
MFPS 2012

Nominal SOS

Matteo Ciminia MohamamdReza Mousavib Michel A. Reniersc

Murdoch J. Gabbayd

a Department of Computer Science, Reykjav́ık University, Reykjav́ık, Iceland
b Department of Computer Science, TU/e, Eindhoven, The Netherlands

c Department of Mechanical Engineering, TU/e, Eindhoven, The Netherlands

d Computer Science Department, Heriot-Watt University, Edinburgh, United Kingdom

Abstract

Plotkin’s style of Structural Operational Semantics (SOS) has become a de facto standard in giving
operational semantics to formalisms and process calculi. In many such formalisms and calculi, the
concepts of names, variables and binders are essential ingredients. In this paper, we propose a
formal framework for dealing with names in SOS. The framework is based on the Nominal Logic of
Gabbay and Pitts and hence is called Nominal SOS. We define nominal bisimilarity, an adaptation of
the notion of bisimilarity that is aware of binding. We provide evidence of the expressiveness of the
framework by formulating the early π-calculus and Abramsky’s lazy λ-calculus within Nominal SOS.
For both calculi we establish the operational correspondence with the original calculi. Moreover,
in the context of the π-calculus, we prove that nominal bisimilarity coincides with Sangiorgi’s open
bisimilarity and in the context of the λ-calculus we prove that nominal bisimilarity coincides with
Abramsky’s applicative bisimilarity.

Keywords: SOS, Nominal SOS, Nominal calculi, λ-calculus, π-calculus.

1 Introduction

The development of a formal semantics for programming and specification lan-
guages is a necessary first step towards rigorous reasoning about them. For
instance, a formal semantics allows one to prove the correctness of language
implementations, and is a prerequisite for proving the validity of program op-
timizations. Operational semantics is a widely-used methodology to define
formal semantics for computer languages, which represents the execution of
programs as their step-by-step development on an abstract machine. Struc-
tural Operational Semantics (SOS) was introduced by Gordon Plotkin in [24],
reprinted in [25], as a logical and structural approach to defining operational

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Cimini, Mousavi, Reniers and Gabbay

semantics. The logical structure of SOS specifications supports a variety of
reasoning principles that can be used to prove properties of programs whose
semantics is given using SOS. Moreover, SOS language specifications can be
used for rapid prototyping of language designs and to provide experimental
implementations of computer languages.

SOS has become the de facto standard for defining operational semantics,
and a wealth of programming and executable specification languages have
been given formal semantics using it. In the past two decades much work
on the underlying theory as well as on the practice of SOS has been carried
out—see, e.g., [3,21] and [6,13,20], respectively. Many programming and
specification languages make use of the concepts of names and binders. For
example, in the π-calculus [18,19,29], names are first-class objects and the
whole language is built on the idea that concurrent agents communicate by
exchanging names. Incorporating nominal notions within SOS has received
some attention in recent years, but nevertheless the meta-theory of SOS is
not sufficiently adapted for these new frameworks. In this paper we propose
a formal framework for the handling of names in SOS, called Nominal SOS,
which is based on the nominal techniques of Gabbay, Pitts, and Urban [11,31].

The most important notion of equivalence of programs in the context of
SOS is bisimilarity [22]. We argue that this notion, taken as it is, is not
satisfactory and we adapt bisimilarity in order to better suit our context with
binders. We call this equivalence nominal bisimilarity.

Basic notions such as α-conversion and substitution are essential parts of
most nominal calculi. We show that these notions can be naturally captured in
the Nominal SOS framework. Moreover, we give evidence of the expressiveness
of our framework by modeling two of the most prominent examples of nominal
calculi, namely the lazy λ-calculus and the early π-calculus. For both we
show that our specifications coincide operationally with the original definitions
of [2] and [29], respectively. We moreover prove that in the case of the π-
calculus our notion of nominal bisimilarity coincides with the well-known open
bisimilarity of Sangiorgi [29,28]. Finally, we show that nominal bisimilarity
in the context of our formulation of the lazy λ-calculus coincides with the
applicative bisimilarity of Abramsky [2].

Proofs are omitted in the main text and the reader can find them, together
with a fully elaborated account of Nominal SOS, in [8]. This document extends
the last chapter of Cimini’s Ph.D. thesis [7].

Structure of the paper. The rest of the paper is organized as follows. In
Section 2 we define nominal terms and in Section 3 we define the framework of
Nominal SOS. We show in Section 4 how α-conversion and different types of
substitution can be accommodated in Nominal SOS. Section 5.1 is devoted to
our formulation of the π-calculus and Section 5.2 addresses the lazy λ-calculus.
In Section 6 we discuss related work and Section 7 concludes the paper.

2

Cimini, Mousavi, Reniers and Gabbay

2 Nominal terms

The following definitions of sorts and nominal signature are familiar from [31].

