
Modal Transition System Encoding of
Featured Transition Systems

Mahsa Varshosaza, Lars Luthmannb, Paul Mohrb, Malte Lochaub, Mohammad Reza Mousavic

aHalmstad University, Sweden
bTU Darmstadt, Germany

cUniversity of Leicester, UK

Abstract

Featured transition systems (FTSs) and modal transition systems (MTSs) are two of
the most prominent and well-studied formalisms for modeling and analyzing behav-
ioral variability as apparent in software product line engineering. On one hand, it
is well-known that for finite behavior FTSs are strictly more expressive than MTSs,
essentially due to the inability of MTSs to express logically constrained behavioral
variability such as persistently exclusive behaviors. On the other hand, MTSs enjoy
many desirable formal properties such as compositionality of semantic refinement and
parallel composition. In order to finally consolidate the two formalisms for variability
modeling, we establish a rigorous connection between FTSs and MTSs by means of
an encoding of one FTS into an equivalent set of multiple MTSs. To this end, we split
the structure of an FTS into several MTSs whenever it is necessary to denote exclusive
choices that are not expressible in a single MTS. Moreover, extra care is taken when
dealing with infinite behaviour: loops may have to be unrolled to accumulate FTS path
constraints when encoding them into MTSs. We prove our encoding to be semantic-
preserving (i.e., the resulting set of MTSs induces, up to bisimulation, the same set of
derivable variants as their FTS counterpart) and to commute with modal refinement.
We further give an algorithm to calculate a concise representation of a given FTS as a
minimal set of MTSs. Finally, we present experimental results gained from applying a
tool implementation of our approach to a collection of case studies.

Keywords: Featured Transition Systems, Modal Transition Systems, Expressiveness
Power, Product Lines, Modeling

Email addresses: mahsa.varshosaz@hh.se (Mahsa Varshosaz),
lars.luthmann@es.tu-darmstadt.de (Lars Luthmann),
malte.lochau@es.tu-darmstadt.de (Malte Lochau), mm789@le.ac.uk (Mohammad Reza
Mousavi)

Preprint submitted to Journal of Logical and Algebraic Methods in Programming March 15, 2019

1. Introduction

Different formal models have been proposed to capture the behavior of software
product lines (SPLs), e.g., for model-based testing or model checking. Examples of
such formal models include featured transition systems (FTSs) [1], modal transition
systems (MTSs) [2] and various extensions thereof [3, 4, 5, 6, 7, 8, 9, 10, 11]. The
expressive power of some of the aforementioned formalisms has been assessed in [12,
13, 14, 15]. The comparison of the expressiveness is established based on proving the
(non-)existence of an encoding, which is a transformation from one class of models to
the other by preserving the set of derivable model variants in terms of implementing
Labeled Transition Systems (LTSs). (The provided results cover models with infinite
state or finite behavior.) As a part of the results, it is shown that FTSs with finite
behavior are more expressive than plain MTSs with finite behavior (i.e., MTS without
any additional constructs to express variability constraints), essentially because those
plain MTSs cannot specify persistently exclusive behavior. However, the theory of
MTSs has been extensively studied [10] and based on that, various tools have been
developed to support their analysis [5, 16, 17, 18, 19, 20]. In addition, MTSs enjoy
many desirable formal properties such as inherent notions of semantic refinement being
compatible with parallel composition, thus enabling compositional reasoning. Hence,
it makes sense to further explore the connection between FTSs and MTSs and to come
up with semantic-preserving encoding of FTSs into MTSs.

We address this problem by providing a transition of one FTS into a set of multi-
ple MTSs. The MTSs considered in this work are congruent with the ones defined by
Larsen et al. in [2], which extend LTSs by a may-/must-modality of single transitions.
An alternative approach [21, 11, 13] is to encode FTSs into MTSs by annotating the
target MTSs with variability constraints when needed. Our encoding only splits the
structure of a given FTS into multiple mutually excluding MTSs when it is necessary,
i.e., when there is an exclusive choice among transitions in the FTS that cannot be cap-
tured by one single MTS. We prove that our translation allows for step-wise refinement,
i.e., it is consistent with the existing notions of refinement on MTSs and FTSs and it
is semantic preserving, i.e., it induces, up to bisimulation, similar sets of products for
the resulting set of MTSs as the original FTS. We also give an algorithm to calculate
the translated MTSs and prove it correct with respect to our definition. A number of
essential concerns are addressed in the definition of this encoding: firstly, the path con-
straints accumulated through different paths may turn out to be inconsistent with each
other and hence, such paths have to be split into different MTSs. Moreover, paths are
accumulated and potentially strengthened through loops and hence, loops may have to
be unrolled to cater for this. We further consider the issue of minimality of FTS encod-
ings into sets of MTSs and show that our proposed algorithm satisfies this notion for
structurally deterministic FTSs.

In addition, we present experimental evaluation results gained from applying a tool
implementation of our approach to a collection of case studies on FTSs [22] as well
as from a collection of synthetically generated, yet realistic FTS models. The goal
of this empirical study is to show scalability of our tool also to larger models and to
investigate efficiency and effectiveness of generating a minimal MTS encoding from
FTS input models. In particular, we investigate the computational effort for generating

2

Arcade Game Maker (g)

Services (v)

Pause (u) Exit (e) Save (s)

Rules (r)

Pong (p) Bowling (b)

mandatory
optional
requires
excludes

alternative

Figure 1: The Feature Model of the Arcade Game Maker Product Line

MTS models from a given FTS as well as the average number of MTSs as compared to
the overall number of variants.

The rest of this paper is organized as follows. In Section 2, we introduce a running
example, namely the Arcade Game Maker product line [23, 24], that is used to illus-
trate the concepts and notions. In Section 3, we formally introduce the basic concepts
regarding labeled transition systems (LTSs), MTSs, and FTSs. In Section 4, a valid en-
coding of FTSs into sets of MTSs is characterized in a declarative way and is shown to
be semantic preserving. In Section 5, an algorithmic view of the encoding is provided
and its correctness is proven. Moreover, a notion of minimality is proposed in the same
section and the outcome of the algorithm is shown to satisfy this notion for FTSs that
are structurally deterministic. In Section 6, we evaluate our algorithm on a number of
(real-world as well as synthetic) case studies. In Section 7, an overview of the literature
in this area is given and different pieces of the literature are related to the present work.
Finally, in Section 8, the paper is concluded and some avenues for future research are
discussed.

2. Running Example

In this section, we first introduce an illustrative example, a simple software product
line of an Arcade Game Maker (AGM), which will be used throughout this paper. The
AGM product line comprises two different games (rules), namely pong and bowling.
In addition, the AGM application enables the player to use different services such as
pausing and exiting a running game as well as saving the recent game.

A common notation for a compact representation of the set of features and the
relations between them are feature models, usually visualized in terms of feature di-
agrams [25]. A feature diagram for our AGM example is depicted in Figure 1. A
feature diagram is a tree-like structure in which each node represents a feature. Each
single feature is either mandatory, if it is included in all the products of the product
line in which its parent feature is included, or it is optional, otherwise. In addition, a
feature can have groups of sub-features of two different kinds. First, a set of sibling
features can be in an or-relation, which means that at least one of the features has
to be selected whenever the parent feature of that group is selected (not contained in
our example). Second, a set of sibling features can be in an xor-relation which means
that exactly one of the features has to be selected whenever the parent feature is se-
lected (alternative group in our example). Finally, a feature may be in a require- or

3

(mutual) exclusion-relation with another feature, represented by a (respectively, solid
and dashed) cross-tree edge. Concerning the feature model in Figure 1, the diagram
contains compound features for the configuration of rules and services. Features pong
and bowling have an xor-relationship, whereas the service features are all optional. In
addition, feature pong requires feature pause, whereas feature bowling excludes feature
pause. A valid configuration of a product line corresponds to a subset of features sat-
isfying all the constraints of the feature model. For example, the AGM feature model
in Figure 1 has 8 valid configurations.

3. Foundations

In this section, we explain the constructs and concepts used throughout this paper.
In particular, we consider two existing formalisms for product-line modeling namely,
MTSs and FTSs. Each abstract model belonging to one of these two classes of mod-
els comprises several concrete implementation variants in terms of labeled transition
systems (LTSs). The notion of LTS is defined as follows (cf. [26]).

Definition 1 (Labeled Transition System). A labeled transition system is a tuple (S,A,→
, sinit), where:

- S is a finite set of states,

- A is a finite set of actions,

- →⊆ S ×A× S is a (labeled) transition relation,

- sinit ∈ S is an initial state.

As an example, consider the LTS in Figure 2a depicting a configuration of the
AGM. A similar, yet slightly different LTS model can be given for each of the 7 other
valid product configurations of the AMG product line, each sharing certain common
behaviors and differing in variable behaviors.

An LTS-based formalism considered for expressing behavioral commonality and
variability in a product line are modal transition systems (MTSs), as shown in Fig-
ure 2b for our AGM example. In an MTS model, the set of transitions is subdivided
into subsets of must-transitions denoting mandatory (core) behavior to be included in
every configuration, and may-transitions denoting optional behaviors. Note that every
must-transition also requires an “underlying” may-transition as a must-transition al-
ways needs to be allowed as well. Hence, we call must-transitions with an underlying
may-transition mandatory transitions, whereas may-transitions with no corresponding
must-transition are called optional transitions. In figures, we use solid lines to denote
mandatory transitions and dashed lines to denote optional transitions.

(The MTSs that we consider in this work are complying with the original definition
given by Larsen et al. in [2]. Different extensions of MTSs have been provided e.g.,
MTSs with variability constraints [11] and parametric MTSs [27] that provide means
to explicitly relate features to the behavior similar to FTSs. However, these extensions
of MTSs are out of the scope of this preliminary work of MTS encodings of FTSs.)

An MTS may be formally defined as follows (cf. [2]).

4

init

pongbowling

pause

save

start_b

exit_b

pause_b

save_b

save

save_b

(a) LTS

init

pongbowling

pause

save

start_pexit_p

pause_psave_p

save_p

start_b

exit_b

pause_b

save_b

start_p

start_p

save

save_b

(b) MTS

Figure 2: LTS and MTS for the AGM Example

Definition 2 (Modal Transition System). A modal transition system is a 5-tuple (S,A,−→♦

,−→�, sinit) where:

- S is a finite set of states,

- A is a finite set of actions,

- −→♦⊆ S ×A× S is a may-transition relation,

- −→�⊆−→♦ is a must-transition relation,

- sinit ∈ S is an initial state.

Hence, those transitions being contained in the set of may-transitions but not in
the set of must-transitions express optional (or variable) behaviors of an SPL. Hence,
an MTS integrates a set of LTSs which can be obtained via modal refinement (i.e.,
every optional transition either becomes a mandatory transition, or it is removed from
the model). In this regard, an LTS may be considered as an MTS in which −→♦=−→�

holds.
In order to formally define the set of valid implementations of an MTS, we employ

the (modal) refinement relation for MTS, based on Larsen et al. [2], as follows.

Definition 3. Consider two MTSs, mts′ = (S,A,−→♦,−→�, sinit) and mts = (T,A,−→♦

,−→�, tinit). A binary relationR ⊆ S × T is a modal refinement relation if and only if
the following properties are satisfied.

1. ∀t,t′∈T,s∈S,a∈A
(
sRt ∧ t a−→� t′

)
=⇒ ∃s′∈S s

a−→� s′ ∧ s′Rt′, and

2. ∀s,s′∈S,t∈T,a∈A
(
sRt ∧ s a−→♦ s

′) =⇒ ∃t′∈T t
a−→♦ t

′ ∧ s′Rt′.

