentioning a rule name. The syntax of a timing specification is given in
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Fig. 4. In this figure, the syntactic class Time represents the set Time. Note that the

timing aspect is independent from the functionality aspects (and from the coordina-

tion aspect) and thus one may specify a functionality without specifying its timing

and the other way round (a timing without specifying functionality). Here, for sim-

plicity, we assumed that bounds of intervals are concrete numbers taken from the

time domain. However, for more involved cases, timing may depend on other as-

pects of design and thus the intervals can be parameterized using information from

other aspects of designs. In [Mousavi et al. 2002], we sketched the interaction be-

tween timing and distribution aspects (i.e., physical distribution of basic data items

and their local stores, which can influence latencies in fetching data items).

TimingSpec ::= {Timings}

Timings ::= Timing | Timing, Timings

Timing ::= TRuleName = Interval

Interval ::= [Time, Time] | (Time, Time] | [Time, Time)

| (Time, Time) | [Time,∞) | (Time,∞)

Fig. 4: Syntax of timing specification.

If there is no timing estimation specified for a rule (as is the case for un-timed

specifications), it is assumed to be [0,∞), that is, an arbitrary computation time is

indicated.

Example 5. (Light Control: Timing) Consider the functionality model of Example

4. We continue with the light control case study by specifying the timing aspect.

Here, we assume that making a step to move within the building takes one unit of

time (thus making a linear correlation between distance and speed). We assume

that sensors can guarantee detecting the presence of a person in a room in between

one to two units of time (depending on other applications using the sensor system).

However, declaring a room to be empty is an internal action performed by the

controller software (as a result of not receiving any presence report) and thus takes

no time. All reporting actions are assumed to take some time between zero and

one units. For the other rules, we leave the timing unspecified, either because we

have no control on their timing behavior (since they are events caused by the users

or the environment) or their timing is not crucial for the correctness of our system

design.

TMove = [1, 1] TRoomOcc = [1, 2] TTurnOn = [0, 1]

TMoved
= [1, 1] TRoomEmp = [0, 0] TTurnOff = [0, 1]

3.3 Semantics of timed functionality

In this subsection, we present the semantics of the composition of the aspects tim-

ing and functionality. The (syntactic as well as semantic) model resulting from
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this composition is called Timed-Gamma. The semantics of Timed-Gamma is pre-

sented in two parts. The first part, presented in Fig. 5, shows the basic timed-

computation and termination of a rule. To maintain obliviousness of aspects, the

semantics of unspecified rules is also specified in Fig. 5. Based on the semantics

for rules, the rules in Fig. 6 define the behavior of Timed-Gamma programs. This

part combines in a chaotic manner the behavior of the rules. The chaotic and ab-

stract behavior of Timed-Gamma programs is defined in such a way that it leaves

all implementation decisions open (e.g., scheduling and control policies, available

resources and true level of concurrency).

3.3.1 Semantics of Gamma rules

The basic semantics of rules is defined in Fig. 5. In this semantics, it is assumed

that there is a given Timed-Gamma program (R, I) where R is the Gamma program

and I is the timing specification. The predicate func(rn) indicates whether or not a

functionality is given for a rule with rule name rn, i.e., whether there is a definition

for rule name rn in R. Also, rn.R and rn.I indicate the Gamma rule (if any) and

timing specified for rule name rn in the Gamma program R and the timing speci-

fication I, respectively. If there is no interval defined for rn, rn.I results in [0,∞).

This gives us a timed semantics for Gamma programs in which no assumptions

have been made about the timing of the functionality or in which no constraints

exist for the timing of that functionality. For the time being, we assume that rn.I

works as a function. Nevertheless, this assumption could be relaxed by allowing

several intervals associated to a rule, and hence rn.I returning a set of time points

which is not necessarily a single convex interval. This relaxed assumption would

not require major change to our semantics. However, for simplicity we assume the

single interval time paradigm from now on.

In the semantics two types of states are used. The state 〈rn,M〉 consists of the

name of a Gamma rule rn and a multiset M (of shared data). The state 〈rn[α@t :

I],M〉 consists of an annotated Gamma rule, i.e., a Gamma rule rn annotated with

a task α@t : I, and a multiset M of shared data. A task α@t : I is the substitution

α together with the elapsed computation time t (the duration that the task has been

active and running till now), and the estimated computation time interval I. Note

that a rule specifies a generic scheme for computation, while a task is a substitution,

i.e., an instance of computation, that has been scheduled but not yet committed

(possibly has not received enough processor time yet).

Predicate Xr stands for termination of a rule. The transitions in the given seman-

tics are either of the form ֌r and
t
→r (where t > 0 a time step which can range

over the basic time domain Time) or
[α]
→r , where α ranges over substitutions. A ba-

sic timed-computation is divided into three phases: scheduling, computation and

commitment.

The first phase consists of scheduling a task (see deduction rules (RuleSched0)

and (RuleSched1)). Deduction rule (RuleSched0) concerns scheduling a task for a

defined Gamma rule in R. Deduction rule (RuleSched1) allows for scheduling an

arbitrary task in case the definition of rule rn is not given by the Gamma program
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(RuleSched0)
func(rn) M, v ∝ rn.R

〈rn,M〉 ֌r 〈rn[α@0 : rn.I],M〉
where rn.R is of the form rn = lhs 7→ rhs⇐ c and α = v(rhs)/v(lhs)

(RuleSched1)
¬func(rn) M |= [α]

〈rn,M〉 ֌r 〈rn[α@0 : rn.I],M〉

(TimePass)
t + t′ ≺ I

〈rn[α@t : I],M〉
t′

→r 〈rn[α@t + t′ : I],M〉

(RuleComp)
t ∈ I

〈rn[α@t : I],M〉
[α]
→r 〈rn,M([α])〉

(RuleTerm0)
func(rn) ¬∃v M, v ∝ rn.R

〈rn,M〉Xr

(RuleTerm1)
¬func(rn)

〈rn,M〉Xr

Fig. 5: Basic timed functionality: semantics of Gamma rules.