Definition 2.1 (Sorts) Sorts are defined inductively as follows: σ ::= 1 | δ |
A | [A]σ | σ × σ, where 1 is the unit sort, δ is a base sort, A is an atom sort,
[A]σ denotes an abstraction sort, and × denotes pairing.

Intuitively, [A]σ is a sort whose elements are functions from objects of sort
A to objects of sort σ. As is standard, pair sorts will associate to the left, so
that σ1 × σ2 × σ3 stands for (σ1 × σ2)× σ3.

Definition 2.2 (Nominal signature) A nominal signature Σ is a triple
(∆, A, F), where

(i) ∆ is a set of base sorts ranged over by δ,

(ii) A is a set of atom sorts ranged over by A, and

(iii) F is a set of operators f(σ1×...×σn)→δ, denoting a function symbol f with
arity (σ1 × . . .× σn)→ δ, where n ≥ 0.

For each atom sort A, we fix a countably infinite set of atoms aA, bA, cA,
dA . . . , and for each sort σ, we assume a countably infinite set Vσ of variable
symbols xσ, yσ, zσ We sometimes write just f , a, b, c, d, n,m, and x, y, z,
leaving arities and sorts implicit (but still present). We assume that all these
sets of symbols are pairwise disjoint.

Definition 2.3 (Nominal terms) Given a signature Σ = (∆, A, F), the set
of nominal terms over the signature Σ is denoted by T(Σ) and it is defined as
follows, where we write tσ for a term t of sort σ:

t ::= xσ | aA | ([aA]tσ)[A]σ | (f(σ1×...×σn)→δ(tσ1 , . . . , tσn))δ

where A ∈ A, aA ∈ A, xσ ∈ Vσ and f ∈ F with arity (σ1 × . . .× σn)→ δ.

The subscripts of nominal terms control sorting and we tend to omit them
when they are clear from the context or immaterial. We call [a]t an abstraction.
A syntactic constructor for pairs is not really needed and is therefore omitted.

For a nominal term t, the following definitions will be useful in the remain-
der of the paper. In what follows, f and g are a unary and a binary function
symbol.

• A(t) stands for the set of atoms that occur in t. For example,
A(f([a]g(a, b))) = {a, b}.

• ba(t) is the set of atoms a for which there exists a subterm [a]t′ in t, i.e.,
the set of abstracted atoms in t. For example, ba(f([a]g(a, b))) = {a}.

• fa(t) is the set of atoms a in A(t) that have an occurrence in t that is not
within the scope of an abstraction [a]t′, for some term t′. We call fa(t)

3

Cimini, Mousavi, Reniers and Gabbay

the set of free atoms of t. For example, fa(f([a]g(a, b))) = {b} and also
fa(g(f([a]a), a)) = {a}.

• An atom a is fresh in t whenever a 6∈ fa(t). We also say that a term t is
binding-closed if fa(t) = ∅, i.e., the term t does not contain free atoms. 1

• We say that a nominal term is closed if it contains no variables. It is called
open otherwise.

For example, a and [a]f(b) are closed terms, but x and [a]y are open terms.
Note that neither a nor [a]f(b) is binding-closed.

3 Nominal SOS

Suppose a is an atom and t is a term of some sort. We call a formula a#t a
freshness assertion. In what follows we give a derivation system in order to
derive freshness assertions.

Definition 3.1 (Freshness derivation rules) Let Σ be a nominal signa-
ture, and let the atom a and the term t be over the signature Σ. We say that
a#t is derivable when it may be derived using the following rules, where a and
b are distinct atoms.

a#b

a#t1, . . . , a#tn

a#f(t1, . . . , tn) a#[a]t

a#t

a#[b]t

These derivation rules are familiar from existing work [31,9].

We are now ready to define the notion of nominal transition system speci-
fication whose rules employ the freshness assertions defined above.

Definition 3.2 (Nominal Transition System Specification) A nominal
transition system specification (NTSS) is a triple (Σ, R,D) consisting of:

(i) A nominal signature Σ;

(ii) A set of (transition) relation symbols R. To each r ∈ R we associate a
(transition relation) arity which is a sort of the form σ × σl × σ′. We
may call: σ the ‘sort of the source of the transition’, σ′ the ‘sort of the
target of the transition’, and σl the ‘sort of the label of the transition’.

(iii) A set of derivation rules D (see below).

Given an NTSS T , we denote with A(T) the set of atoms of the signature
of T . For a relation r ∈ R with arity σ × σl × σ′, if σl is the unit sort 1 then

1 Binding-closed terms corresponds to those that in literature are usually called closed. For
instance, in the context of the λ-calculus the λ-term λa.λb.(a b) is closed, as it does not
contain free atoms, see [2,4]. We adopt a different nomenclature in order to avoid confusion
with the standard concept of closed term of SOS, i.e., a term that contains no variables.