5

init

pongbowling

pause

save

p / start_pe / exit_p

u∧s / pause_ps / save_p

p∧s / save_p

b / start_b

e / exit_b

b∧u / pause_b

b∧s / save_b

p / start_p

p / start_p

s / save

s / save_b

Figure 3: The Featured Transition System of the AGM Product Line

The modal specification mts′ refines the modal specification mts, denoted mts′ � mts, if
there exists a modal refinement relationR such that sinitRtinit. We denote all the MTSs
that refine the MTS M by JMK.

For each of the eight valid product configurations of the AMG product line, a cor-
responding LTS model can be derived from the MTS example in Figure 2b via modal
refinement. For instance, the LTS in Figure 2a depicts a product where all optional
transitions related to bowling become mandatory and all other optional transitions are
removed. However, the converse statement does not hold as, in addition to those 8 valid
LTS variants, further LTS variants may be derived from the MTS in Figure 2b that do
not correspond to any valid configuration of the AGM product line. For instance, both
the behaviors for feature p and feature b may be either preserved or removed under
modal refinement which clearly contradicts the exclusive-or dependency among p and
b as stated in the feature model in Figure 1. This example illustrates the inherent in-
ability of MTS to express persistently exclusive choices among variable behaviors.

Another LTS-based formalism for expressing behavioral commonality and variabil-
ity in a product line are featured transition systems (FTSs), as shown in Figure 3 for
our AGM example. Similar to an LTS or MTS, an FTS consists of a set of states and a
set of transitions, labeled with actions. In addition to actions, transitions of an FTS are
further labeled with presence conditions over (Boolean) feature variables. The pres-
ence conditions determine those product configurations in which the transition in hand
is included. In this way, an FTS incorporates an explicit notion of behavioral variabil-
ity by virtually integrating a set of similar, yet well-distinguished LTS models into one
product-line model.

The transition labels in the FTS in Figure 3 for the AGM product line are of the
form “presence condition / action”. In particular, the atomic proposition in the presence
conditions refer to the (abbreviated) feature names in the feature model in Figure 1. If
residing in initial state init, the AGM either enters a new game bowling, or a new game
pong, respectively, whenever action start occurs. If the user triggers action pause, both
types of games may be suspended by entering a pause state. In this particular example,

6

a pong game may be re-entered again via action start, which is, however, not supported
in case of a bowling game. Instead, a bowling game may be saved during the game,
whereas a pong game has to be paused before it can be saved. In addition, both kinds
of games may be stopped by the exit action which leads the FTS back to the init state.
For instance, choosing features ¬u, e, s, ¬p, and b results in the LTS being depicted in
Figure 2a.

As described above, feature diagrams are frequently used for representing the set of
features of a product line and the relations between them. Alternatively, the configura-
tion constraints as (graphically) imposed in a feature diagram may be also represented
as propositional formula over features, represented as Boolean variables. By B(F), we
denote the set of propositional formulae over a set F of (Boolean) feature variables.
We now give the formal definition of FTS based on [1], as follows.

Definition 4 (Featured Transition System). A featured transition system is a 6-tuple
(S,A, F,→,Λ, pinit), where

- S is a finite set of states,

- A is a finite set of actions,

- F is a finite set of features,

- →⊆ S×B(F)×A×S is a transition relation satisfying the following condition:

∀S,a,S′,φ,φ′
(
(S, φ, a, S′) ∈→ ∧ (S, φ′, a, S′) ∈→

)
=⇒ φ = φ′,

- Λ ⊆ {λ : F → B} is a set of product configurations, and

- sinit ∈ S is an initial state.

In order to define the set of valid implementations of an FTS, we first give the
following auxiliary definition.

Definition 5. Considering a set of feature variables F and a set of product configu-
rations Λ; for a propositional formula e ∈ B(F), we say Sat(e), iff

∨
λ∈Λ λ ∧ e is

satisfiable.

Next, we define a product derivation relation [12], that is used for extracting the
set of valid implementations (or, LTS variants) of an FTS, as follows.

Definition 6. Given an FTS fts = (P, A, F,→,Λ), and LTS l = (S, A,→, sinit), and
a product λ ∈ Λ. A binary relation Rλ ⊆ P × S (parameterized by product config-
urations) are called product-derivation relations if and only if the following transfer
properties are satisfied.

1. ∀P,Q,a,s,φ
(
P Rλ s ∧ P

φ/a−−→ Q ∧ λ |= φ
)
⇒ ∃t · s

a−→ t ∧ QRλ t;

2. ∀P,a,s,t
(
P Rλ s ∧ s

a−→ t
)
⇒ ∃Q,φ · P

φ/a−−→ Q ∧ λ |= φ ∧QRλ t.

A state s ∈ S derives the product λ from an FTS-specification P ∈ P, denoted by
P `λ s, if there exists a product-derivation relationRλ such that P Rλ s.

7

We say that l is a valid implementation of fts , denoted by fts . l if and only if there
exists a product configuration λ ∈ Λ such that pinit `λ sinit holds. We denote all LTSs
being derivable from the FTS fts by JftsK.

Please note that Classen et al. in [1] provide a different “projection” operator for
deriving the individual product models from an FTS. Based on their definition, an FTS
is projected onto a product configuration, and as the result of projection, those transi-
tions of the FTS for which the corresponding feature expression satisfies the product
configuration are included in the product model whereas the other transitions are elim-
inated. This definition provides a syntactical description for deriving product models
while the product-derivation relation given in Definition 6 constitutes a semantical no-
tion of product-model derivation similar to modal refinement of MTSs. The sets of
LTSs derived from an FTS (here for finite behavior) using either of these definitions
are equal modulo bisimilarity (see Theorem 4 and its proof in Appendix B.). In this
work, we use Definition 6 due to its declarative nature; for example, it allows for im-
plementations that reduce the number of states while constructing the LTSs. It is also
more suitable for providing the foundation for our encoding of FTSs into MTSs and
more specifically for constructing the proofs to show that the encoding is semantic
preserving.

For each of the eight valid product configurations of the AMG product line, a corre-
sponding LTS model can be derived from the FTS model by deleting those transitions
whose presence conditions are not satisfied by the corresponding product configuration
(and by omitting the presence conditions of the remaining transitions).

It has been proven in recent literature [12], that FTSs with finite behavior are strictly
more expressive than MTSs with finite behavior. More precisely, the comparison of the
expressive power is based on the (non-)existence of a one-to-one encoding from one
class of models into the other. In particular, such an encoding should define a trans-
lation of one model into another model having equal (modulo bisimilarity) sets of im-
plementing LTSs. As illustrated by our example, there exist FTSs for which no single
MTS can induce the same set of LTS models as valid product-line configurations [12].
However, if we consider multiple MTS models to characterize sets of valid LTSs cor-
responding to an FTS, then every FTS is expressible in terms of (a set of) MTSs. A
general result about this relationship will be constructively proven in the remainder of
this paper.

As an alternative line of work, we refer to the extension of MTSs with feature
constraints [21, 13]; in this line of work, the authors provide a translation from FTSs
to MTSs by annotating the target MTSs with feature constraints when necessary.

4. From FTS to MTSs

The goal of this section is to define a semantic preserving translation, called an
encoding. We first set the scene by motivating the basic concepts used in our encoding
from an FTS to a set of MTSs. Subsequently, we define our encoding and prove its
correctness.

8

s0

s1 s2

f / a ¬f / b

(a)

s0

s1

s3s2 s4

f2 / a

f1∧f2 / b
f1 / c

f1∧¬f2 / d

(b)

s0

s1 s2

s3 s4

> / a > / b

f1 / c f1∧f2 / d

(c)

s0

s1

s2

f1 / a

f1∧f2 / b

f1∧¬f2 / c

f3 / d

(d)

s0 f / a

(e)

Figure 4: Four Example FTSs used to Motivate Various Concepts in the FTS Encoding

4.1. Encoding Concepts
As stated before, MTSs are inherently incapable of capturing mutually exclusive

behavior that is naturally expressible in FTSs. To illustrate this in terms of a minimal
example, consider the FTS in Figure 4a; there is an excludes dependency between the
two transitions emanating from initial state s0. Assume towards a contradiction that
an MTS could model the behavior of the same product line. Then, the initial state
of the purported MTS must include both an a-labeled and a b-labeled outgoing may-
transition (otherwise, it fails to produce one of the LTSs, either having an outgoing a-
or an outgoing b-labeled transition). However, in such a case, there is an LTS product of
the purported MTS that has both outgoing a- and b-labeled transitions from the initial
state, which is not a valid product of the FTS.

Hence, whenever the presence conditions of the emanating may- or must-transitions
are not consistent in the FTS (i.e., there are dependencies such as excludes or requires
relations between presence conditions of transitions in the FTS), we have to split the
MTS structure into maximal subsets of transitions without such conflicts, thus leading
to a set of MTSs for a given FTS.

For instance, for the FTS in Figure 4a, this leads to the two MTSs as depicted in
Figure 5a.

However, consistency of transitions in one MTS is not only dependent on their
presence conditions as stated in the FTS, but also on the path conditions accumulated
from the presence conditions of other transitions traversed on the different possible
paths reaching the source state of the transition under consideration.

For example, consider the FTS in Figure 4b: state s1 has three outgoing transitions
of which the presence conditions appear to be inconsistent at first sight. However,
state s1 is only reachable from the initial state through the a-labeled transition having

9

s0, >

s1, f

a
s0, >

s2, ¬f

b

(a)

s0, >

s1, f2

a

s2, f1∧f2 s3, f1∧f2

s1, f2

s0, >
a

b
c

(b)

s0, >

s1, > s2, >

s3, f1

a b

c

s1, >

s3, f1

s0, >

s2, >

s4, f1∧f2

a b

c d

(c)

s0, >

s1, f1

s2, f1∧f2 s1, f1∧f2∧f3

s2, f1∧f2∧f3

a

b
d

b d

s2, f1∧¬f2

s1, f1

s0, >

s1, f1∧¬f2∧f3

s2, f1∧¬f2∧f3

a

c
d

c d

(d)

s0, >

s0, f

a

a

(e)

Figure 5: MTS Encodings of the FTSs Depicted in Figure 4

presence condition f2. Hence, when arriving at state s1, the path condition f2 must hold
and hence, the outgoing d-labeled transition is not present. The remaining two outgoing
transitions are mutually dependent such that all derivable LTSs containing the b-labeled
transition with presence condition f1 ∧ f2 must also include the c-labeled transition.
Conversely, if the c-labeled transition is present in an LTS, then both features f1 and
f2 are present in the product configuration and hence the b-labeled transition must also
be included in the LTS. Hence, we require two MTSs to interpret the respective FTS,
which are shown in Figure 5b: one representing the behavior of products that include
feature f1 and the other representing the behavior of the remaining products.

To generalize, not only consistency of the path conditions of transitions leaving
the same state must hold as illustrated in the previous example, but rather consistency
of path conditions of all transitions in one MTS must hold. Figure 4c represents an
FTS in which there is a configuration dependency between the c-labeled and d-labeled
transitions. This dependency is similar to the one between the transitions in Figure 4b,
but the concerned transitions are now located on different paths. Hence, we again
require two MTSs to interpret the FTS, as shown in Figure 5c.

Finally, special care is required for handling loops in the state-transition graph of
FTS in the respective MTS encodings. Here, loops may have to be unrolled to a certain
depth in order to correctly encode the accumulated path constraints for the transitions

10

s0, > a

(a) mtsi

s0 s′0

a

s′′0

s′′′0

a

s′′′′0

s′′′′′0

s′′′′′′0

a

a

. . .