R. When a rule (with name) rn is defined in R, scheduling a task using this rule

is only possible if there exists a valuation v that both satisfies the condition and

valuates the left-hand-side expression of r to be a part of the multiset (denoted by

M, v ∝ rn.R).

Definition 8. (Enabling valuation) A valuation v on variables enables a rule r of

the form rn = lhs 7→ rhs⇐ c for a multiset M, notation M, v ∝ r, if and only if v(c)

holds and v(lhs) ⊑ M. Here v denotes a valuation on expressions that is induced

by the valuation v on variables.

The scheduling of a task is indicated by a transition ֌r . We abstract from the

time needed for finding an appropriate valuation. Alternatively, this time could be

added to the transition associated with scheduling a task.

The second phase of basic computation is spending (processor) time on a compu-

tation, using rule (TimePass). Note that the concept of timing is the same between

specified and unspecified rules and thus this rule is shared between the first two

parts of the semantics.

Finally, the third phase is committing a computation via (RuleComp), which

results in application of the substitution from the task that is committed to the

multiset.
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The division of a basic computation in three phases provides the possibility to put

further details in each of these phases (e.g. specifying scheduling policy, providing

timing information for distributed scheduling or commitment).

Rules (RuleTerm0) and (RuleTerm1) represent the possibility of termination of

a rule when it cannot schedule any new task and does not have any active task to

perform.

The semantics of Gamma rules is the smallest set of closed transitions that are

provable from the above set of rules. For a formal definition of the transitions

defined by a deduction system we refer to [Aceto et al. 2001;Mousavi et al. 2007].

3.3.2 Chaotic semantics of Gamma programs

The semantics, given in Fig. 6, specifies the general chaotic behavior of Timed-

Gamma programs by composing behavior of rules from a certain set RN in all

possible orders and all possible levels of true concurrency. This reflects the pure

timed-functionality model of our system.

(ProgSched)
〈rn,M〉 ֌r 〈rn[α@0 : I],M〉 M |= [α] ⊲⊳ comp(T ) rn ∈ RN

〈RN,M,T 〉 ֌p 〈RN,M, [α@0 : I]⊞ T 〉

(ProgTime0)
〈rn[α@t : I],M〉

t′

→r 〈rn[α@t + t′ : I],M〉 rn ∈ RN

〈RN,M, [α@t : I]⊞ T 〉
t′

→p 〈RN,M, [α@t + t′ : I]⊞ T 〉

(ProgTime1)
〈RN,M,T0〉

t
→p 〈RN,M,T ′

0
〉 〈RN,M,T1〉

t
→p 〈RN,M,T ′

1
〉

〈RN,M,T0 ⊞ T1〉
t
→p 〈RN,M,T ′

0
⊞ T ′

1
〉

(ProgComp0)
〈rn[α@t : I],M〉

[α]
→r 〈rn,M′〉 rn ∈ RN

〈RN,M, [α@t : I]⊞ T 〉
[α]
→p 〈RN,M′,T 〉

(ProgComp1)
〈RN,M,T0〉

σ0
→p 〈RN,M′

0
,T ′

0
〉 〈RN,M,T1〉

σ1
→p 〈RN,M′

1
,T ′

1
〉

〈RN,M,T0 ⊞ T1〉
σ0⊞σ1
→ p 〈RN,M(σ0 ⊞ σ1),T ′

0
⊞ T ′

1
〉

(ProgTerm)
∀rn∈RN 〈rn,M〉Xr

〈RN,M,∅〉Xp

Fig. 6: Timed functionality: semantics of Timed-Gamma programs.

In the semantics presented in Fig. 6, the states are of the form 〈RN,M,T 〉 where

RN is a set of rule names for which there may be functionality and timing specifi-
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cations in R and I respectively, M is a multiset of shared data and T is a multiset

of tasks. We use Xp, ֌p ,
t
→p and

σ
→p instead of Xr, ֌r ,

t
→r and

[α]
→r , respec-

tively. The rule (ProgSched) shows that a program can schedule a new task if it

can be scheduled by a rule and the task is independent from the current context of

parallel tasks. The computations introduced in the task multiset are checked for

consistency with respect to the data multiset (by means of an independence check

with existing tasks). Here comp(T ) denotes the computation that is obtained by

stripping from the tasks in the task multiset T all timing information. This way

consistency of the task multiset is maintained during the execution of a Gamma

program.

Rules (ProgTime0) and (ProgTime1) specify spending time on single and con-

current computations respectively. Rules (ProgComp0) and (ProgComp1) specify

how a Timed-Gamma program can perform computations. The above four rules

provide an abstraction from the true level of concurrency.

Rule (ProgTerm) decides on the termination of a program based on the termi-

nation of all constituting rules. It is worth mentioning that rule termination is not

necessarily permanent; a terminated rule may become enabled later due to activity

of other rules. Only if all rules have a defined functionality and they all terminate,

termination becomes permanent.

The semantics of a Timed-Gamma program is the smallest transition relation

satisfying the above transition rules. Note that the absence of an independence

check in the premise of rules such as (ProgComp1) cannot introduce inconsistency

because states with an inconsistent task set are not reachable (since (ProgSched)

checks consistency in the introduction of new tasks and all other rules preserve the

consistency of task sets).

We separated the two parts of the semantics in order to re-use the first part in both

defining the chaotic behavior of Timed-Gamma programs (the second part) and

also the coordinated behavior of schedules (in the next section). In other words,

the first part of the semantics serves to define the basic units of functionality. Tech-

nically speaking, one can replace this particular model of timed functionality with

an operational semantics of another functionality model (say, JavaSpace [Freeman

et al. 1999] methods, or even a hierarchy of interface services), and benefit from

the specification model presented in the remainder. In such cases, care should be

taken in order not to loose the orthogonality in the model as it is presented here.