4

Cimini, Mousavi, Reniers and Gabbay

we say that r has no label. If σ′ is also the unit sort, then r is a predicate
symbol. We may silently drop σl (and σ′) if they are the unit sort.

For a relation r ∈ R with arity σ× σl× σ′, a positive transition formula is

written t
l→r t

′, where t is a possibly open term of sort σ (we call it the source
term), l is a possibly open term of sort σl (we call it the label), and t′ is a
possibly open term of sort σ′ (we call it the target term).

For the same relation r, we write t
l9r for a negative transition formula,

where t is of sort σ and l is of sort σl. A transition formula is a positive or
negative transition formula.

Definition 3.3 (Derivation rule) A derivation rule is of the form

{ti
li→ri t

′
i | i ∈ I} {tj

lj9rj | j ∈ J} {ak#tk | k ∈ K}

t
l→r t

′

where

• I, J and K are indexing sets,

• {ti
li→ri t

′
i | i ∈ I} is a set of positive transition formulae, called the positive

premises of the rule,

• {tj
lj9rj | j ∈ J} is a set of negative transition formulae, called the negative

premises of the rule,

• {ak#tk | k ∈ K} is a set of freshness assertions, called the freshness
premises of the rule, and

• t
l→r t

′ is a positive transition formula, called the conclusion of the rule.

We call t, l, and t′ the source, the label and the target of the rule, respectively.

We call a derivation rule an axiom if I, J , and K are empty. A derivation
rule is positive when the index set J is empty. An NTSS is positive when all its
deduction rules are positive. Positive NTSS’s come with a natural notion of
semantics, i.e., the set of provable closed transitions formulae; the same notion
is adopted for the semantics of freshness formulae by means of the derivation
rules given in Definition 3.1. In this paper we restrict ourselves to positive
NTSS’s; the semantics of full Nominal SOS can be found in [7, Section 5.3.1].

The most important notion of equivalence between programs defined in
SOS is bisimilarity [17,22]. Unfortunately, this equivalence turns out not to
be satisfactory in a context with binders. This point is carefully explained, in
the context of the π-calculus, on pages 64-65 of [29], where it is shown that
the two processes P = νc.ac and Q = νc.(ac || νd.db) are distinguished

since P can perform a transition
a(b)→ while Q is not able to perform any

a(b)→
transitions; the reason is that Q is not able to change its bound variable to b

5

Cimini, Mousavi, Reniers and Gabbay

since b is not fresh in Q.

Nominal bisimilarity is thus introduced below as an adaptation of the
ordinary bisimilarity that is aware of binding. What happens in the theory of

the π-calculus is that bisimilarity is adjusted and transitions of the form
a(b)→

are matched only for those bound variables that are fresh in both terms. Our
notion of bisimilarity revisits the ordinary bisimilarity in such a manner. In
the remainder of the paper we relate our nominal bisimilarity to important
notions of equivalence in the literature.

Definition 3.4 (Nominal bisimilarity) Let T be an NTSS. Nominal
bisimilarity ↔––T is the largest symmetric binary relation ∼ over closed terms
of T such that for all closed terms P and Q and labels l such that P ∼ Q and

a#P and a#Q for all a ∈ ba(l), it holds that if P
l→P ′ then there exists Q′

such that Q
l→Q′ and P ′ ∼ Q′.

4 Substitution and α-conversion

4.1 Substitution transitions

Substitution and α-equivalence play a key role in the definition of the se-
mantics of calculi with binders. We will now show how those notions can be
accommodated in a uniform fashion within the framework of Nominal SOS.

Term-for-atom substitutions are typically employed by higher-order cal-
culi, such as the λ-calculus, the Calculus of Higher Order Communicating
Systems (CHOCS) [30] and the Higher-Order π-calculus [26]. Given a nomi-
nal signature, we generate deduction rules with the goal of proving transitions

of the form t1
a
T7→t2−→ t3 for some atom a and terms t1, t2 and t3, where terms

t1 and t3 are bound to be of the same sort. This type of transition should be
read as the term t2 replaces the atom a in the term t1 leading to the term t3.
For all atoms a and function symbols f , we have the following rules.

a
a
T7→z−→ z (a1Ts)

a#x

a
x
T7→z−→ a

(a2Ts)
x
y
T7→z−→ x′ a#z a#y

[a]x
y
T7→z−→ [a]x′

(abs1Ts)

[a]x
a
T7→z−→ [a]x (abs2Ts)

{
xi

y
T7→z−→ x′i | 0 < i ≤ n

}

f(x1, x2, . . . , xn)
y
T7→z−→ f(x′1, x

′
2, . . . , x

′
n)