(b) Variants of mtsi

Figure 6: Example for the Necessity of Loop Unrolling

involved. For instance, consider the FTS depicted in Figure 4d: for reaching state s2,
the path condition f1 ∧ f2 or f1 ∧ ¬f2 must hold. When going from here back to state
s1, the path constraint is stricter now than when we visited s1 for reaching s2 for the
first time. This is reflected in the MTSs depicted in Figure 5d, where the loop has to
be unrolled once to distinguish the different path conditions. The intuition behind this
is that if the optional transition labeled with d is included in a variant derived from
the MTS on the left via refinement, then this action must always be enabled, again,
afterwards whenever reaching some state related to FTS state s2 in the same variant (as
enforced by the presence condition in corresponding FTS). This can be encoded into
MTSs only by unrolling the respective transition loop such that the first occurrence of
an action is attached to an optional transition, whereas all subsequent occurrence(s)
are attached to mandatory transitions. Figures 4e, 5e, and 6 provide another example,
where we assume feature f to be optional. Hence, the FTS in Figure 4e has exactly
two variants: one without any actions and a second one in which action a may be
performed arbitrarily often. These are also exactly the variants derivable from MTS
mtsc (cf. Figure 5e). Additionally, at a first glance, mtsi as depicted in Figure 6a seems
to be a smaller MTS (in the number of states and transitions), yet having the same
variants. However, in contrast to fts and mtsc, due to modal refinement, MTS mtsi
further comprises an infinite number of different variants, each permitting action a to
be performed at most k times, with k ∈ N, which is clearly not permitted by fts.

Given these basic cases, we now formally characterize MTS encodings of FTSs in
a declarative way. We therefore introduce the notion of context of an FTS to contain
those valid sets of MTSs having the same (union of) of sets of LTS implementations
as the given FTS. Please note that the context of an FTS is not necessarily unique, i.e.,
there may be multiple valid sets of MTSs which represent the same behavior as an FTS.

To define the notion of context for FTSs, we first need to specify the set of valid
products that a set of MTSs can specify. The states of MTS in the context of an FTS
consist of pairs of states of the respective FTS together with a propositional formula (up
to logical equivalence) denoting the path condition for reaching this state in the FTS.
Based on this additional information, we are able to define the set of product configu-
rations corresponding to the set of products implemented by an MTS by means of the
set of FTS implementations implying the resulting propositional formula. The overall
propositional formula for the whole MTS with respect to the given FTS is constructed
using a recursive function defined using a fixed point construction, named context, as
follows.

11

Starting from the initial state of the MTSs at hand, we assume that the set of out-
going transitions from the corresponding state; in the FTS; is partitioned into three
different sets of transitions, namely must-, may- and excluded-transitions. Consid-
ering must-transitions (i.e., transitions being present in all valid implementations of
the FTS), we build the conjunction of the path condition of the current state and the
resulting propositional formula for the target state of the transition (being computed
by recursively applying the context-function to that state). Since must transitions are
present in all considered valid products, the product configurations corresponding to
implemented products imply this conjunction. Instead, may-transitions (i.e., transi-
tions present in some but not all valid implementations of the FTS), are represented
by disjunction of the negated path condition of the current state the resulting proposi-
tional formula for the target state as described for the must-case. Finally, considering
excluded-transitions (i.e., transitions inconsistent with the included transitions of the
FTS), we build the conjunction of the negation of the presence conditions.

The MTS constraint given as the conjunction of the formulas constructed for all
three sets therefore characterizes the set of LTS subsumed by the current MTS such
that all product configurations implying this constraint correspond to products of the
FTS implemented by this MTS.

Definition 7 (MTS Constraint). Consider an FTS fts =(P, A, F,→,Λ, pinit), and an
MTS mts=(Q,A,−→♦,−→�, qinit), whereQ = P×B(F). We define the corresponding
MTS constraint as follows. We first define for each state (p, e) ∈ Q the following
notations:

• exc((p, e)) ={(p, f, a, p′) ∈→ | ∃(p,e)∈Q Sat(e ∧ f) ∧ ((p, e), a, (p′, e ∧
f)) /∈−→♦},

• must((p, e)) = {(p, a, f, p′) ∈→ | ∃((p, e), a, (p, e ∧ f)) ∈−→�},

• may((p, e)) = {(p, a, f, p′) ∈→ | ∃((p, e), a, (p, e ∧ f)) ∈−→♦} .

By const(qinit) we denote the MTS constraint for mts , where for each (p, e) ∈ Q,
const((p, e)), is the maximal fixed point (w.r.t. logical implication ordering) for the
following function:

const i((p, e)) =e ∧
∧

(p,a,f,p′)∈must((p,e))

(
const i−1((p′, e ∧ f))

)
∧

∧
(p,a,f,p′)∈may((p,e))

(
¬f ∨ (const i−1((p′, e ∧ f)))

)
∧

∧
(p,a,f,p′)∈exc((p,e))

¬f

where ∀(p,e)∈Q const0(p, e) = e. Furthermore, we say Λmts denotes the set of prod-
uct configurations corresponding to the products implementing mts , which is Λmts =
{λ ∈ Λ | λ =⇒ const(qinit)}.

12

As a property of the function const(), based on the following lemma we prove that
this function is monotone and hence always has a fixed point.

Lemma 1. Considering the definition of the function const(), given in Definition 7,
this function always has a maximal fixed point.

Proof. The proof is included in the appendix.

Next, we give the definition of a consistent MTS with respect to a given FTS.

Definition 8 (Consistent MTS). Given an FTS fts =(P, A, F,→,Λ, pinit), an MTS
mts=(Q,A,−→♦,−→�, qinit) is a consistent MTS with respect to fts , iff the following
properties hold:

1. Q ⊆ P× B(F) is a set of states s.t.:
∀p′∈P,e′∈B(F) (p′, e′) ∈ Q iff ∃(p,e)∈Q ∃(p,l,f,p′)∈→(e′ = e ∧ f).

Here, we only consider the set of states that are reachable from the initial state.

2. A is a set of actions.

3. qinit = (pinit ,
∨
λ∈Λ λ) ∈ Q is the initial state.

4. −→�⊆−→♦⊆ Q × A × Q, where −→� and −→♦ are maximal sets satisfying the
following properties.

(a) ∀((p,e),l,(p′,e′))∈−→♦
∃(p,f,l,p′)∈→ e′ = e ∧ f

(b) ∀(p,f,l,p′)∈→ ∀(p,e)∈Q ∀λ∈Λmts (λ |= e =⇒ λ |= f) ⇔ (p, e)
l−→

(p′, e ∧ f) ∈−→�

(c) Considering any subset of may-transitions T such that −→�⊆ T ⊆−→♦, it
holds that:

∃λ ∈ Λmts : λ |=
∧

((p0,e),l,(p′0,e∧f))∈T

f ∧ ¬

 ∧
((p1,e),l,(p′1,e∧g))/∈T

g


Furthermore, for each λ ∈ Λmts , a set of transitions T 6= ∅ with the
property stated above exists.

Given the definition of a consistent MTS with regard to an FTS, we define the set of
conditions that a set of MTSs must satisfy in order to be a valid part of the FTS context
of a given FTS.

Definition 9 (FTS Context). Given an FTS fts =(P, A, F,→,Λ, pinit), a set of MTSs
M =

⋃
1≤i≤nmtsi, where mtsi =(Qi, Ai,−→i

♦,−→i
�, q

i
init) is in the context of fts ,

denoted byM ∈ context(fts) iff all the MTSs inM are consistent according to Defi-
nition 8, and the following conditions hold.

13

1. Λ =
⋃

mts∈M Λmts

2. ∀(p,f,l,p′)∈→ ∃((p,e),l,(p′,e′))∈
⋃

1≤i≤n−→i
♦
e′ = e ∧ f

In the above definition, the first condition indicates that the union of all products
implementing at least one MTS in the considered set of MTSs must be equal to the set
of products of the FTS. The second condition indicates that each transition in the FTS
must be included in at least one MTS in the set of MTSs.

As an example, consider the MTSs mts and mts ′, respectively, on the left- and
right-side in Figure 5d. First, Λmts is computed as described above. Assume the set of
states in these MTSs are Q = {q0 = (s0,>), q1 = (s1, f1), q2 = (s2, f1 ∧ f2), q3 =
(s1, f1 ∧ f2 ∧ f3), q4 = (s2, f1 ∧ f2 ∧ f3)}. Then, in general we have:

const i(q0) = > ∧
(
¬(f1) ∨ (const i−1((s1, f1)))

)
Then, we calculate const i−1((s1, f1)):

const i−1((s1, f1)) = f1 ∧
(
const i−2((s2, f1 ∧ f2))

)
∧
(
¬(f1 ∧ ¬f2)

)
Next, we compute const i−2((s2, f1 ∧ f2)):

const i−2((s2, f1 ∧ f2)) =
(
f1 ∧ f2

)
∧
(
¬f3 ∨ const i−3((s1, f1 ∧ f2 ∧ f3))

)
Then, const i−3((s1, f1 ∧ f2 ∧ f3)) is computed:

const i−3((s1, f1∧f2∧f3)) =
(
f1∧f2∧f3

)
∧
(
const i−4((s2, f1∧f2∧f3))

)
∧¬(f1∧¬f2)

In the next step, const i−4((s2, f1 ∧ f2 ∧ f3)) is computed as:

const i−4((s2, f1 ∧ f2 ∧ f3) =
(
f1 ∧ f2 ∧ f3

)
∧
(
const i−5((s1, f1 ∧ f2 ∧ f3))

)
Hence, considering the calculations, in the first step we have:

const0(q0) = >, const0(q1) = f1, const0(q2) = f1 ∧ f2

const0(q3) = f1 ∧ f2 ∧ f3, const0(q4) = f1 ∧ f2 ∧ f3

We include a part of the next iterations that are relevant to obtaining the final results:

const1(q4) = f1 ∧ f2 ∧ f3 ∧
(
const0(q3)

)
= f1 ∧ f2 ∧ f3 = const2(q4)

const1(q3) = f1 ∧ f2 ∧ f3 ∧
(
const0(q4)

)
∧ ¬(f1 ∧ ¬f2) = f1 ∧ f2 ∧ f3

= const2(q3)

const2(q2) = f1 ∧ f2 ∧ (¬(f3) ∨ const1(q3)) = (f1 ∨ ¬f3) ∧ (f2 ∨ ¬f3) ∧ (f1 ∧ f2)

= const3(q2)

const3(q1) = f1 ∧
(
const2(q2)

)
∧ ¬(f1 ∧ ¬f2) = f1 ∧ (f1 ∨ ¬f3) ∧ (f2 ∨ ¬f3)∧

(f1 ∧ f2) ∧ (¬f1 ∨ f2) = const4(q1)

const4(q0) = > ∧ (¬f1 ∨ (const3(q1))) = (¬f1 ∨ f2) = const5(q0)

14

init

pong

init′

pong′

start_p

exit_p

start_pexit_p

(a)

init

bowling

init′

bowling′

start_b

exit_b

start_bexit_b

(b)

init

pong

pause

save

init′

pong′

pause′

save′

start_p

save_ppause_p

save_p

start_p

start_p

save

exit_p start_pexit_p

pause_psave_p

save_p

start_p

start_p

save

(c)

init bowling save init′ bowling′ save′
start_b

save_b

exit_b

start_b

exit_b

save_b

save savesave_b save_b

(d)

Figure 7: FTS of Figure 3 Translated into a Set of MTSs

Considering the fixed points in the above computations, it holds

Λmts = {¬f1 ∧ f2 ∧ f3,¬f1 ∧ ¬f2 ∧ f3,¬f1 ∧ f2 ∧ ¬f3,

¬f1 ∧ ¬f2 ∧ ¬f3, f1 ∧ f2 ∧ f3, f1 ∧ f2 ∧ ¬f3}.

By performing similar computations for mts ′, we can conclude from Definition 8 that
{mts,mts ′} is in the context of the FTS in Figure 4d. As another example, consider
Figure 7 to represent the MTSs in the context of the FTS in Figure 3. Note that we,
again, have to perform loop unrolling here in order to obtain the correct MTS encoding
as described before.