Example 6. (Scheduling and Executing Tasks) Consider the functionality and tim-

ing models specified in Examples 4 and 5. Assume that we start from multiset M

containing two rooms with boundaries (0, 0, 10, 10) and (0, 10, 10, 20) (for both

of which the lights are off), a door located at point (0,0), and only one person in

position (5, 5) which has been detected already to occupy room 1:

M =





























(RoomDim, 1, 0, 0, 10, 10), (RoomStat, 1,Occ), (Light, 1,Off),

(RoomDim, 2, 0, 10, 10, 20), (RoomStat, 2,Free), (Light, 2,Off),

(Door, 5, 0), (Door, 5, 10),

(Person, 1, 5, 5)





























.
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The constant Speed is 5. The following sequence of transitions is a possible run of

the timed-program resulting from composing the timing aspect with the programs

Movement and Control. Let RN denote the set of all rule names that occur in those

Timed-Gamma programs.

〈RN,M,∅〉 ֌p 〈RN,M, [α0@0 : [1, 1]]〉
0.5
→p 〈M, [α0@0.5 : [1, 1]]〉 ֌p

〈M, [α0@0.5 : [1, 1], α1@0 : [0, 1]]〉
0.5
→p 〈M, [α0@1 : [1, 1], α1@0.5 : [0, 1]]〉

0.5
→p

〈M, [α0@1 : [1, 1], α1@1 : [0, 1]]〉
[α0]
→ p 〈M([α0]), [α1@1 : [0, 1]]〉

[α1]
→ p

〈M([α0, α1]),∅〉,

where

α0 = [(Person, 1, 7, 7)]/[(Person, 1, 5, 5)]

and

α1 = [(RoomStat, 1,Occ), (Light, 1,On)]/[(RoomStat, 1,Occ), (Light, 1,Off)].

Note that in the above run the timing of rule Move is interleaved with the timing

of rule TurnOn which is due to the general chaotic execution of Timed-Gamma

programs. However, it is desirable to specify that the execution of the two rules is

independent from each other (from the timing perspective, i.e., people can move

while the lights are turning on). Thus, while the functional specification together

with the timing aspect has an executable semantics, it fails to provide some essen-

tial liveness requirements of our system (though, it preserves some of the safety

requirements such as that the light is not turned off for a room which has been

identified to be occupied). To enforce these liveness properties, we have to devise

a more precise execution strategy of Gamma rules which is left to the coordination

aspect. This is the topic of our next section.

One can get a pure timing and a pure functionality model from the above se-

mantics by leaving out details about computations (considering all computations

unspecified) and data multiset or timing and task multiset, respectively. This can

be done on the syntactical as well as the semantical level, however, we dispense

with presenting the projected semantics here. Elsewhere, we have defined a pure

functional semantics for Gamma programs [Mousavi et al. 2002].

4. Coordination

The aim of our coordination language, named Schedules, is to define the correct

ordering, synchronization, and interaction of basic (timed) functionalities. Due to

our design philosophy of separation of concerns, the aspect of coordination should

be kept orthogonal with respect to timing to the largest possible extent. Thus, we

assume a timed functionality model and use it as the basis of our coordination mod-

eling language. A schedule, i.e., an expression in our coordination language, does

not add information about timing and functionality. Furthermore it does not assume

anything about specifications in other domains. If such specifications are present,
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their respective semantics are used to define the results of scheduling strategies. If

specifications in other domains are absent a default timed-functionality is used in-

stead. Thus, the underlying modeling languages as well as the underlying models

can be changed independently (as long as they maintain the same structure on the

transition system) and the result of their change will be reflected in the semantics

of coordination indirectly.

4.1 Syntax of Schedules

The syntax of our language is specified in Fig. 7.

Schedule ::= RuleName | Schedule ; Schedule

| Schedule + Schedule

| RuleNamey Schedule[Schedule]

| Schedule || Schedule | Schedule ||| Schedule

| µRecursionVar. Schedule | RecursionVar

Fig. 7: Syntax of Schedules.

A rule from a Timed-Gamma program can be used as a building block for a

schedule via its name. Sequential composition of schedules is denoted by ;. Non-

deterministic choice between two schedules is specified using the + operator. The

rule-conditional operator y is used to select from different strategies based on

whether or not a rule can be scheduled. Namely, in schedule r y s0[s1] if rule r

can be scheduled with respect to the current state of the multiset, then schedule s0

is chosen for execution, otherwise, s1 is executed. Abstract parallel composition

(||) allows for both concurrent and serialized execution of components (to represent

the cases where there may or may not be enough resources for true concurrency).

Strict parallel composition (|||) forces the participating components to run concur-

rently, i.e., to synchronize in their timing steps. Abstract parallel composition is

suitable for cases where no information about available and needed resources is as-

sumed and thus concurrent and serialized executions are both possible (e.g., high-

level specifications, which should allow for different resource-allocation schemes).

However, strict parallel composition is used for cases where the two components

have a simultaneous and independent execution and should not be serialized (for

example, to separate timing of the environment from the system, or concurrent

tasks running on different processors). The recursion operator µ is used to make

recursive schedules (µx.s(x)) explicitly using recursion variables (denoted by the

syntactic class RecursionVar). Recursion can be used to build schedules which

can repeat a certain behavior and exhibit infinite behavior. Only schedules in which

all recursion variables are bound by µ are of interest in this paper. In the rest of this

paper, we usually define a name for a schedule. Such a name serves as a syntactic

shorthand for the defined schedule.
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To make the basic Gamma theory more usable, we add some syntactic sugar for

strengthening rule conditions. For each rule with name rn and for each condition

c, we assume the existence of a rule with name c ⊲ rn as defined below.

Definition 9. (Strengthening condition) The strengthening of a rule rn = lhs 7→

rhs⇐ c1 by a condition c2 is defined to be the rule c2 ⊲ rn = lhs 7→ rhs⇐ c1∧c2.

Unless specified otherwise, the timing of the rule with name c2 ⊲ rn is the timing

of the rule with name rn.

Next, we extend the notion of strengthening the condition of a rule from Defini-

tion 9 to schedules. The idea is that the strengthening condition c distributes to all

rule names that occur in the schedule. This can be used for indicating that a certain

rule may only be used for a certain instance of one of the variables that occur in

that rule, e.g., i = 1 ⊲ Move indicates a rule that only describes the movement of

the person with identity 1.