(fTs)

The reader can infer the sort of the variables used in the rules by their
usage. The reader may be more familiar with the syntactic substitution oper-
ation, defined below, where M and N are closed terms and a and b are distinct

6

Cimini, Mousavi, Reniers and Gabbay

atoms.

a[N/a] = N a[N/b] = a ([a]M)[N/a] = [a]M

([a]M)[N/b] = [a](M [N/b]) if a is fresh in N

f(M1,M2, . . . ,Mn)[N/a] = f(M1[N/a],M2[N/a], . . . ,Mn[N/a])

The following theorem states that the two notions (substitution transitions
and syntactic substitutions) correspond. 2

Theorem 4.1 (Correctness of substitution transitions) Let T be an
NTSS. Let M and N be closed terms, and a be an atom. Then, it holds

that M
a
T7→N−→ M ′ if and only if M ′ = M [N/a].

Atom-for-atom substitution is used in calculi such as the π-calculus [29,19]
and its variants. The same set of rules provided for the term-for-atom sub-
stitution are able to model the atom-for-atom substitution. These transitions

are denoted
x
A7→z−→ and the first and second argument of this label range over

atoms.

A syntactic atom-for-atom substitution over nominal terms, together with
its corresponding correctness theorem, can be provided. It turns out to be
just a straightforward adaptation of Theorem 4.1.

4.2 α-conversion transitions

The notion of α-conversion is a natural equivalence guaranteeing that the
exact atom chosen in binders is not important and can be indeed replaced
by any other atom (while avoiding capture). Thanks to freshness assertions,
we can accommodate α-conversion in our framework as an ordinary transition
relation. Given a nominal signature, the following deduction rules define →α .
For all atoms a and b and function symbols f , we have the following rules. 3

x→α x (idα)
x

a
A7→b−→ y b#x

[a]x→α [b]y
(abs1α)

x→α y

[a]x→α [a]y
(abs2α)

{xi →α x′i | 0 < i ≤ n}

f(x1, x2, . . . , xn)→α f(x′1, x
′
2, . . . , x

′
n)

(fα)
x→α y y →α z

x→α z
(α · upToα)

2 Theorem 4.1 is stated as Theorem 2 in Section 4.1 of [8] and proved in Section 13 of that
paper.
3 In the nominal world, the standard definition of α-equivalence is based on permuta-
tions, see [11] for instance. However, we preferred to model the standard definition of
α-equivalence.

7

Cimini, Mousavi, Reniers and Gabbay

The reader will notice that α-conversion transitions rely on those for the
atom-for-atom substitution (rule (abs1α)). Throughout the paper, whenever
we say that the rules above for α-conversion transitions are present in an
NTSS, this implies that also the rules for atom-for-atom substitutions are
present.

The reader is perhaps familiar with the syntactic version of α-conversion,
defined below.

Definition 4.2 (α-conversion over nominal terms) Let T be an NTSS.
The relation =α is the least congruence on nominal terms over the signature
of T , such that, for all closed terms M and atoms b, if b is fresh in M then
[a]M =α [b]M [b/a].

The set of rules for α-conversion transitions generated above actually behaves
according to the syntactic α-conversion, as stated in the following theorem. 4

Theorem 4.3 (Correctness of α-conversion transitions) Let T be an
NTSS. For all closed terms M and N over the signature of T , it holds that
M →α N if and only if M =α N .

Calculi with binders usually consider a term as a representative of the
equivalence class of all the terms that are α-convertible to it. In Nominal
SOS, it is possible to achieve this by augmenting the NTSS with a deduction
rule, given below.

Definition 4.4 (Transitions up to α-equivalence) Let T be an NTSS

and l be a label of the signature of T . The transition relation
l→ is up

to α-equivalence whenever the deduction rules of T contain the rules for α-
conversion transitions, as defined above, the rules for atom-for-atom substitu-
tion transitions, as defined in Section 4.1, and the deduction rule:

x→α y y
l→ z

x
l→ z

(l · upToα).

Depending on the peculiarities of the calculus at hand, the modeller might
want to consider defining some of the transition relations to be up to α-
equivalence.

5 Examples

In this section we provide some evidence of the expressiveness and applicability
of Nominal SOS by formulating in our framework two classical calculi, namely

4 Theorem 4.3 is stated as Theorem 3 in Section 4.2 of [8] and proved in Section 14 of that
paper.

8

Cimini, Mousavi, Reniers and Gabbay

the early π-calculus [29,19] and the lazy λ-calculus [2].

5.1 The early π-calculus and open bisimilarity

The signature Σπ of our π-calculus is modelled by a base sort P and atom
sort C (for processes and channels, respectively) and the following function
symbols.