We next prove that, given a set of MTSs in the context of a given FTS according
to Definition 9, the union of the sets of products implemented by the MTSs in this set
is equal (up to bisimulation) to the set of products implemented by the FTS. In both
cases, the product implementations are represented as LTSs. To this end, we first define
the (set of) configuration vector(s) corresponding to an LTS implementing an MTS that
belongs to a set of MTSs in the context of the given FTS. This definition is then used in
the proof of Theorem 1. Intuitively, the construction of this set follows the same idea
as the one given in Definition 7.

Definition 10. Given an MTS mts =(Q,A,−→♦,−→�, qinit) from a set of MTSs in the
context of a given FTS fts =(P, A, F,→,Λ, pinit). For each LTS lts = (S,A,→, sinit)
being a valid implementation of mts , the (set of) corresponding configuration vector(s)

15

is defined as follows. Considering lts , there exists a class of relations, denoted by
R ⊆ 2S×Q, where each Ri ∈ R is a refinement relation (cf. Definition 3) that relates
states of lts to states of mts . We first define the following auxiliary sets:

impMust i = {(p, e) a−→� (p′, e′) | ∃s,s′∈S,a∈A · (s, a, s′) ∈→ ∧ sRi(p, e)∧
s′Ri(p′, e′)}

impMay i = {(p, e) a−→♦ (p′, e′) | ∃s,s′∈S,a∈A · (s, a, s′) ∈→ ∧ sRi(p, e)∧
s′Ri(p′, e′)}

impExci = {(p, f, a, p′) ∈→ |
(
∃((p, e), a, (p′, e ∧ f)) ∈−→♦ · (@s′ · (s, a, s′) ∈→ ∧

s′Ri(p′, e′)
)
∨
(
∃(p, e) ∈ Q · Sat(e ∧ f) ∧ ((p, e), a, (p′, e ∧ f)) /∈−→♦

)
}

Given a refinement relationRi ∈ R, the (set of) configuration vector(s) corresponding
to lts is defined as:

Λlts = {λ ∈ Λmts | λ =⇒ conf i(lts)},

where conf i(lts) is defined as:

conf i(lts) =
∧

(p,e)
a−→�(p′,e′)∈impMusti

e′ ∧
∧

(p,e)
a−→♦(p′,e′)∈impMayi

e′ ∧

∧
(p,f,a,p′)∈→∈impExci

¬f

Based on this definition, we are now able to prove the correctness of our encoding
from FTSs into MTSs.

In particular, we can reduce this problem to a mutual comparison of the sets of
LTSs corresponding to product implementations derivable from both representations.

Theorem 1. Given an FTS fts , the set of LTSs implementing fts is equal to the union
of sets of LTSs implementing each sets of MTSs being the context of fts , i.e.

∀M∈context(fts) JftsK =
⋃

mts∈M
JmtsK.

Proof. We divide the proof into two following obligations, one for each direction. First,
we prove that JftsK ⊆

⋃
mts∈MJmtsK holds. Given fts = (P, A, F,→,Λ, pinit), the

set of MTSsM ∈ context(fts) and an LTS lts = (S,A,→, sinit), s.t. lts ∈ JftsK.
We prove JftsK ⊆

⋃
mts∈MJmtsK by showing that

∃mts∈M lts ∈ JmtsK. (1)

To prove lts ∈ JmtsK, and assuming that mts = (Q,A,−→♦,−→�, qinit), based on
Definition 3, it suffices to show that a refinement relation such asRmts ⊆ Q×S exists
such that

16

1. (qinit , sinit) ∈ Rmts

2. ∀q∈Q,s,s′∈S,a∈A
(
qRmtss ∧ s

a−→ s′
)

=⇒ ∃q′∈Q q
a−→♦ q

′ ∧ q′Rmtss
′.

3. ∀q,q′∈Q,s∈S,a∈A
(
qRmtss ∧ q

a−→� q′
)

=⇒ ∃s′∈S s
a−→ s′ ∧ q′Rmtss

′.

We choose mts = (Q,A,−→♦,−→�, qinit) fromM such that λ ∈ Λmts , where λ is a
product configuration for which there existsRλ ⊆ P× S that satisfies:

i (pinit , sinit) ∈ Rλ

ii ∀p,p′∈P,a∈A,s∈S,f∈B(F)

(
p Rλ s ∧ p

f/a−−→ p′ ∧ λ |= f
)
⇒ ∃s′∈S · s

a−→
s′ ∧ p′ Rλ s′.

iii ∀p∈P,a∈A,s,s′∈S
(
p Rλ s ∧ s

a−→ s′
)
⇒ ∃p′∈P,f∈B(F) · p

f/a−−→ p′ ∧ λ |=
f ∧ p′ Rλ s′.

Given lts ∈ JftsK based on Definition 6 as defined above, a Rλ with properties
(i), (ii), and (iii) exists for some λ ∈ Λ. Furthermore, based on the first condition in
Definition 9, there exists mts ∈M such that λ ∈ Λmts .

GivenRλ with the above properties, we define a relationRmts as follows:

∀(p,e)∈Q,s∈S (p, e)Rmts s⇔ pRλ s ∧ λ |= e (2)

Next, we prove that Rmts satisfies property (1). As λ |=
∨
λ∈Λ λ and pinitRλsinit ,

based on the definition ofRmts , it holds that qinitRmtssinit . Hence, property (1) holds.
We further prove that Rmts satisfies property (2). Consider an arbitrary pair of

states ((p, e), s) ∈ Rmts . Based on property (iii) it holds that

(
pRλ s ∧ s

a−→ s′
)
⇒ ∃p′∈P,f∈B(F) · p

f/a−−→ p′ ∧ λ |= f ∧ p′ Rλ s′.

From λ ∈ Λmts and from Definition 7 we conclude that each transition p
f/a−−→ p′

on the right hand side of the above statement with λ |= f is translated into a may
transition mts emanating state (p, e) (cf. Lemma 2). Hence, property (2) holds.

Next, we prove that Rmts satisfies property (3). Consider an arbitrary pair of states
((p, e), s) ∈ Rmts and a must-transition (p, e)

a−→� (p, e′). Based on Definition 8, this

transition correspond to a transition p
f/a−−→ p′ in the fts such that e′ = e ∧ f . Hence,

from the respective definition of const , it follows that λ |= e and λ |= f . In addition,
based on the condition given in property (ii) and the definition ofRmts in Equation (2),
it holds that

∃s′∈Q s
a−→ s′ ∧ (p′, e′)Rmts s

′.

Thus, property (3) holds. Second, we prove
⋃

mts∈MJmtsK ⊆ JftsK. Given fts =
(P, A, F,→,Λ, pinit) and the set of MTSsM∈ context(fts). Consider mts=(Q,A,−→♦

,−→�, qinit) such that mts ∈ M, and an LTS lts = (S,A,→, sinit) such that lts ∈
JmtsK. In order to prove

⋃
mts∈MJmtsK ⊆ JftsK it suffices to show that

lts ∈ JftsK (3)

17

holds. Given the above definitions for fts and lts and the definition of product deriva-
tion for FTSs (cf. Definition 6), it is sufficient to show that for a product configuration
λ ∈ Λ a relationRλ ⊆ P× S exists such that the following holds:

1. (pinit , sinit) ∈ Rλ.

2. ∀p,p′∈P,a∈A,s∈S,ϕ∈B(F)

(
p Rλ s ∧ p

ϕ/a−−→ p′ ∧ λ |= ϕ
)
⇒ ∃s′∈S · s

a−→
s′ ∧ p′ Rλ s′.

3. ∀p∈P,a∈A,s,s′∈S
(
p Rλ s ∧ s

a−→ s′
)
⇒ ∃p′∈P,ϕ∈B(f) · p

ϕ/a−−→ p′ ∧ λ |=
ϕ ∧ p′ Rλ s′.

Given lts ∈ JmtsK and, based on Definition 10, there exists a set of refinement relations
such as R =

⋃
1≤i≤nRimts , where for each relation Rimts , the following properties

hold (see Definition 3).

i (qinit , sinit) ∈ Rimts

ii ∀q,q′∈Q,s∈S,a∈A
(
qRimtss ∧ q

a−→� q′
)

=⇒ ∃s′∈S s
a−→ s′ ∧ q′Rimtss

′.

iii ∀q∈Q,s,s′∈S,a∈A
(
qRimtss ∧ s

a−→ s′
)

=⇒ ∃q′∈Q q
a−→♦ q

′ ∧ q′Rimtss
′.

For λ ∈ Λlts and relationRimts ∈ R, we defineRiλ as follows.

sRiλ p↔ ∃(p, e) ∈ Q · sRimts (p, e) ∧ (λ =⇒ conf i(lts)) ∧ λ |= e (4)

First, we prove that Riλ satisfies property (1). Based on Definition 8, we have qinit =
(pinit ,

∨
λ∈Λ λ) and thus λ |=

∨
λ∈Λ. Given property (i) and the definition ofRiλ given

in Equation (4), it holds thatRiλ satisfies property (1).
Next, we prove thatRiλ satisfies property (2). Consider a pair of states (s, p) ∈ Riλ

and a transition p
f/a−−→ p′, where λ |= f . We can assume the following three cases.

• The transition is included as must-transition in mts . Based on property (ii), for
all such transitions there exists s a−→ s′ such that s′Rimts(p′, e ∧ f). According
to the definition of Riλ given in Equation (4), we have that λ |= e and as λ |= f
holds, it further holds that λ |= e ∧ f . Hence, considering λ ∈ Λlts , due to
Equation (4) it holds that s′Riλp′.

• The transition is included as a may-transition in mts . Hence, we have (p, e)
a−→♦

(p′, e ∧ f). Given lts ∈ JmtsK, due to property (iii) it holds that s a−→ s′ such
that s′Rimts(p′, e∧ f). Otherwise, according to Definition 10, ¬f would be part
of the conjunction included in the construction of conf i(lts), which results in
λ 6|= f . According to the definition of Riλ given in Equation (4), it holds that
λ |= e and, based on the assumption λ |= f , it follows that λ |= e ∧ f . Hence,
considering λ ∈ Λlts , due to Equation (4) it holds that s′Riλp

′.

• The transition excluded from mts . This case is not valid according to Lemma 2.

18

Based on the three above cases, we conclude that Riλ satisfies property (2). Finally, we
prove that Riλ satisfies property (3). We consider a pair of states (s, p) ∈ Riλ and a
transition s a−→ s′. Based on property (iii), there exists a transition (p, e)

a−→♦ (p′, e′)
in the mts such that s′ Rimts(p′, e′) holds. Based on the Definition 8, each transition

(p, e)
a−→♦ (p′, e′) results from encoding a transition p

f/a−−→ p′. Based on Equation (4),
it holds that λ =⇒ conf i(lts). Given the construction of conf i(lts) in Definition 10,
it holds that λ |= f . Considering that λ |= e holds, it can be concluded from Equation
(4) that s′Riλp′ holds. Hence,Riλ also satisfies property (3).

5. Generating Minimal MTS Encodings of FTSs

The MTS encoding of FTSs as defined in the previous section always permits, as
a trivial solution, to simply interpret a given FTS as a set of LTSs (i.e., MTSs with
−→♦=−→�) corresponding to the set of valid implementations of the FTS. This solution
may be considered as the maximal encoding.

In this section, we provide a constructive algorithm for computing the declarative
definition of context (Definition 9) and prove its correctness. Furthermore, we show
that using this algorithm, we not only generate valid, but also minimal (i.e., most suc-
cinct [12]) MTS encodings of a given FTS.