Definition 10. (Strengthening Conditions: Extended) For an arbitrary schedule

s, strengthening it with condition c, denoted by c ⊲ s is defined inductively as

follows:

(1) c ⊲ rn, if s is of the form rn, where rn is a Timed-Gamma rule name;

Strengthening the condition of a rule is defined in Definition 9;

(2) c ⊲ (s′ op t′), for all schedules s′ and t′ and all binary operators op in the

syntax of Schedules is defined as (c ⊲ s′) op (c ⊲ t′);

(3) c ⊲ (rn y s′[t′]) is defined as (c ⊲ rn) y (c ⊲ s′)[c ⊲ t′], for all rule

names rn and schedules s′ and t′;

(4) c ⊲ (µx.s′) is defined as µx.(c ⊲ s′), for all recursive variables x and sched-

ules s′;

(5) c ⊲ x for all recursion variables x is defined as x.

In the following example, we illustrate the syntax of Schedules by giving a sched-

ule for the movement of individuals within the building.

Example 7. The following schedule defines the movement behavior of individuals

in the light-control case study. Individuals can move independently from each

other. Movements of individuals can be done in arbitrary order:

IndMove = |||1≤pid≤maxP ((i = pid) ⊲ (µx. (idle || (Move ||

(MoveIn || MoveOut))) ; x)).

Note that in this specification, maxP represents the number of persons and it is

assumed that their identities range from 1 to maxP. The notation |||1≤pid≤maxP is

a shorthand for a number of composed parallel terms (assuming commutativity,

associativity and skip (introduced below) as the identity element of strict parallel

composition), namely one copy of the schedule (i = pid) ⊲ (µx.(idle || (Move ||

(MoveIn || MoveOut))) ; x) for each 1 ≤ pid ≤ maxP.
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We are aware that our treatment of variables in the Gamma rules is rather primi-

tive and a rigorous treatment of formal parameters for schedules and Gamma rules

will make the programs more readable. However, we do not introduce this rather

standard extension for sake of simplicity in the formal development of the paper.

4.2 Semantics of Schedules

Fig. 8 shows the first set of semantic rules for the timed-coordination language. In

these deduction rules, rn and arn are (meta-)variables ranging over rule names and

annotated rule names, respectively. As in the semantics of Timed-Gamma, these

rules link the semantics of single-rule execution to the semantics of schedules (co-

ordination terms). However, in the coordination semantics, there is a tight rela-

tionship between coordination terms and scheduled tasks. For example, to check

synchronization requirements of tasks with similar substitutions with respect to

parallel and sequential compositions (in a schedule like s || (s ; t) where the task

corresponding to the second instance of s is a prerequisite for the task instantiated

from t whilst the task corresponding to the first instance of s has no effect on other

tasks). Hence, we also attach scheduled tasks of each coordination term to its re-

spective syntactic expression (see rule (CoordSched))1. Also observe that, in rule

(CoordComp), a rule, after committing a computation, is replaced by the rule skip,

where skip will be defined shortly as the schedule that cannot schedule a new task.

(CoordSched)
〈rn,M〉 ֌r 〈arn,M′〉

〈rn,M〉֌ 〈arn,M′〉

(CoordTimePass)
〈arn,M〉

t
→r 〈arn′,M′〉

〈arn,M〉
t
→〈arn′,M′〉

(CoordComp)
〈arn,M〉

σ
→r 〈rn,M′〉

〈arn,M〉
σ
→〈skip,M′〉

(CoordRuleTerm)
〈rn,M〉Xr

〈rn,M〉X

Fig. 8: Semantics of timed coordination: basic computation.

So, in the given semantics, the state 〈s,M〉 contains s as the coordination ex-

pression that is possibly augmented with scheduled tasks (substitution, timing, and

interval) and M is the data multiset, as before. Similar predicates and transition

relations are used as in the previous semantics.

1 From a process algebraic point of view this means that we introduce r[α@t : I] as a new schedule

term for rule name r, substitution α, time point t and interval I.
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Next, the semantics of the schedule composition operators are defined one by

one using deduction rules. In the deduction rules, a transition
χ
 either denotes

scheduling a task, passage of time or performing a computation (χ is a variable that

ranges over the (basic) time domain and computations).

Skip and idle

The schedule skip is the rule name for a Timed-Gamma rule that is never enabled

and the schedule idle is the rule name for a rule that is always enabled but makes

no change in the multiset, i.e., it has empty expressions on both sides. The timing

specification of skip is not of any interest, for the timing of idle it is assumed that

there are no restrictions, thus the interval [0,∞) is assumed. The semantics of

these schedules is obtained from the following identification with Gamma-rules

and Timing specifications with the same name.

Definition 11. (Skip and idle) The rules skip and idle are defined as follows:

◦ skip = ǫ 7→ ǫ ⇐ False and Tskip = [0,∞);

◦ idle = ǫ 7→ ǫ ⇐ True and Tidle = [0,∞).

Rule conditional

Rules (RC0) to (RC3) define the semantics for the rule-conditional operator. Ex-

pression rn y s[t] can schedule a task when either the rule with name rn is en-

abled and the first argument s can schedule a task, or when the rule with name rn

terminates (for rules with functionality this is equivalent to saying that the rule is

disabled at the moment) and t can schedule a task. Obviously, it terminates when

none of the above cases are possible.

(RC0)
〈rn,M〉 ֌r 〈s,M〉֌ 〈s′,M′〉

〈rn y s[t],M〉֌ 〈s′,M′〉

(RC1)
〈rn,M〉Xr 〈t,M〉֌ 〈t

′,M′〉

〈rn y s[t],M〉֌ 〈t′,M′〉

(RC2)
〈rn,M〉 ֌r 〈s,M〉X

〈rn y s[t],M〉X
(RC3)

〈rn,M〉Xr 〈t,M〉X

〈rn y s[t],M〉X

In the above deduction rules the notation 〈rn,M〉 ֌r represents 〈rn,M〉 ֌r

〈arn,M′〉 for some arn and M′.