(i) 0 :→ P for inaction (deadlock),

(ii) τ. : P → P for τ -prefix,

(iii) out(, ,) : (C × C × P)→ P for output prefix,

(iv) in(,) : (C × [C]P)→ P for input prefix,

(v) ν() : [C]P → P for restriction,

(vi) || : (P × P)→ P for parallel composition,

(vii) + : (P × P)→ P for nondeterministic choice,

(viii) ! : P → P for parallel replication.

The syntax employed for input and output prefixes differs slightly from the
standard notation used in the π-calculus. In particular, our term out(a, b, P)
corresponds to the process ab.P of the π-calculus, and in(a, [b]P) corresponds
to a(b).P . The same choice is adopted for the labels.

Below, we specify the semantics of the early π-calculus in Nominal SOS.
Since in our framework labels are open terms, we display an input transition
label as in(a, b), assuming a different operator in accepting two atoms as ar-
guments. For presentational purposes, we use the same names to stipulate the
meaning of the transitions. For the same reasons, we model an output tran-
sition label as out(a, b) and a bound output transition label as bout(a, [b]0),
abbreviated as bout(a, [b]) throughout the text. The set of rules of the signa-
ture Σπ contains the following rules, we use α to range over labels and a, b
and c to range over atoms.

(τ)
τ.x

τ→x
(out)

out(a, b, x)
out(a,b)→ x

x
b
A7→c−→ y

(in)

in(a, [b]x)
in(a,c)→ y

x1
α→ y1

(sum1)
x1 + x2

α→ y1

α 6∈ {bout(a, [b]) | a, b ∈ C}
x1

α→ y1
(par1)

x1 ||x2
α→ y1 ||x2

x1
bout(a,[b])→ y1 b#x2

(parRes1)

x1 ||x2
bout(a,[b])→ y1 ||x2

x1
out(a,b)→ y1 x2

in(a,b)→ y2
(com1)

x1 ||x2
τ→ y1 || y2

9

Cimini, Mousavi, Reniers and Gabbay

x1
bout(a,[b])→ y1 x2

in(a,b)→ y2 b#x2
(close1)

x1 ||x2
τ→ ν([b](y1 || y2))

x
α→ y

(repl)
!x

α→ y ||!x

x
out(z,a)→ y a 6= z

(open)

ν([a]x)
bout(z,[a])→ y

c 6∈ ba(α)
x

α→ y c#α
(res)

ν([c]x)
α→ ν([c]y)

For the sake of brevity, we omit the symmetric versions of rules (sum1),

(par1), (parRes1), (com1) and (close1). Moreover, for each label l,
l→ is up

to α-equivalence. Following the recipe of Definition 4.4 we add to our NTSS
the set of rules for α-conversion transitions and the rules for atom-for-atom
substitution transitions. We set the atom-for-atom transition relations to be
up to α-equivalence, too.

The reader must notice that the complicated side-conditions of the ordi-
nary formulation of π-calculus are here replaced by rather simpler freshness
conditions, see rules (parRes1) and (close1).

We denote by Π the set of π-terms of [29]. The encoding J·Kπ is a map
from Π into terms of our nominal π-calculus. The mapping is straightfor-
ward and its definition is omitted here; it can however be found in [8]. 5 The
following theorem establishes that our formulation of the early π-calculus is
operationally correct with respect to its original formulation. 6

Theorem 5.1 (Operational correspondence: early π-calculus) For all

P,Q ∈ Π, P
α→Q⇔ JP Kπ

JαKπ→ JQKπ, where α ranges over the labels of the form
τ , ab, ab and a(b) from the original early π-calculus.

The reader may wonder what is the equivalence over π-calculus terms
that corresponds to nominal bisimilarity. The next theorem provides us with
an answer: nominal bisimilarity in our formulation of the early π-calculus
coincides with Sangiorgi’s open bisimilarity, see [29, Section 4.2] and [28].

Definition 5.2 (Open bisimilarity) Open bisimilarity ↔o is the largest
symmetric relation ∼ on Π such that whenever P ∼ Q, and σ is a substi-
tution (see Definition 1.1.3 on page 14 of [29]), if Pσ

α→P ′, then there exists
Q′, such that Qσ

α→Q′ and P ′ ∼ Q′.

The reader should notice that this definition is the very basic formulation
of open bisimilarity, which does not involve distinctions, see [29] and [28]. In
Definition 5.2, it is important to note that the ranging over all the substitutions
is performed at each step of the bisimulation game.

5 The encoding can be found in Section 5.2 of [8]. By way of example the reader can
consider that Jνz.x(z)||z(a).0Kπ = ν([z](bout(x, z)||in(z, [a]0))).
6 Theorem 5.1 is stated as Theorem 5 in Section 5.2 of [8] and proved in Section 16 of that
paper.