5.1. Generation of MTS Encodings

An operational characterization of generating an MTS encoding from a given FTS
as defined in a declarative manner in the previous section is given in Algorithm 1. The
algorithm receives as input an FTS fts and returns as output a setM of MTSs being an
MTS encoding of fts. We describe the two procedures MAIN (lines 1–7) and NEWMTS
(lines 8–45) in more detail in the following.

Procedure MAIN. The procedure MAIN repeatedly calls procedure NEWMTS for
generating further MTSs to be added to the result setM until every valid implemen-
tation of fts is finally covered by some LTS variant of at least one MTS in the set
M. First, result setM is initialized as empty set (line 2). Next, a presence condition
m ∈ B(F) is introduced (line 3). This so-called blocking clause is used throughout
the algorithm to represent the set of configurations which are not yet covered by some
MTS within the current result set M (i.e., initially all configurations λ ∈ Λ of fts,
cf. line 3). The main loop then adds further MTS into result set M until the set of
not-yet-covered configurations is empty (i.e., the blocking clause becomes unsatisfi-
able, cf. line 4). To this end, procedure NEWMTS is invoked with the current blocking
clause m and returns a further MTS mts to be added toM (line 6) together with a fea-
ture expression blockingClause defining the set of additional configurations covered by
the new MTS (line 5). Hence, the blocking clause m is updated by conjunction of the
negated blockingClause expression before starting the next iteration.

19

Algorithm 1 MTS Generation
Input: fts := (P, A, F,→,Λ, pinit)
Output: M := {(Qi, Ai,−→i

♦,−→
i
�, q

i
init)}

1: procedure MAIN
2: M := ∅
3: m :=

∨
λ∈Λ λ

4: while m do
5: (mts, blockingClause) := NEWMTS(m)
6: M =M∪ {mts}
7: m := m ∧ ¬blockingClause

8: procedure NEWMTS(featureExpression m)
9: ftsm := (P, A, F,→m,Λm, pminit), where→m:= ∅, Λm := {λ ∈ Λ | λ ` m} and pminit := pinit

10: mtsm := (P× B(F), A, ∅, ∅, (pminit,m))
11: →x:= ∅, DS := ∅, T := ∅, U := ∅
12: WS := {(pinit,m)}
13: while WS 6= ∅ do
14: q := (p, e) ∈ WS, WS := WS \ {q}
15: DS := DS ∪ {q}
16: for each (p, a, f, p′) ∈→ do // iterate over all outgoing transitions of FTS state p
17: →m:=→m ∪{(p, f, a, p′)}
18: −→♦:=−→♦ ∪{((p, e), a, (p′, e ∧ f))}
19: if ¬(

∧
{f |∃((p,e),a,(p′,e∧f))∈−→♦} f) ∧m // check if transition is incompatible with others

20: →x:=→x ∪{((p, e), a, (p′, e ∧ f))}
21: −→♦:=−→♦ \{((p, e), a, (p′, e ∧ f))}
22: else
23: T := UPDATETOPOREL(T ,mtsm)
24: U := UPDATEUNROLLEDOPTIONALLOOPS(U ,mtsm)
25: if ∃((p, e′), a, (p′, e′∧f)) ∈−→�: (((p, e′), a, (p′, e′∧f)), ((p, e), a, (p′, e∧f))) ∈ T ∧

¬(m⇒ f) // check for unnecessary unrolling of mandatory transitions
26: return NEWMTS(m ∧ f)

27: // check if presence condition is implied by other presence conditions and/or initial condition:
28: if (∃((p′′, e′′), a′′, (p′′′, e′′ ∧ f ′′)) ∈−→♦: f ′′ ∧ consti(pminit,m)⇒ f)
29: −→�:=−→� ∪{((p, e), a, (p′, e ∧ f))}
30: if ((p, e), a, (p′, e ∧ f)) ∈ U // check for unnecessary unrolling
31: return NEWMTS(m ∧ f)

32: for each s ∈ P(−→♦ \ −→�) do // check combinations of optional transitions
33: if ¬((

∧
{f |∃((p,e),a,(p′,e∧f))∈s} ¬f) ∧ (

∧
{f |∃((p,e),a,(p′,e∧f))∈(−→♦\−→�)\s} f))

34: −→�:=−→� ∪{((p, e), a, (p′, e ∧ f)) := PICKELEMENT(s)}
35: if ((p, e), a, (p′, e ∧ f)) ∈ U // check for unnecessary unrolling
36: return NEWMTS(m ∧ f)

37: break
38: // check if transition is dependent on other transitions:
39: while (∃((p, e), a, (p′, e ∧ f)) ∈ −→♦\ −→�:

((∃((p′′, e′′), a′′, (p′′′, e′′ ∧ f ′′)) ∈ −→♦ \
{t | t ∈ −→♦ ∧ (t, ((p, e), a, (p′, e ∧ f))) ∈ T } :
(f ′′ ∧ consti(pminit,m))⇒ f))) do

40: −→�:=−→� ∪{((p, e), a, (p′, e ∧ f))}
41: if ((p, e), a, (p′, e ∧ f)) ∈ U // check for unnecessary unrolling
42: return NEWMTS(m ∧ f)

43: if @(p′, e′′) ∈ DS
44: WS := WS ∪ {(p′, e ∧ f)}
45: return (mtsm, consti(pinit,m))

20

Procedure NEWMTS. The procedure NEWMTS constructs the next MTS mtsm from
FTS fts with respect to the current blocking clause m by starting with an empty ftsm
and by incrementally traversing (and potentially adding) all transitions of fts into ftsm
being reachable from the initial state. Each traversed transition either becomes a may-
transition, a must-transition or an excluded transition in mtsm, depending on the pres-
ence conditions of the previously added transitions. To this end, a call to the helper-
function consti returns the MTS constraint denoting the maximal fixed point (cf. Defi-
nition 7) with respect to the current (intermediate) models mtsm and ftsm.

First, ftsm is initialized without any transitions and the set of configurations being
restricted by the blocking clause m (line 9). Similarly, mtsm is also initialized with no
transitions (line 10). Furthermore, additional temporary data structures are initialized,
namely a set→x to store those transitions from fts being excluded from mtsm and a set
DS (done-set) to store those states of mtsm already visited during the traversal (line 11).
Moreover, we utilize the relation T ⊆−→♦ × −→♦ containing those pairs of transitions
of an MTS being in a topological order (i.e., (t, t′) ∈ T either iff transition t always
precedes transition t′ on every path leading from the initial state to the first occurrence
of t′, or t = t′ holds). The worst-case complexity of computing T is quadratic in the
number of transitions. In addition, we further initialize a set U ⊆−→♦ for memorizing
those transitions from the FTS being added as unrolled (optional) transition into the
MTS under construction as described in Section 4. This set is used to check whether
such previously performed unrollings may become obsolete in subsequent steps of the
MTS construction due to dependencies among presence conditions of FTS transitions
involved (see below for details).

In addition, the set WS (working-set) is used to store those (still-to-be-processed)
states of mtsm that are directly reachable via previously added states in mtsm, either
by optional or mandatory transitions. This set initially contains the initial state of fts,
being restricted by m (line 12). The main iteration (line 13) then proceeds as long as
the working-set WS contains further states, by picking-and-removing an arbitrary next
state q = (p, e) from WS (line 14) and by adding component q (i.e., the respective state
in fts) into the done-set DS.

Next, we iterate over the set of all outgoing transitions of state q in fts (line 16) and
add them to ftsm (line 17). We first try to add those transitions as a may-transitions
into mtsm (line 18). Here, (p′, e ∧ f) denotes an MTS state in which the presence
condition e ∧ f holds (i.e., if there already exists a state (p′, e′) in the MTS with e′

being equivalent to e ∧ f , the target state of the newly added transition is that existing
state). In the next step, we check whether adding the currently considered transition of
the FTS would lead to an inconsistent MTS model (line 19). This is done by checking
compatibility of the conjunction of all presence conditions of transitions from fts al-
ready added as may-transitions into mtsm in previous steps including the current one.
In case of non-satisfiability, the transition is instead added to the exclude-set (line 20)
and removed from the set of may-transitions of mtsm (but it remains in the set of tran-
sitions of ftsm in order to mark it as already processed and explicitly excluded). In case
the condition in line 19 is not satisfied (i.e., the new transition can be added to mtsm),
we incrementally update relation T (line 23) and set U (line 24) of mtsm by taking the
newly added transition into account.

Furthermore, we have to prevent unnecessary loop unrollings which may occur in

21

two different possible ways throughout the construction steps performed by the algo-
rithm up to this point.

The first case occurs if an FTS transition added as mandatory transition into the
MTS in a previous step (due to dependencies of its presence conditions to those other
transitions) is additionally added as unrolled transition in a subsequent step. For in-
stance, this unrolling may happen if the previously added mandatory transition is fol-
lowed by an optional transition being located within the same loop (including that tran-
sition itself). As adding the optional transition may result in an updated path condition
not being equivalent to the path condition holding at the beginning of the loop, the loop
will be unrolled in the MTS. However, to handle those cases, we have to distinguish
between transitions being (correctly) mandatory solely due to their presence condition
and transitions (incorrectly) becoming mandatory due to dependencies between their
presence conditions to those of other mandatory transitions thus potentially resulting in
unnecessary unrollings as described above. In order to avoid the latter case, we check
for each newly added transition in the MTS if the corresponding FTS transition has
already been inserted into the MTS in a previous step (as a mandatory transition) thus
encountering a case of loop unrolling (cf. line 25). If this is the case, we restart the
current call of procedure NEWMTS (cf. line 26) with an adapted initial condition such
that the (falsely) unrolled transition immediately becomes mandatory. To avoid infinite
recursion in case of correctly unrolled mandatory transitions, we further have to check
if its presence condition is already implied by the initial condition before restarting
(cf. second part of line 25).

The second case occurs if an FTS transition added as unrolled optional transition
into the MTS in a previous step later becomes mandatory due to dependencies of its
presence conditions to those of other transitions added in subsequent steps. Hence,
whenever a transition becomes mandatory (lines 29, 34 and 40), we have to check
whether this transition is part of an unrolled loop in the MTS (lines 30, 35 and 41). If
this is the case, we also restart NEWMTS (lines 31, 36 and 42), again, by additionally
conjuncting the presence condition of the respective transition to the initial condition
(thus making the transition to an a-priori mandatory transition). Hence, the loop now
only consists of mandatory transitions and is therefore not unrolled anymore as the
path condition holding after the loop is equivalent to the path condition already hold-
ing at the beginning of the loop. Figure 8 provides an example for the necessity of this
restart (where all features are assumed optional). Here, state s0 of the FTS depicted in
Figure 8a has a self-loop transition which will be unrolled as feature f is optional. As
a result, all following transitions will be duplicated, too. For instance, mtsi (cf. Fig-
ure 8b) illustrates an intermediate result where the transition labeled with a is unrolled
such that the transition labeled with b is duplicated and therefore becomes mandatory.
Note that the first transition labeled a is optional such that whenever a is included in
an MTS variant, it may be performed arbitrarily often afterwards (as induced by the
FTS). When proceeding the constructions in Algorithm 1, we will reach the transition
labeled with d at some point. As this transition has the same presence condition as
the transition labeled with a, both transitions will then become mandatory as there are
only variants permitted having either both a and d included or none of them. Hence,
the previously unrolled optional transition labeled with a becomes mandatory and we
restart NEWMTS with the refined feature conditionm = >∧f . As a result, the loop of

22

s0 s1

s3

s2

s4

f′ / b

f′
′ / c

f / d

f′′′ / e

f / a

(a) fts

s0, >

s′0, f

s1, f’

s′1, f∧f’

· · ·
· · ·a

b

b
a

(b) Intermediate Result mtsi

s0, >

s′0, f

s1, f’

s′1, f∧f’

s2, f∧f’

· · ·
· · ·

· · ·

a

b

b

d

a

(c) Intermediate Result mts′i

Figure 8: Example for the Necessity of Restarting NEWMTS

s0

s1

s3s2 s4

f2 / a

f1∧f2 / b
f1 / c

f1∧¬f2 / d

(a) fts

s2, f1∧f2 s3, f1∧f2

s1, f2

s0, >
a

b
c

(b) mts1

s0, >

s1, f2

a

(c) mts2

Figure 9: Example for Algorithm 1

the initial state is not unrolled anymore (as >∧ f is obviously equivalent to >∧ f ∧ f)
and therefore no transitions will be duplicated. As a consequence, the transition labeled
with b (amongst others) also remains optional. In this way, we only restart NEWMTS
if we encounter cases of (unnecessarily) unrolled transitions (e.g., the transition with
label a), but not in case of (necessarily) duplicated transitions due to (necessary) un-
rollings.