Usually, checking for schedulability of a rule proceeds with executing the rule.

Thus, we define the pattern rn→ s[t] as a shorthand for rn y (rn ; s)[t].

Sequential composition

The semantics of sequential composition is specified by the following three rules.
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(S0)
〈s0,M〉

χ
 〈s′

0
,M′〉

〈s0 ; s1,M〉
χ
 〈s′

0
; s1,M

′〉

(S1)
〈s0,M〉X 〈s1,M〉

χ
 〈s′

1
,M′〉

〈s0 ; s1,M〉
χ
 〈s′

1
,M′〉

(S2)
〈s0,M〉X 〈s1,M〉X

〈s0 ; s1,M〉X

Nondeterministic choice

Scheduling a task from a schedule resolves the nondeterministic choice among the

two schedules.

(C0)
〈s0,M〉֌ 〈s

′
0
,M′〉

〈s0 + s1,M〉֌ 〈s
′
0
,M′〉

〈s1 + s0,M〉֌ 〈s
′
0
,M′〉

(C1)
〈s0,M〉X

〈s0 + s1,M〉X

〈s1 + s0,M〉X

Abstract parallel composition

Rules (P0) to (P4) specify the semantics of the abstract parallel composition oper-

ator. This type of parallel composition does not enforce concurrent execution of

tasks and allows them to be performed sequentially. In particular, rules (P0) and

(P1) specify how two sides of a parallel composition can evolve individually. The

side condition of (P0) assures that the task multiset remains consistent if either of

the two sides schedules a new task. The computation that has been scheduled is

obtained from an annotated coordination expression by the function comp.

Definition 12. (Computation) The computation of an annotated schedule, notation

comp is defined as follows:

comp(rn) = ∅

comp(rn[α@t : I]) = [α]

comp(s ; s′) = comp(s)

comp(s + s′) = comp(s)⊞ comp(s′)

comp(rn y s[s′]) = ∅

comp(s || s′) = comp(s)⊞ comp(s′)

comp(s ||| s′) = comp(s)⊞ comp(s′)

comp(µx.s) = comp(s)

comp(x) = ∅.

(P2) specifies concurrent execution of the two sides by allowing them to spend

time synchronously. Rule (P3) represents concurrent commitment of tasks. Rule

(P4) specifies termination of abstract parallel composition.
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(P0)
〈s0,M〉֌ 〈s

′
0
,M′〉 M′ |= comp(s′

0
) ⊲⊳ comp(s1)

〈s0 || s1,M〉֌ 〈s
′
0
|| s1,M

′〉

〈s1 || s0,M〉֌ 〈s1 || s
′
0
,M′〉

(P1)
〈s0,M〉

χ
 〈s′

0
,M′〉 χ , 0

〈s0 || s1,M〉
χ
 〈s′

0
|| s1,M

′〉

〈s1 || s0,M〉
χ
 〈s1 || s

′
0
,M′〉

(P2)
〈s0,M〉

t
→〈s′

0
,M0〉 〈s1,M〉

t
→〈s′

1
,M1〉

〈s0 || s1,M〉
t
→〈s′

0
|| s′

1
,M〉

(P3)
〈s0,M〉

σ0
→〈s′

0
,M0〉 〈s1,M〉

σ1
→〈s′

1
,M1〉

〈s0 || s1,M〉
σ0⊞σ1
→ 〈s′

0
|| s′

1
,M(σ0 ⊞ σ1)〉

(P4)
〈s0,M〉X 〈s1,M〉X

〈s0 || s1,M〉X

Strict parallel composition

Strict parallelism only differs from the abstract parallel composition operator in

that it does not allow one component to prohibit or delay the other one in execution.

In other words, it models true concurrency in which composed processes perform

their behavior independent of each other under some global consistency conditions.

To model this type of composition, the timing behavior of the parallel composition

is restricted to allow time passage only when one of the parties cannot perform an

action. Thus, tasks are forced to spend their computation time concurrently.

(SP0)
〈s0,M〉֌ 〈s

′
0
,M〉 M |= comp(s′

0
) ⊲⊳ comp(s1)

〈s0 ||| s1,M〉֌ 〈s
′
0
||| s1,M〉

〈s1 ||| s0,M〉֌ 〈s1 ||| s
′
0
,M〉

(SP1)
〈s0,M〉

t
→〈s′

0
,M〉 ∀t′〈s1,M〉

t′

9

〈s0 ||| s1,M〉
t
→〈s′

0
||| s1,M〉

〈s1 ||| s0,M〉
t
→〈s1 ||| s

′
0
,M〉

(SP2)
〈s0,M〉

t
→〈s′

0
,M0〉 〈s1,M〉

t
→〈s′

1
,M1〉

〈s0 ||| s1,M〉
t
→〈s′

0
||| s′

1
,M〉

(SP3)
〈s0,M〉

σ0
→〈s′

0
,M0〉 〈s1,M〉

σ1
→〈s′

1
,M1〉

〈s0 ||| s1,M〉
σ0⊞σ1
→ 〈s′

0
||| s′

1
,M(σ0 ⊞ σ1)〉

(SP4)
〈s0,M〉X 〈s1,M〉X

〈s0 ||| s1,M〉X
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Recursion

Finally, (R0) and (R1) specify the concept of recursion. Recursion is interpreted as

replacing the recursion variable with the recursive term. Note that since recursion

is not necessarily guarded in our language, it is possible to specify schedules that

can neither make a transition, nor terminate (deadlock schedules such as µx.x).

(R0)
〈s(µx.s/x),M〉

χ
 〈s′,M′〉

〈µx.s,M〉
χ
 〈s′,M′〉

(R1)
〈s(µx.s/x),M〉X

〈µx.s,M〉X

Note that s(t/x) for recursion variable x and schedules s and t denotes the substi-

tution of t for all free occurrences of x in s.