10

Cimini, Mousavi, Reniers and Gabbay

Theorem 5.3 (Open bisimilarity and bisimilarity coincide) For all
P,Q ∈ Π, P ↔o Q if, and only if, JP Kπ ↔–– JQKπ.

Theorem 5.3 essentially holds because in our nominal formulation of the
π-calculus, nominal bisimilarity also takes into account the substitutions tran-
sitions. 7 In [7, Section 5.21], it is shown that if nominal bisimilarity is adapted
not to match the substitution transitions it would coincide with the ordinary
bisimilarity over the π-calculus.

5.2 The lazy λ-calculus and applicative bisimilarity

The signature Σλ of the lazy λ-calculus is constructed using a base sort L
for λ-terms and an atom sort A. The signature also contains the following
function symbols.

(i) () : A→ L: A unary function symbol for creating terms from atoms;

(ii) λ() : [A]L→ L: A unary function symbol for abstractions;

(iii) : (L× L)→ L: A binary function symbol for application.

The semantics includes a reduction transition → , here displayed with no

label to remain in line with the standard notation from [2], transitions
P→

for terms P of sort L, the rules for term-for-atom substitution transitions as

generated in Section 4.1, and additionally the rules (a)
a
T7→z−→ z and

a#x

(a)
x
T7→z−→ (a)

.

The set of rules of the signature Σλ contains the following derivation rules,
which define the operational semantics of our version of the lazy λ-calculus,
for all atoms a.

(abs1AP)
λ([a]x)→λ([a]x)

x0
a
T7→y−→ x1 ∀b.(b#y)

(abs2AP)
λ([a]x0)

y→x1

x0→ y0 y0
x1→ y1 y1→ y2

(app1AP)
(x0 x1)→ y2

(x0 x1)→ y1 y1
x2→ y2

(app2AP)
(x0 x1)

x2→ y2

Moreover, the transition relations → ,
P→ for any binding-closed term P 8 ,

and the term-for-atom substitution transitions are up to α-equivalence. Recall
that, by Definition 4.4, this means that the set of rules of Σλ contains also the
rules for α-conversion transitions and the rules for atom-for-atom substitution
transitions and these transitions are set to be up to α-equivalence as well.

7 Theorem 5.3 is stated as Theorem 7 in Section 6 of [8] and proved in Section 22 of that
paper.
8 The premises ∀b.(b#y) of rule (abs2AP) ensure that the parameter passing is performed
with binding-closed terms only. This characterization already appeared in [9, Section 9.2].

11

Cimini, Mousavi, Reniers and Gabbay

We denote by Λ the set of λ-terms of [2,4], and by Λ0 the set of those that
do not contain free variables. The encoding J·Kλ is a map from Λ into terms
of our nominal λ-calculus. The mapping is straightforward and not presented
here; it can however be found in [8]. 9 The following theorem establishes the
operational correctness of our formulation of the lazy λ-calculus with respect
to its original formulation for λ-terms in Λ0. 10

Theorem 5.4 (Operational correspondence: lazy λ-calculus) For all
M,N ∈ Λ0, M→N ⇔ JMKλ→ JNKλ.

The reader should notice that if we ruled out the premises ∀b.(b#y) from
rule (abs2AP) the operational correspondence of Theorem 5.4 would hold for
the set of all λ-terms. The reason we restrict the parameter passing to binding-
closed terms only is that it ties up directly with the study that follows.

In the context of the lazy λ-calculus, one of the most interesting notions of
bisimilarity is the applicative bisimilarity due to Samson Abramsky [2]. Below
we recall the definition of this equivalence.

Definition 5.5 (Applicative bisimilarity in the λ-calculus)
Applicative bisimilarity is the largest symmetric relation ' on Λ0 such
that whenever M ' N , if M→λa.M ′ for some variable a and M ′ ∈ Λ, then
there exist some variable b and N ′ ∈ Λ such that

• N→λb.N ′, and

• M ′[P/a] ' N ′[P/b], for all P ∈ Λ0.

It is important to remark that the applicative bisimilarity of the λ-calculus
is defined over closed λ-terms. Indeed, this equivalence is very unsatisfactory
over terms that contain free variables. For instance, for all variables a, b and
c, it holds that a ' b and λa.b ' λa.c.

The following theorem states that applicative bisimilarity in the lazy λ-
calculus coincides with nominal bisimilarity in the nominal formulation of the
lazy λ-calculus given above. 11

Theorem 5.6 (Applicative and nominal bisimilarity coincide) For
all M,N ∈ Λ0, M ' N if, and only if, JMKλ ↔–– JNKλ.