Furthermore, we check whether the presence condition of the newly added transi-
tion is implied by either the presence condition of some other FTS transition already
added to mtsm or by the current MTS constraint of mtsm (line 28). If one of these
two cases holds, then the newly added transition has to become mandatory (line 29).
Figure 9 provides an example for this issue (note that Example 1 on page 24 provides
a full description of applying Algorithm 1 to this example FTS). While generating the
MTS in Figure 9b, we have an intermediate step where the transitions labeled with
actions a and c are optional and the transition labeled with action b is mandatory. As
a consequence, the transition labeled with action c has to become mandatory, too, as
the presence condition of the respective FTS transition labeled with action c (cf. Fig-
ure 9a) is implied by the presence condition of the FTS transition labeled with action b.
Hence, every variant containing the transition labeled with action b must also contain
the transition labeled with action c.

In addition, we have to check whether an optional transition has to become manda-
tory if this is implied by a particular combination of other optional transitions (lines 32
to 37). For this, we consider each subset of optional transitions (line 32, where P de-
notes power set) in ascending order, starting with the smallest sets. First, we conjugate
the negated presence conditions of all transitions being in s, and then conjugate the

23

s0

s2s1 s3

f1 / a
f2 / b

¬f3 / c

(a) fts

s0, >

s2, f2s1, f1 s3, ¬f3

a
b

c

(b) mts1

s0, >

s2, f2 s3, ¬f3

b
c

(c) mts2

s0, >

(d) mts3

Figure 10: Example for Lines 32 to 34 of Algorithm 1 with Feature Model m = f1 ∨ f2 ∨ f3

presence conditions of all optional transitions not being in s (line 33) and check the
resulting formula for satisfiability. If this check fails, then the corresponding combina-
tion of optional transitions is not permitted to not include those being in s in a valid
variant while including those being in s. We then pick one element from s to become
mandatory (line 34) and are then able to immediately terminate the check due to the
ascending traversal (line 37).

Figure 10 (with feature model m = f1 ∨ f2 ∨ f3) provides an example for the
checks in lines 32 to 37. Here, a variant only containing a transition labeled with
action c is the only variant not permitted by the FTS. Without the check in lines 32
to 37, Algorithm 1 would produce mts1 with all transitions being optional. However,
by adding this check, subset s containing the transitions labeled with actions a and b
will yield the unsatisfiable formula ¬f1∧¬f2∧¬f3∧(f1∨f2∨f3). As a result, we will
pick either the transitions labeled with a or with b and make it mandatory thus leading
to a correct solution. The same holds for mts2 which is generated next. Without lines 32
to 37, both transitions would be optional, thus again allowing an (invalid) variant only
containing a transition labeled with action c.

In the next step, we have to check whether the update of mtsm (i.e., either adding
a transition from fts as optional or mandatory transition or excluding it from mtsm)
potentially causes existing optional transitions in mtsm to become mandatory. For
this, we have to check for each optional transition if the presence condition of the
corresponding transition from ftsm is implied by (combinations of) presence conditions
of other transitions added to mtsm (which is, again, done by invoking consti on the
current model in line 39). In this case, the set of must-transitions of mtsm is updated,
accordingly (line 40). However, for obtaining the minimal solution, this only holds
for transitions not topologically preceding the transition under consideration. In those
cases, reachability of the current transition already depends on the presence/absence of
the topologically preceding transition. Figure 9 gives an example for this exception.
Here, the transition labeled a of the MTS in Figure 9b will not become mandatory
although the respective presence condition of the FTS (cf. Figure 9a) is implied by the
presence condition of b.

Finally, we have to check whether the target state of the currently processed tran-
sition is already subsumed by some state in the done-set DS (line 43). Otherwise, we
add the state into the working-set WS (line 44).

If the working-set contains no further states, mtsm together with the corresponding
MTS constraint is finally returned to procedure MAIN.

Example 1. Figure 9 provides an example for a complete application of Algorithm 1.

24

Here, Figure 9a depicts the fts and Figures 9b and 9c show the resulting set of MTSs.
After initialization, it holds that m = > as both f1 and f2 are optional features being
independent from each other, thus invoking NEWMTS(>). This procedure starts with
q = (s0,>) as initial state in the working set WS. State s0 has one outgoing transition
in fts labeled a, which is therefore added to mts1 as a may-transition as well as to ftsm
(lines 16 to 18), whereas the set of excluded transitions of mts1 remains empty (lines 19
to 21). As this newly added may-transition does not (yet) depend on any other transition
in mts1 or on blocking clausem, it does not become mandatory (lines 39 and 40). Next,
the target state (s1, f2) of the transition is added to the working set WS (line 43 and 44).
As state q = (s0,>) does not have further outgoing transitions (line 16) and WS is not
empty (line 13), the next iteration of the while-loop starts, for instance, by picking the
transition labeled with b (line 16). Here, lines 17 to 21 yield similar results as before.
Additionally, the while-loop in line 39 does not add a new must-transition although the
presence condition f2 of the previously added transition labeled a is implied by the
presence condition f1 ∧ f2 of the newly added transition labeled b. This is due to the
transitions of a and b being in the topological relation, i.e., every path leading to b
also visits a. Therefore, a may remain optional. When the transition labeled c is added
to mts1, it becomes mandatory as the presence condition of b implies the presence
condition of c (line 28 to 29). Furthermore, b becomes mandatory as there is no variant
with b but without a (lines 32 to 37). A variant with a and c (as c is mandatory) has
features f1 and f2 selected, and hence, c must be included in this variant as well. As a
result, the new fixed point is now given as const(s0,>) = ¬f2 ∨ (f1 ∧ f2). In contrast,
the transition labeled d has to be excluded from mts1 as its presence condition is not
compatible with those of the transitions labeled a and b (line 19). The new fixed point
is therefore given as

const(s0,>) = (¬f2 ∨ (f1 ∧ f2)) ∧ ¬(f1 ∧ ¬f2)

which is equivalent to ¬f2 ∨ (f1 ∧ f2). This leads to termination of NEWMTS with
mts1 and the respective fixed point being returned (line 45). The next invocation
NEWMTS(>∧¬(¬f2∨(f1∧f2))) (being equivalent to ¬f1∧f2) then returns mts2 as
shown in Figure 9c thus causing the updated blocking clausem to become unsatisfiable
and procedure MAIN to terminate withM = {mts1,mts2}.

We now prove correctness of Algorithm 1 with respect to the definition of MTS
encoding of FTS (cf. Definition 8).

Theorem 2. LetM be the MTS encoding of an FTS fts as generated by Algorithm 1.
Then it holds thatM∈ context(fts).

Proof. We prove Theorem 2 by showing that (1) ∀mts ∈ M : (∀lts � mts : fts . lts)
and (2) ∀lts · fts . lts : (∃mts ∈M : lts � mts).

1. Proof by induction. Initially, mtsm contains no transitions. In each iteration
of procedure NEWMTS, the sets −→♦, −→� and →x correspond to may, must
and exc of Definition 7 for the current models mtsm and ftsm. All those sets
are initially empty. In every iteration, procedure NEWMTS checks for every
transition of fts if its presence condition is compatible with the current model

25

mtsm to avoid LTS variants with mutual excluding combinations of transitions.
Additionally, adding transitions of fts as new may-transitions into mtsm results
in an increased number of derivable LTS variants. Therefore, we have to ensure
that (initially) optional transitions become mandatory if there are new variants
derivable mtsm which are not included in fts. In particular, we have to consider
two cases where a newly added optional transition t causes mtsm to have more
variants than fts.

(a) The presence condition of t in fts is implied by an aggregated model condi-
tion resulting from other transitions processed (either added as optional/mandatory
or excluded) in previous iterations of constructing mtsm. Hence, such log-
ical dependencies between presence conditions of transitions of fts must
be reflected by setting t mandatory in mtsm. As those cases might arise
whenever a transition modality of the current mtsm is adapted (namely be-
fore and after the second case), we have to perform a corresponding check
twice (see lines 28–29 as well as lines 39–40).

(b) After adding t as optional transition to mtsm, the set of all optional transi-
tions in mtsm including t added in previous iterations yields variants which
are not included in fts (lines 32–33). Hence, t has to be set to mandatory
to exclude those variants from mtsm. Hence, t has to become mandatory in
mtsm to ensure the restrictions on LTS variants as imposed in fts.

Procedure NEWMTS terminates after having processed every transition of fts
this way. Hence, it holds that ftsm = fts and thus ∀lts � mtsm : fts . lts.

2. Proof by induction. Initially,M contains no transitions MTS. In each iteration of
procedure MAIN, the blocking clausem specifies exactly those configurations of
fts not yet being covered by some LTS variant of an MTS in setM. The blocking
clause is initialized with the set of all valid configurations of fts and is refined
after every invocation (including recursive restarts) of NewMTS by excluding
those configuration being covered by the newly generated mts (line 7). Hence,
procedure MAIN terminates only after heaving covered every LTS variant of fts
by at least one MTS inM and thus ∀lts · fts . lts : (∃mts ∈M : lts � mts).

We next explore the notion of minimality of MTS encodings of FTS in more detail
and investigate whether Algorithm 1 is able to generate a minimal MTS encoding.

5.2. Minimality of MTS Encodings

As already mentioned before, there always exists a trivial encodingM∈ context(fts)
in which every MTS mts ∈M constitutes an LTS such that |M| = |Λ|. In some cases,
however, this maximal solution is also the only valid solution (e.g., example in Fig-
ure 4a). Conversely, we intuitively expect a minimal solution M ∈ context(fts) to
consist of a minimum number of MTSs. For instance, assume the transitions of the
FTS in Figure 4a to be annotated with two different features f and f ′, both being op-
tional and independent. A minimal solution would consist of one MTS having both
transitions as optional transitions. Now, assume both transitions to be annotated with

26

the same mandatory feature f . Then, a minimal solution would, again, consist of one
MTS having both transitions, but now as mandatory transitions (i.e., being an LTS).

In general, it is not obvious how to characterize an MTS encoding as minimal.
Intuitively, we require for an MTS encoding to be minimal that each MTS M ∈
context(fts) contains as many optional transitions as possible as every optional tran-
sition doubles the number of FTS implementations subsumed by a single MTS (i.e.,
an MTS m ∈ M with k may-transitions subsumes 2k LTS variants). However, sim-
ply counting the number of optional transitions may be misleading as the set of LTS
variants derivable from two different MTS may be overlapping or even be similar. For
instance, when removing the optional transitions from the MTS in Figure 5d both re-
sult in the same LTS. Additionally, we should require each pair of MTSs of an MTS
encoding to not contain any mutually bisimilar variants.

Another, more technical, issue arises from the possible unrolling of loops: even
if the number of MTSs in an MTS interpretation M ∈ context(fts) is minimal, the
number of transitions in MTS mts ∈ M may be arbitrarily increased as compared
to the FTS due to (redundant, yet valid) unrollings of loops. The FTS in Figure 4d
and the corresponding MTS in Figure 5d provide an example. Here, the FTS contains
three states and several loops between the states s1 and s2, whereas the corresponding
MTSs both contain five states due to the adaptions of the path conditions throughout
the construction steps performed by the algorithm as described above.