Example 8. We devise a control strategy for the timed-functionality model of Ex-

amples 4 and 5. The following schedule allows for a control strategy for managing

lights and computing reports. The control loop consists of first declaring all rooms

empty (initialization), then changing the status of rooms depending on the positions

of persons in the building.

Control = (µx.(RoomEmp y (RoomEmp || x))) ;

(µy.(||1≤rid≤maxR ((k = rid) ⊲ (RoomOcc→ TurnOn[TurnOff]))) ; y)

where maxR denotes the maximum number of rooms.

This schedule for managing the lights is then composed with the schedule for the

independent movement of individuals from Example 7 as follows:

System = Movement ||| Control.

5. Notions of equality and refinement

In this section, we study initial notions of refinement and equality between shared-

data-space applications (specified in terms of schedules or programs, possibly start-

ing from an initial state). Different sorts of simulation and bi-simulation have

been proposed as basic notions of refinement and equality for reactive systems

to date [Park 1981; Milner 1980; Glabbeek 1993]. However, their extension to

our setting in which the data part plays a role is not trivial and some design deci-

sions have to be made in order to find the right notion of refinement and equal-

ity. An important goal driving our decision for a notion of equivalent and re-

finement is to have the (pre-)congruence property (so-called robustness with re-

spect to interference from the environment), that is, we want algebraic equalities

and refinement rules to hold in an arbitrary context. In this section, we introduce

some possible notions of simulation and bisimulation (from Mousavi et al. [2004,

2005]) and study their properties (especially from the congruence point of view).

To provide a general starting point for the refinement process, we define a most

general schedule that induces the most general (chaotic) behavior of a functional-

ity model and prove it to be the most general with respect to our strongest notion

of refinement.
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Our approach to refinement and equality is based on the well-known notions of

simulation and bisimulation, respectively. We are aiming at using these notions in

a setting where a complete specification of the environment (other components to

be designed) is not available. As a first attempt, we define the following notion

of statebased (bi-)simulation. Statebased simulation expresses that the refining

schedule only performs transitions that the original schedule is able to perform

and similarly, the refining schedule terminates only when the original schedule

has an option of termination. Similarly statebased bisimulation specifies that both

schedules always have the same options for computations and termination.

Definition 13. (Statebased (Bi-)Similarity) Relation R is called a statebased sim-

ulation relation on states (based on schedules) if and only if for all pairs (〈s,M〉,

〈t,M〉) ∈ R:

(1) ∀χ,s′,M′〈s,M〉
χ
 〈s′,M′〉 ⇒ ∃t′〈t,M〉

χ
 〈t′,M′〉 and (〈s′,M′〉, 〈t′,M′〉) ∈ R;

(2) 〈s,M〉X⇒ 〈t,M〉X.

A symmetric statebased simulation relation is called a statebased bisimulation

relation. Schedule s is called statebased similar2 to t with respect to initial state

M, denoted by s ≦M t, if and only if there exists a statebased simulation relation R

such that (〈s,M〉, (〈t,M〉) ∈ R. Statebased bisimilarity of s and t with respect to M

is denoted by s↔ M t and is defined similarly.

For most practical applications, the notion of statebased bisimulation is not a

congruence since it relies on a particular initial state. The following example illus-

trates this fact.

Example 9. Consider the two rules MoveOut and skip with respect to the multiset

[(PersonOut, 1), (Door, 10, 10)]. It trivially holds that MoveOut↔ M skip. How-

ever it does not hold that MoveIn ; MoveOut↔ M MoveIn ; skip. Since the former

does a step and transforms the multiset to [(Person, 1, 10, 10), (Door, 10, 10)] and

then the rule MoveOut becomes enabled and transforms the multiset to its original

shape, while the latter can only perform the first transformation and terminates.

The following generalization of statebased (bi-)similarity detaches the notion

from the initial multiset:

Definition 14. (Initially Stateless (Bi-)Similarity) Schedules s and t are called

initially stateless (bi-)similar, notation s ≦isl t (s↔ isl t) if and only if there exists

a statebased (bi-)simulation relation such that for all M ∈ IM(U), (〈s,M〉, 〈t,M〉) ∈

R.

The above notion of bisimulation proves to be successful only for the sequential

subset of the language Schedules:

2 In the work of amongst others van Glabbeek [Glabbeek 2001], similarity is an equivalence. In our

terminology, however, similarity is not an equivalence relation, but only a preorder.



TIMED-GAMMA 103

Theorem 1. Initially stateless similarity is a pre-congruence and initially state-

less bisimilarity is a congruence with respect to the sequential subset of Schedules

(closed terms not containing parallel composition operators).

Proof. Our semantic rules fit the sfisl format of Mousavi et al. [2004, 2005],

thus the congruence result for stateless bisimilarity follows from the corresponding

theorem in Mousavi et al. [2004, 2005]. It is easy to see that this format also

guarantees pre-congruence of initially stateless similarity. �

The above theorem can be useful in practice when we can decompose the sched-

ule into sequential components and then use the initially stateless notions of bisim-

ilarity and similarity for proving equivalence and refinement relations. However,

when such a sequential decomposition is not possible the initially stateless notion

of bisimulation fails to provide desired robustness property. The following example

illustrates this fact.

Example 10. Consider the following two schedules:

evac1 = (µx.MoveOut1 ; x) ; MoveOut1,

evac2 = (µx.MoveOut1 ; x) ; MoveOut2,

where
MoveOut1 = MoveOut2 = MoveOut,

TMoveOut1 = [1, 2] TMoveOut2 = [1, 3].

Note that we have used two copies of the rule MoveOut because we have the de-

sire to associate different timing specifications with different occurrences of this

functionality.

Then these schedules evac1 and evac2 are initially stateless bisimilar:

evac1 ↔ isl evac2.

The first recursive parts of evac1 and evac2 make sure that the building is evac-

uated from all persons thus the second parts always terminate immediately. How-

ever, composing these two schedules in abstract parallel composition with a single

rule that allows for a person to enter the building reveals the difference between the

two:

evac1 || MoveIn = isl evac2 || MoveIn.