6 Related work

We are aware of a number of existing approaches that accommodate names
and binders inside the SOS framework. The frameworks that are most relevant

9 The encoding can be found in Section 5.1 of [8]. By way of example the reader can
consider that Jλx.λy.(x y)Kλ = λ([x](λ([y](x y)))).
10 Theorem 5.4 is stated and proved as Theorem 18 in Section 25 of [8].
11 Theorem 5.6 is stated as Theorem 13 in Section 7.1 of [8] and proved in Section 25 of
that paper.

12

Cimini, Mousavi, Reniers and Gabbay

to the work presented in this paper are by Miller and Tiu in [16] (FOλ∆∇),
by Lakin and Pitts in [15] (MLSOS) and in [14] (αML) and by Gacek, Miller
and Nadathur in [12] (Abella).

As a first difference, Nominal SOS is the only approach that directly ex-
tends the formal framework of SOS. We identify some benefits supporting this
choice. First, users that are familiar with the SOS framework will find Nominal
SOS easy to use. Secondly, although a meta-theory of SOS for calculi with
binders can be carried out with the frameworks mentioned above, Nominal
SOS seems to be close enough to ordinary SOS. In this respect, a meta-theory
for binders can follow by and large the same lines of the meta-theory of ordi-
nary SOS, which has been successfully developed for over 20 years, see [21].
We also expect that already existing results from the meta-theory of SOS
would lift to Nominal SOS with relatively little effort.

Some technical differences between Nominal SOS and the systems men-
tioned above are worth a mention. For instance in MLSOS and α-ML, only
restricted operations are allowed on atoms and programs do not depend upon
concrete atoms. 12 In Nominal SOS, languages can instead be defined in a way
that a particular atom may affect the computation. FOλ∆∇ and Abella are
based on the so-called λ-tree approach to syntax where a logic that has its roots
in the λ-calculus takes care of the binding management. In Nominal SOS, the
management of binders is not delegated to an underlying layer and users need
to specify the treatment of binders completely. As another difference, in the
mentioned approaches α-conversion is built-in and guaranteed on the meta-
level. In Nominal SOS α-conversion is not built-in but it can be automatically
generated from the signature. The user can replace it and experiment with
alternative notions at will. Moreover, we prefer to model α-equivalence as a
transition like any other, so that it can be the subject of meta-theorems based
on the shape of rules that may be developed in the future.

We refer the reader to Section 5.8 of [7], where related works are considered
in much more detail.

7 Conclusions and future work

In this paper, we have introduced a framework, called Nominal SOS, for mod-
elling the operational semantics of nominal calculi. The framework comes
equipped with the basic features used in defining such calculi, namely, substi-
tution and α-conversion. We used the framework to specify the semantics
of the early π-calculus and lazy λ-calculus and showed that our formulations
of the semantics coincide with the original ones. A notion of nominal bisim-
ilarity arises naturally from our framework. Moreover, we showed that the

12 This property is known in the nominal world as the equivariance property, see [11] and
especially [23].

13

Cimini, Mousavi, Reniers and Gabbay

notion of nominal bisimilarity in our semantics of the early π-calculus coin-
cides with open bisimilarity in the original semantics. We also proved that
nominal bisimilarity coincides with Abramsky’s applicative bisimilarity in the
context of the lazy λ-calculus.

The main goals of our future work are to provide further evidence that
Nominal SOS is expressive enough to capture the original semantics of nominal
calculi, such as variants of the π-calculus and its higher-order version [27], the
psi-calculi [5] and the object calculi [1]. Also, we plan to address different
notions of equivalence betweens terms. To begin with, we plan to adapt
nominal bisimilarity in order for it to coincide with open bisimilarity with
distinctions [29,28], when applied to π-calculus terms. Our main goal is
however to develop the meta-theory of Nominal SOS. By way of example,
it would be worth providing congruence formats for behavioural semantics,
possibly generalizing those proposed in [32] and [10], for instance.

Acknowledgement. A special thanks to Luca Aceto for his thoughtful com-
ments on this paper at many different stages of its production.

References

[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer-Verlag, New York, 1996.

[2] Samson Abramsky. The lazy lambda calculus. In D.A. Turner, editor, Research Topics in
Functional Programming, pages 65–116. Addison Wesley, Reading, Mass., 1990.

[3] Luca Aceto, Wan Fokkink, and Chris Verhoef. Structural operational semantics. In Handbook
of Process Algebra, pages 197–292. Elsevier, 1999.

[4] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, Revised edition. North
Holland, 1984.

[5] Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Björn Victor. Psi-calculi: Mobile
processes, nominal data, and logic. In Proceedings of the 24th Annual IEEE Symposium on
Logic In Computer Science, pages 39–48, Washington, DC, USA, 2009. IEEE Computer Society.

[6] Christiano de O. Braga, Edward H. Haeusler, José Meseguer, and Peter D. Mosses. Mapping
modular SOS to rewriting logic. In Proceedings of the 12th international conference on Logic
based program synthesis and transformation, LOPSTR’02, pages 262–277, Berlin, Heidelberg,
2003. Springer-Verlag.