To summarize, minimality of MTS encodings may be characterized by lifting the
notion of modal refinement to sets of MTS as follows.

Definition 11 (Minimal MTS Encoding). LetM,M′ be sets of MTSs. ByM′ v M
we denote that

∀mts′ ∈M′ : ∃mts ∈M : mts′ � mts

holds. An MTS encoding M ∈ context(fts) is minimal for FTS fts iff it is a greatest
element of set context(fts) with respect to v and it holds that

∀mts,mts′ ∈M : (mts � mts′ ⇒ mts = mts′).

Note, that M ∈ context(fts) is minimal for fts iff it is a greatest element of
context(fts) thus subsuming a maximum number of (more refined) MTSs and there-
fore also LTS variants. Furthermore, the first condition of Definition 11 does not imply
the second one as the first condition does not forbid having MTSs with bisimilar vari-
ants inM (orM′). Additionally, v is a preorder on the set context(fts) as a minimal
MTS encoding of an FTS fts is not necessarily unique. Furthermore, for Algorithm 1 to
produce minimal MTS encodings, we have to impose a restriction on the correspond-
ing input FTS models, referred to as structurally deterministic FTS. In particular, we
call an FTS is structurally deterministic if there exists no state having more than one
outgoing transitions labeled with the same action, regardless of the (in-)compatibility
of their presence conditions.

Definition 12 (Structurally Deterministic FTS). FTS (S,A, F,→,Λ, pinit) is struc-
turally deterministic if ∀t = (p, f, a, p′) ∈→: (∀t′ = (p, f ′, a′, p′′) ∈→: t 6= t′ ⇒ a 6=
a′).

27

s0

s1 s2

s3

f / a ¬f / a

f′ / b

(a) fts

s0, >

s1, f

s3, f∧f′

a

b

(b) mts1

s0, >

s2, ¬f

s2

a

(c) mts2

Figure 11: Example for the Problem of Structurally Non-deterministic FTSs for Algorithm 1

Figure 11 provides an example (with all features being optional) for a structurally
non-deterministic FTS to illustrate the problem such an FTS causes to Algorithm 1. In
particular, the FTS (cf. Figure 11a) is structurally non-deterministic as state s0 has two
outgoing transitions being labeled with a (although having mutually excluding pres-
ence conditions). As a result, we obtain two MTSs mts1 and mts2 (cf. Figures 11b
and 11c) each with a mandatory transition similarly labeled a which, however, corre-
spond to different FTS transitions with mutually excluding presence conditions. As a
consequence, it holds that mts2 � mts1 and hence the result is not minimal according
to Definition 11. To avoid those cases, we require structurally deterministic FTSs for
Algorithm 1 to derive a minimal MTS encoding. However, as a future work we plan to
extend Algorithm 1 with a post-processing step to check for each generated MTS if it is
already covered by another MTS (between lines 5 and 6). We omitted this (presumably
very expensive) check in the current version of our tool as it does no occur in any of
our subject systems.

Next, we prove that Algorithm 1 derives a minimal MTS encoding for any given
structurally deterministic FTS.

Theorem 3. LetM∈ context(fts) be the MTS encoding of a structurally deterministic
FTS fts generated by Algorithm 1. ThenM is the minimal MTS encoding of FTS fts.

Proof. We prove Theorem 3 by showing that (1) ∀mi ∈ M :−→i
� is minimal, and

(2) ∀mi,mj ∈M : ¬(mi � mj ∨mj � mi), both by contradiction.

1. Let us assume that there exists an mi ∈M such that −→i
� is not minimal. In this

case, there must be a step in Algorithm 1 where an optional transition unneces-
sarily becomes mandatory. Initially, every transition from fts which has not to be
excluded from mi is added as an optional transition. Optional transitions may
become mandatory due to two reasons as already shown for Theorem 2.

(a) The presence condition of a newly added optional transition t is implied
by the presence condition of another transition or by the combination of
presence conditions of a set of other transitions (lines 28–29). Hence, t
must be mandatory as t must be included in every variant in which these
other transition(s) are also included.

(b) Due to the presence condition of the newly added transition t, a combi-
nations of optional transitions (including t) yields an invalid variant (lines

28

32–33). Hence, t must be mandatory as otherwise the set of generated
MTSs contains more variants than the FTS.

In addition, we have to consider those cases in which optional transitions might
(unnecessarily) become mandatory due to loop unrolling. However, in these
cases, procedure NEWMTS is restarted with a refined blocking clause to avoid
unnecessary unrollings (lines 25–26, 30–31, 35–36, and 41–42). As a conse-
quence, Algorithm 1 results in −→i

� being minimal.

2. Assume that there exists mi,mj ∈ M with mi � mj . Hence, there exists at
least one variant v of the product line with v � mi and v � mj . This is only
possible if the FTS is structurally non-deterministic as this would require two
bisimilar variants with different feature configurations. For a structurally deter-
ministic FTS, this is avoided by imposing, and iteratively refining, the blocking
clause in each new call of procedure NEWMTS (lines 5–7). In this way, any
MTS having at least one variant already covered by some previously generated
MTS will no more be (re-)generated in any subsequent run. Hence, we have
mi � mj .

From (1) and (2) it follows thatM is minimal for structurally deterministic FTSs ac-
cording to Definition 11.

6. Implementation and Evaluation

In this section, we present experimental evaluation results gained from applying our
approach to a collection of FTS models. To this end, we have implemented Algorithm 1
in a tool which allows us to generate a minimal MTS encoding from a given input FTS
model as described in the previous section.

6.1. Experimental Setup
The first goal of our evaluation is to investigate general applicability of the algo-

rithm to differing input FTS models. In addition, we are interested in the computational
effort for generating a minimal set of MTSs from an FTS as well as the average number
of MTSs required for a minimal MTS encoding of an FTS as compared to the maxi-
mum number of MTSs (i.e., the number of LTS variants derivable from the FTS). In
particular, we consider the following research questions.

Research Questions.

• RQ1 (Efficiency). What is the computational effort for generating a minimal set
of MTSs for a given FTS, as compared to the maximal set?

• RQ2 (Effectiveness). What is the average number of MTSs in a minimal set for
a given FTS, as compared to the maximal set?

To address both questions, we applied our tool to a collection of subject systems com-
prising both case studies from the research community on FTSs as well as synthetically
generated FTS models.

29

Table 1: Subject Systems from this paper (1–5) and Real-World Subject Systems [22] (6–14)

Subjec
t Syst

em

Fea
tur

es

Vari
an

ts

Stat
es

Tran
sit

ion
s

Ann
ota

ted
Tran

sit
ion

s

Desc
rip

tio
n

1: Figure 4a 1 2 3 2 2 Figure 4a of this paper
2: Figure 4b 2 3 5 4 4 Figure 4b of this paper
3: Figure 4c 2 3 5 4 2 Figure 4c of this paper
4: Figure 4d 3 6 3 4 4 Figure 4d of this paper
5: Arcade Game Maker 8 8 5 13 13 Running example of this paper

6: Simple Traffic Light 1 1 4 4 0 Simple traffic light loop
7: Complex Traffic Light 1 1 4 5 0 Variant of the simple traffic light loop

8: Hot Drink Machine 9 28 14 21 17
Coffee/tea machine with multiple
currencies

9: Sensor Subsystem 7 2 3 15 6 Sensor subsystem of a car wiper system
10: Wiper Subsystem 7 2 5 14 6 Wiper subsystem of a car wiper system

11: Modified Wiper Subsystem 8 4 5 14 7
Wiper subsystem of a car wiper system
with permanent wiping

12: Mine Pump Controller 4 4 25 36 35 Controller of a water pumping system
13: Mine Pump System States 1 1 5 18 0 Supplement to the mine pump controller

14: Refined Mine Pump Controller 9 40 25 36 35
Mine pump controller with additional
water level readings

Implementation. We implemented Algorithm 1 in a JAVA-tool called MooSE (Modal
Transition System Encoding). As part of our tool, we utilize the SAT solver SAT4J [28]
for reasoning about satisfiability of feature constraints. Furthermore, we use the Java
Universal Network/Graph (JUNG) framework1 to create a GUI front-end for easily op-
erating our tool and for visualizing FTS and MTS models. Besides Algorithm 1, our
tool further incorporates an automated bisimulation check between FTS and MTS mod-
els as described in Section 4 which, for instance, allows the user to verify correctness
of generated models.

In order to make our results reproducible, we provide our tool implementation (to-
gether with a manual) and our case studies on a supplementary web page2.

Subject Systems. We applied our experiments to 51 subject systems, where the first
group comprises 14 FTSs which are taken from existing case studies initially published
in [22] (cf. Table 1) as well as the examples created for this paper. In addition, the other
group consists of 37 synthetically generated FTSs. In particular, the first group consists
of FTS case studies modeling traffic light controls, a vending machine for coffee and
tea, subsystems of a wiper system, and several different parts of mine-pump control
systems. The smallest case study, Simple Traffic Light, consists of one (mandatory)
feature, where the corresponding feature model hence defines one valid configuration
and a corresponding LTS variant. The FTS of the Simple Traffic Light consists of four

1http://jung.sourceforge.net
2https://www.es.tu-darmstadt.de/fts2mts/

30

states and four transitions from which none is annotated by a presence condition. We
added this example to our corpus to check whether our algorithm produces correct re-
sults also for such corner cases. The largest case study, Refined Mine Pump Controller,
has nine features with 40 possible configurations and the respective FTS consists of
25 states and 36 transitions from which 35 are annotated by a presence condition thus
constituting variable behavior.

In the second group, we further consider randomly generated FTS models in order
to investigate in more detail the impact of different FTS properties on the resulting
MTS encoding. We do this by first applying an existing tool for generating feature
models and Featured Finite State Machines (FFSM) [24] being (non-hierarchical) Fi-
nite States Machines where transitions are, similar to FTS models, annotated with pres-
ence conditions. We translate FFSM to FTS by simply copying the set of states and
transitions together with their presence conditions. In contrast, the transition labels on
FFSM, which are much more compound than those of FTS, are treated as one atomic
action per transition as the actual labeling is not relevant for Algorithm 1. In particular,
we generated three FTSs as well as three feature models (i.e., one feature model for
each FTS). We then adapted each FTS, e.g., by removing transitions, and each feature
model, e.g., by changing an or-group to an alternative group, to obtain a diverse cor-
pus. Here, the case studies vary between twelve to 16 features, 50 to 10 states, 21 to 79
transitions, and five to 50 variants.

Experiment Design and Measurement Setup. In order to evaluate our approach, we
generated a minimal MTS encoding as well as the maximal set of MTSs (i.e., the set
of all LTS variants of the input FTSs) for each of our subject systems. To answer
research question RQ1, we measured CPU times required for applying Algorithm 1 as
compared to generating all LTS variants from the given FTS models. Concerning RQ2,
we additionally counted the number of MTS models of the minimal encoding as well
as the number of LTS variants of the maximal encoding for the given FTS models. We
used SAT4J version 2.3.4, and we applied all experiments on a machine with Windows
10 x64 and 12GB of RAM running on an Intel Xeon E3-1230v3 (4x3.3GHz) processor.
We reran the experiments several times and observed that the deviation of the results
among the different runs are negligible.

6.2. Results and Discussion

We next present the measurement results of our experiments together with a dis-
cussion of the results with respect to our research questions.

Results. The measurement results addressing RQ1 and RQ2 are shown in Figure 12
(real-world case studies) and Figure 13 (synthetic case studies).