This is due to the fact that in the execution of both schedules there is a path in which

after evacuation of the building, a person enters it and then the first schedule, forces

the person to move out within the interval [1, 2] while the latter allows the person

to stay a bit longer. (It can perform MoveOut within the interval (2, 3].)

To make the (bi-)simulation robust in all possible environments, we introduce

the following stateless (bi-)simulation.

Definition 15. (Stateless (Bi-)Similarity) Relation R is called a stateless simula-

tion relation on schedules if and only if for all pairs (s, t) ∈ R:
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(1) ∀M,χ,s′,M′〈s,M〉
χ
 〈s′,M′〉 ⇒ ∃t′〈t,M〉

χ
 〈t′,M′〉 and (s′, t′) ∈ R;

(2) ∀M〈s,M〉X⇒ 〈t,M〉X.

A symmetric stateless simulation relation is called a stateless bisimulation rela-

tion. We call two schedules s and t stateless (bi-)similar, notation s ≦ t (s↔ t), if

and only if there exists a stateless (bi-)simulation relation R such that (s, t) ∈ R.

Next, we state that strong bisimulation is indeed robust, with respect to all pos-

sible environments built upon the syntax of Schedules.

Theorem 2. Stateless (bi-)similarity is a pre-congruence (congruence) with respect

to all operators in the syntax of Schedules.

Proof. Congruence of bisimilarity follows from the congruence result for the

process-tyft format of [Mousavi et al. 2004]. It is easy to see that this format also

guarantees pre-congruence of stateless similarity. �

The following proposition gives some algebraic rules that hold with respect to

the notion of stateless (bi-)simulation.

Proposition 1. According to the given semantics, the following stateless similari-

ties and bisimilarities hold, for all schedules s, s0, s1, s2 and rule names rn:

skip ; s ↔ s

s ; skip ↔ s

(s0 ; s1) ; s2 ↔ s0 ; (s1 ; s2)

s0 + s1 ↔ s1 + s0

(s0 + s1) + s2 ↔ s0 + (s1 + s2)

skip || s ↔ s

s0 || s1 ↔ s1 || s0

(s0 || s1) || s2 ↔ s0 || (s1 || s2)

skip ||| s ↔ s

s0 ||| s1 ↔ s1 ||| s0

(s0 ||| s1) ||| s2 ↔ s0 ||| (s1 ||| s2)

rn y s[s] ↔ s

rn y rn[skip] ↔ rn

(rn y s0[s1]) ; s2 ↔ rn y (s0 ; s2)[s1 ; s2]

rn y (rn y s0[s1])[s1] ↔ rn y s0[s1]

µx.s ↔ s(µx.s/x)

µx.s ↔ µy.s(y/x) if y does not occur in s

s0 ≦ s0 + s1

rn y s0[s1] ≦ s0 + s1

s0 ||| s1 ≦ s0 || s1
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Proof. See Appendix A. �

The above congruence theorem has a very strong message for the provable equal-

ity and refinement relations, such as those proved in Proposition 1, namely, that

these relations can be applied as equality and refinement rules in an arbitrary con-

text. In other words, it allows for compositional reasoning and refinement of sched-

ules. We use this fact in the following example to improve the control strategy

proposed in the previous section.

Example 11. Recall the following schedule from Example 8:

Control = (µx.(RoomEmp y (RoomEmp || x))) ;

(µy.(||1≤rid≤maxR ((k = rid) ⊲ (RoomOcc→ TurnOn[TurnOff]))) ; y).

One can prove that

Control′ = (µx.(RoomEmp y (RoomEmp || x))) ;

(µy.(
∏

1≤rid≤maxR((k = rid) ⊲ (RoomOcc→ TurnOn[TurnOff]))) ; y),

where
∏

denotes a generalized sequential composition, is a refinement of schedule

Control.

The refined schedule does not have a starvation problem because it orders the

treatment of rooms by their numbers and serves them once in each control period.

Thus, one can calculate the worst case response time for the control of each room

using the upper bounds of the timing intervals. Thus, we can define the new system

as:

System′ = Movement ||| Control′.

Then, it follows from Theorem 2 that the following refinement relation holds:

System′ ≦ System.

This means that the new system, in addition to providing new liveness (fairness)

properties, preserves safety properties of the old system.

6. Chaotic behavior and the most general schedule

A general starting point for the refinement process of schedules is the chaotic be-

havior of Gamma programs which leaves all possible choices open. However, we

do not have a representation of this chaotic behavior in the Schedules syntax. We

aim at providing such a representation in the remainder.

Definition 16. (TheMost General Schedule) For a finite and non-empty set of

Gamma rule names RN, we define its corresponding most general schedule as

follows:

MGS(RN) = ||rn∈RN µx.rn y (rn || x).
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Define stateless bisimilarity between a Gamma program and a schedule in the

obvious way. The following theorem expresses that the chaotic behaviour asso-

ciated with a set of Gamma rules RN is captured precisely be the most general

schedule MGS(RN).

Theorem 3. For any Gamma program RN, we have RN ↔MGS(RN).

Proof. For the purpose of the sketch of the proof the equivalence of the Most Gen-

eral Schedule of a Gamma program and the Gamma program itself, we introduce

the following notations:

(1) Assume that RN = {rn1, · · · , rnn} with all mentioned rules different.

(2) For some rule name rn and task multiset T , we use MGS(rn,T ) to denote the

set of all schedules of the form

rn[α1@t1 : I1] || (· · · (rn[αm@tm : Im] || µx.rn y (rn || x)) · · ·)

where comp(T ) = [α1, · · · , αm].

(3) For some schedule s and task multiset T , we use MGS(RN,T ) to denote the

set of all schedules of the form

||1≤i≤n si

where T = T1 ⊞ · · ·⊞ Tn and si ∈ MGS(rni,Ti) for each 1 ≤ i ≤ n.