[7] Matteo Cimini. Contributions to the Meta-Theory of Structural Operational Semantics. Ph.D.
in Computer science, School of Computer Science, Reykjavik University, 2012. available at
http://cimini.info.

[8] Matteo Cimini, Mohammadreza Mousavi, Michel A. Reniers, and Murdoch J. Gabbay. Nominal
SOS - Online Resource. available at: http://cimini.info/publications/publications.html.

[9] Maribel Fernandez and Murdoch J. Gabbay. Nominal rewriting. Information and
Computation, 205(6):917–965, 2007.

[10] Marcelo Fiore and Sam Staton. A congruence rule format for name-passing process calculi
from mathematical structural operational semantics. In Proceedings of the 21st Annual IEEE
Symposium on Logic in Computer Science, pages 49–58, Washington, DC, USA, 2006. IEEE
Computer Society.

14

Cimini, Mousavi, Reniers and Gabbay

[11] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax involving
binders. In 14th Annual Symposium on Logic in Computer Science, pages 214–224. IEEE
Computer Society Press, Washington, 1999.

[12] Andrew Gacek, Dale Miller, and Gopalan Nadathur. Reasoning in Abella about structural
operational semantics specifications. In A. Abel and C. Urban, editors, International Workshop
on Logical Frameworks and Meta-Languages: Theory and Practice (LFMTP 2008), number 228
in Electronic Notes in Theoretical Computer Science, pages 85–100, 2008.

[13] Pieter H. Hartel. Letos - a lightweight execution tool for operational semantics. Software -
Practice and Experience, 29:1379–1416, December 1999.

[14] Matthew R. Lakin. An executable meta-language for inductive definitions with binders. PhD
thesis, University of Cambridge, 2010.

[15] Matthew R. Lakin and Andrew M. Pitts. A metalanguage for structural operational semantics.
In Symposium on Trends in Functional Programming, pages 1–16, 2007.

[16] Dale Miller and Alwen Tiu. A proof theory for generic judgments. ACM Transactions on
Computational Logic, 6:749–783, October 2005.

[17] Robin Milner. Communication and Concurrency. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1989.

[18] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I.
Information and Computation, 100:1–40, September 1992.

[19] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, II.
Information and Computation, 100:41–77, September 1992.

[20] Mohammad Reza Mousavi and Michel A. Reniers. Prototyping SOS meta-theory in Maude.
Electronic Notes in Theoretical Computer Science, 156:135–150, May 2006.

[21] Mohammad Reza Mousavi, Michel A. Reniers, and Jan F. Groote. SOS formats and meta-
theory: 20 years after. Theoretical Computer Science, 373(3):238–272, 2007.

[22] David Park. Concurrency and automata on infinite sequences. In Proceedings of the 5th
GI-Conference on Theoretical Computer Science, volume 104 of Lecture Notes in Computer
Science, pages 167–183, London, UK, 1981. Springer-Verlag.

[23] Andrew M. Pitts. Nominal logic, a first order theory of names and binding. Information and
Computation, 186:2003, 2002.

[24] Gordon D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus, 1981.

[25] Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic and
Algebraic Programming, 60-61:17–139, 2004.

[26] Davide Sangiorgi. Bisimulation for higher-order process calculi. Information and Computation,
131(2):141–178, 1996.

[27] Davide Sangiorgi. pi-calculus, internal mobility, and agent-passing calculi. In Selected papers
from the 6th international joint conference on Theory and practice of software development,
TAPSOFT ’95, pages 235–274, Amsterdam, The Netherlands, 1996. Elsevier Science Publishers
B. V.

[28] Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta Informatica, 33(1):69–97,
1996.

[29] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
Univ. Press, 2001.

[30] Bent Thomsen. A theory of higher order communicating systems. Information and
Computation, 116(1):38–57, 1995.

[31] Christian Urban, Andrew M. Pitts, and Murdoch J. Gabbay. Nominal unification. Theoretical
Computer Science, 323:473–497, 2004.

[32] Axelle Ziegler, Dale Miller, and Dale Palamidessi. A congruence format for name-passing
calculi. In Proceedings of the 2nd Workshop on Structural Operational Semantics (SOS’05),
volume 156 of Electronic Notes in Theoretical Computer Science, pages 169–189, Lisbon,
Portugal, 2005. Elsevier Science B.V.

15

	Introduction
	Nominal terms
	Nominal SOS
	Substitution and -conversion
	Substitution transitions
	-conversion transitions

	Examples
	The early -calculus and open bisimilarity
	The lazy -calculus and applicative bisimilarity

	Related work
	Conclusions and future work
	References