The idea is to relate a program with task multiset T with each of the schedules from

MGS(RN,T ). This is then a stateless bisimulation relation up-to the following

properties:

skip || s ↔ s

s0 || s1 ↔ s1 || s0

(s0 || s1) || s2 ↔ s0 || (s1 || s2)

From this it follows that RN and MGS(RN) are stateless bisimilar. �

7. Conclusion and future work

In this paper, we presented a formal framework for separation of concerns in the

design of real-time reactive systems. The basic aspects of design addressed in this

paper are functionality, coordination and timing. For each aspect a language is

formally defined such that semantics of the languages can be composed. For func-

tionality, we used a shared-data-space paradigm to capture basic computational

units (i.e., functionalities of components). For the coordination aspect, we used a

process-algebraic formalism to specify the control skeletons. Finally, for timing

aspects, we used intervals for specification of computation time. Each of these as-

pects can be extended or replaced by a different aspect language in its own right as

long as the extended / replaced aspects can provide the expected transition system

semantics. Further, we presented notions of equality and refinement for reasoning

about systems developed in this framework. The notions of equality and refinement
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are built up in such a way that they can be deployed in an arbitrary environment

and remain robust in spite of interferences from such an environment.

Our work forms the mathematical basis for a correct-by-construction method of

system design. Such a method starts with a set of declarative specifications about

aspects of design, massages each of these aspect specifications to a correct spec-

ification with respect to some overall correctness criterion, and finally transforms

the specification to an executable code in an implementation framework. Such an

implementation framework could be a middleware with support for different con-

cerns, such as, for example, [Russello et al. 2004]. A concrete challenge in this

direction is the synthesis of a correct-by-construction schedule given a set of (real-

time) correctness criteria.

Another challenge is how to define languages tailored for different aspects such

that specifications in these languages can be composed and refined independently.

Appendix A. Proof of proposition 1

In this appendix, AS denotes the set of all closed (annotated) schedule terms and Id

denotes the relation {(s, s) | s ∈ AS}.

We only give the stateless bisimulation and simulation relations.

For the properties involving the schedule skip it is convenient to use the deduc-

tion rule

(Skip)
〈skip,M〉X

instead of its definition as a special rule (see Definition 11). It can easily be shown

that the schedule skip as defined by the above deduction rule is precisely the same

as the one defined in Definition 11.

In the proof of skip || s↔ s we have used the property that

〈s,M〉֌ 〈s′,M′〉 ⇒ M′ |= comp(s′)

for any annotated schedules s and s′, and any multisets M and M′. The property is

easily proven by induction on the depth of the derivation of the antecedent.

skip ; s↔ s: The symmetric closure of the relation R = {(skip ; s, s)} ∪ Id is a

stateless bisimulation relation.

s ; skip↔ s: The symmetric closure of the relation R = {(t ; skip, t) | t ∈ AS} is a

stateless bisimulation relation.

(s0 ; s1) ; s2 ↔ s0 ; (s1 ; s2): The symmetric closure of the relation R = {((t0 ;

s1) ; s2, t0 ; (s1 ; s2)) | t0 ∈ AS} ∪ Id is a stateless bisimulation relation.

s0 + s1 ↔ s1 + s0: The relation R = {(s0+s1, s1+s0)}∪Id is a stateless bisimulation

relation.

(s0 + s1) + s2 ↔ s0 + (s1 + s2): The symmetric closure of the relation R = {((s0 +

s1) + s2, s0 + (s1 + s2))} ∪ Id is a stateless bisimulation relation.
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skip || s↔ s: The symmetric closure of the relation R = {(skip || t, t) | t ∈ AS} is a

stateless bisimulation relation.

s0 || s1 ↔ s1 || s0: The relation R = {(t0 || t1, t1 || t0) | t0, t1 ∈ AS} is a stateless

bisimulation relation.

(s0 || s1) || s2 ↔ s0 || (s1 || s2): The symmetric closure of the relation R = {((t0 ||

t1) || t2, t0 || (t1 || t2)) | t0, t1, t2 ∈ AS} is a stateless bisimulation relation.

skip ||| s↔ s: The symmetric closure of the relation R = {(skip ||| t, t) | t ∈ AS} is

a stateless bisimulation relation.

s0 ||| s1 ↔ s1 ||| s0: The relation R = {(t0 ||| t1, t1 ||| t0) | t0, t1 ∈ AS} is a stateless

bisimulation relation.

(s0 ||| s1) ||| s2 ↔ s0 ||| (s1 ||| s2): The symmetric closure of the relation R = {((t0 |||

t1) ||| t2, t0 ||| (t1 ||| t2)) | t0, t1, t2 ∈ AS} is a stateless bisimulation relation.

rn y s[s]↔ s: The symmetric closure of the relation R = {(rn y s[s], s)} ∪ Id is

a stateless bisimulation relation.

rn y rn[skip]↔ rn: The symmetric closure of the relation R = {(rn y rn[skip],

rn)} ∪ Id is a stateless bisimulation relation.

(rn y s0[s1]) ; s2 ↔ rn y (s0 ; s2)[s1 ; s2]: The symmetric closure of the rela-

tion R = {((rn y s0[s1]) ; s2, rn y (s0 ; s2)[s1 ; s2])} ∪ Id is a stateless

bisimulation relation.

rn y (rn y s0[s1])[s1]↔ rn y s0[s1]: The symmetric closure of the relation R

= {(rn y (rn y s0[s1])[s1], rn y s0[s1])} ∪ Id is a stateless bisimulation

relation.

µx.s↔ s(µx.s/x): The relation R = {(µx.s, s(µx.s/x))} ∪ Id is a stateless bisimula-

tion relation.

µx.s↔ µy.s(y/x) if y does not occur in s: Let R be the smallest congruence such

that (µx.s, µy.s(y/x)) ∈ R. Then R is a stateless bisimulation.

s0 ≦ s0 + s1: The relation R = {(s0, s0 + s1)} ∪ Id is a stateless simulation relation.

rn y s0[s1] ≦ s0 + s1: The relation R = {(rn y s0)[s1], s0+ s1)}∪ Id is a stateless

simulation relation.

s0 ||| s1 ≦ s0 || s1: The relation R = {(t0 ||| t1, t0 || t1) | t0, t1 ∈ AS} is a stateless

simulation relation.
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