• RQ1 (Efficiency). The average CPU time required for the real-world case stud-
ies is 5.2 s with a geometric mean of 65.9 ms, ranging from less than 1 ms (Simple
Traffic Light) to 59.7 s (Refined Mine Pump Controller). The average CPU time
required for the synthetic case studies is 8.1 min with a geometric mean of 170.5
s, ranging from 5.2 s (case study 1 having six variants) to 36.9 min (case study
35 having 20 variants). In contrast, generating the maximal set of MTSs (i.e.,

31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

100

101

102

103

104

105

Subject System (cf. Table 1)

Runtime Algorithm 1 (ms)
Runtime trivial (ms)
Features
MTS
Variants

Figure 12: Results for the Real-Word Case Studies (cf. Table 1) with Logarithmic y-Axis

5 10 15 20 25 30 35

100

101

102

103

104

105

106

Subject System

Runtime Algorithm 1 (ms)
Runtime trivial (ms)
Features
MTS
Variants

Figure 13: Results for the Synthetic Case Studies with Logarithmic y-Axis

32

directly deriving the set of LTS variants) takes at most 2 ms for all case studies
(except for the synthetic case study 36 taking 6 ms).

• RQ2 (Effectiveness). Concerning the real-world case studies, the minimum
number of MTSs equals the maximum number of MTSs in some cases (namely
1, 6, 7, 8, 9, 10, 11, and 13) while for other case studies, the minimum number of
MTSs is considerably smaller than the maximum number (e.g., case study 14 can
be encoded as 20 MTSs comrising 32 LTS variants). Here, the geometric mean
is 2.7 for the minimum number of MTSs and 3.5 for the maximum number. Note
that the three case studies (6, 7, and 13) each have only one variant to demon-
strate that our algorithm indeed does not produce sets of MTSs with overlapping
variants. Without these special cases, the geometric mean is 3.6 for the mini-
mum number of MTSs and 5.0 for the maximum number. For the synthetic case
studies, Algorithm 1 produces 14.8 MTSs and a maximum 18.6 MTSs, again
considering the geometric mean. Again, note that we observe a number of cases
where the minimum and maximum number of MTSs coincide (1, 2, 21, 22, 26
to 30, 32, 33, 34, and 37) as no optional transitions can ever be produced in any
MTS. For the rest of the synthetic case studies, the number of MTSs ranges from
10 (minimum) to 12 (maximum) and 48 (minimum) to 80 (maximum).

Discussion and Summary. We now discuss the results of our experimental evaluation
with respect to the research questions RQ1 and RQ2.

• RQ1 (Efficiency). From the results obtained from both the real-world case stud-
ies as well as the synthetically generated case studies, we can conclude that there
is no obvious correlation between the different structural size measures (e.g.,
number of states and transitions) of the FTS models and the CPU time consumed
by Algorithm 1. Instead, we observe a potential correlation between CPU time
and the number of variants for most of the case studies. To summarize, we may
conclude that our approach is capable to also scale to FTS models comprising
considerably larger sets of variants as the average CPU time is between 5.2 s
(real-world) and 8.1 min (synthetic). Even the largest synthetic case study only
takes about 37 min. However, it should be noted that generating a minimum set
of MTSs is considerably slower than generating the maximum set, taking only 6
ms in the worst case (for the synthetic case study 36).

• RQ2 (Effectiveness). Concerning effectiveness of Algorithm 1, there is no obvi-
ous correlation between the minimal and maximal solution. As described above,
there are structurally small as well as larger case studies for which the num-
ber of variants and the number of MTSs, however, is equal (for both real-world
and synthetic case studies). Instead, we observe that the number of generated
MTSs not only depends on the structure of the FTS but also on the dependen-
cies between features and presence conditions as also illustrated by the different
examples in Section 4. For our real-world case studies, the minimum number
of MTSs is 23% smaller than the maximum number. When leaving out the spe-
cial cases 6, 7, and 13 (only consisting of one variant) the minimum number of
MTSs is 28% smaller than the maximum number. For the synthetic case studies,

33

we observe similar results. Here, the minimum number of MTSs is 20% smaller
than the maximum number. Additionally, when leaving out the case studies 26 to
37 (where the minimum and maximum are very similar due a high degree of de-
pendencies between presence conditions of different transitions), the minimum
number of MTSs is, again, 28% smaller than the maximum number. To sum-
marize, there are no obvious (i.e., syntactic) structural properties of FTS models
indicating a clear correlation between the sizes of the minimum and maximum
MTS encoding.

6.3. Threats to Validity

We conclude this section with a brief discussion of threats to validity potentially
obstructing our evaluation results.

Internal Threats. Concerning the correctness of our approach, we provide a detailed
proof in Section 4 showing that the MTS encoding is, up to bisimulation equivalence,
both sound and complete with respect to the set of variants represented by the input
FTS model. In addition, we prove in Section 5 that the MTS encoding generated by
Algorithm 1 constitutes a minimal solution. In this regard, one possible threat to in-
ternal validity might arise from the correct implementation of the approach in our tool.
To address this issue, we exhaustively tested our tool implementation using a variety
of different examples including default cases as well as corner cases. In addition, the
only major external component used in our tool is SAT4J which is a mature SAT-solver
widely used in practice.

Another potential threat to the internal validity of our evaluation results may arise
from the inherent non-determinism of Algorithm 1 concerning, for instance, the or-
dering in which the state-transition graph is traversed in an iteration. As a result, the
resulting minimal MTS encoding is not unique thus leading to different measurement
results for different runs with the same input model.

External Threats. One potential threat to external validity might arise from the lack
of comparison with other approaches. However, we are not aware of any competitive
approach so far in recent literature aiming at generating a minimal MTS encoding as
pursued in our approach (see Section 7 for details). However, one interesting path
to follow in a future work would be to consider MTS with variability constraints as
recently proposed in [11]. As this extension increases expressiveness of MTSs to equal
that of FTSs [13], it may permit an even more succinct encoding of FTS as compared
to the plain MTSs considered in our setting.

Finally, the selection of subject systems might always threaten external validity.
For our experiments, we selected well-known community benchmarks as well as syn-
thetically generated models. However, although we are confident that our collection
covers a variety of crucial cases and model sizes, the lack of real-world FTS models
might obstruct any generalization of our evaluation results.

34

7. Related Work

In this section, we discuss related work on relating the semantic models (and there-
fore comparing the expressiveness of) different modeling formalisms for software prod-
uct lines from the recent literature. To this end, we limit our considerations to (op-
erational) behavioral-variability modeling formalisms based on (variations of, or ex-
tensions to) LTSs as the underlying semantic foundation. The goal of all considered
approaches is, in general, to avoid that every possible model variant derivable from
a software product line has to be explicitly modeled as a dedicated LTS. Instead, the
different approaches propose (syntactic and/or semantic) mechanisms for integrating
several model variants into one concise model.

To our knowledge, our approach in encoding FTSs into a set of MTSs, which is
semantic preserving, is new. Based on this concept, expressiveness of the different
approaches can be characterized by the minimum number of models required to cover
all variants. In this regard, FTSs and MTSs (with finite behavior) can be seen as two
extrema of an expressiveness spectrum, as one FTS always suffices to comprise all pos-
sible LTS variants (but, with the disadvantage of a complex representation), whereas
MTSs are inherently limited by only being capable of distinguishing between manda-
tory and optional transitions (but, with the advantage of a simple representation).

As an alternative way of comparing expressiveness, Beohar et al. have recently
proposed to define encodings between formalisms such that a hierarchy of expressive-
ness is naturally built upon the (non-)existence of (mutual) encodings [12]. Ter Beek et
al. have contributed to this expressiveness hierarchy by demonstrating that MTSs with
variability constraints are equally expressive as FTSs [13]. In contrast, Benduhn et al.
survey different modeling formalisms in terms of their suitability for applying different
product-line analysis strategies [29]

Concerning MTSs [2] in particular, Fischbein et al. [30] were the first to argue
that these models are adequate for modeling behavioral variability in software product
lines. Thereupon, several researchers used MTSs as well-suited formalism to perform
rigorous analysis of software product lines [4, 5, 6, 31, 7]. In order to cope with the
limited expressive power of MTSs and to further restrict the set of valid model variants
derivable from an MTS, various approaches combine MTSs with additional constraints
expressed in a deontic logic called Modal-Hennessy-Milner-Logic (MHML) [4, 5, 6]
as well as so-called variability constraints [11]. Furthermore, Benes et al. in [27], in-
troduce an extension of MTSs with a set of parameters and define obligation functions
on the set of atomic propositions, which are related to each state and contain transitions
emanating the state and parameters. By setting different valuations for the parameters
and also using different atomic propositions the presence or absence of transitions can
be specified. Using this formalism global/persistent choices can be made throughout
a model. Křetínský and Sickert [32] show that this extension of MTS may be trans-
lated to Boolean MTS, whereas they do not consider a translation into (sets of) plain
MTSs as done in our work. Basile et al. in [33], introduce an extension of contract
automata with modality [34], in which necessary requests are distinguished from per-
mitted requests, with feature constraints. These models can be used for modeling the
behavior of contract-based dynamic service product lines. Other approaches exploit
principles from interface theories to restrict the set of derivable variants from MTS

35

to only those being compatible under parallel composition to a given environmental
specification [7, 31]. In [9], two variants of MTSs, namely disjunctive modal transi-
tion systems (DMTSs) [35] and 1MTSs are compared from the expressiveness point
of view. DMTSs are similar to 1MTSs in that both rely on the notion hyper transi-
tions, in order to explicitly relate transitions in MTSs to (sets of) features of a product
line. The difference is in the interpretation of such transitions. In DTMSs, must-hyper-
transitions represent an or-relation between multiple choices, whereas this restriction
is not made in 1MTS. In [9], it is shown that both formalisms have the same expressive
power, i.e., they induce the same sets of LTSs as their implementations.

Concerning FTSs, as initially proposed by Classen et al. [36], those models have
been mostly utilized for efficient temporal model-checking of entire product lines by
solely considering one FTS model [1]. Thereupon, Cordy et al. [37] extended this
earlier work by combining non-Boolean features and multi-features in a high-level
specification language called TVL∗. An algorithm for constructing an FTS from a
behavioral specification written in TVL∗ was also given.

Finally, PL-CCS [38], introduced by Gruler et al. [38], constitutes an extension of
Milner’s CCS [39] by means of an alternative choice operator called “binary variant”
to choose (and memorize) behavioral variations in CCS step semantics. Similar to
MTSs, the validity of variants can be further restricted using the multi-valued modal
µ-calculus [40].

To summarize, none of these existing approaches for comparing product-line mod-
eling formalisms yet followed the idea as proposed in this paper, by encoding a class of
models, FTSs, into another class of models, MTSs, requiring sets of models, where for
finite behavior FTSs are more expressive than MTSs, such that both comprise equiva-
lent sets of variants.

8. Conclusions and Future Work

In this paper, we presented an encoding of FTSs into sets of MTSs with an equiva-
lent set of LTS variants. We also gave an algorithmic interpretation of this translation
and proved it to be correct. Moreover, we discussed the issue of minimality of the
computed translations and proved a particular notion of minimality for the outputs of
our algorithm.

The concept developed in this paper allows for a novel assessment concerning the
expressiveness of variability-modeling formalism in terms of the number of models
required for covering all variants. Based on this new concept, we aim at defining new
encoding and expressiveness criteria as future work. As a result, we are targeting the
definition of a dense spectrum of variability-modeling formalisms, having FTSs and
MTSs (or, plain LTSs, respectively) as its extrema. In this regard, also the possible
influence of potentially infinite sets of states of these formalisms on expressiveness
shall be taken into account. Furthermore, we plan to adapt the algorithm such that the
requirement of structurally deterministic FTSs may be dropped to obtain minimal MTS
encodings.

Acknowledgment. The work of Mahsa Varshosaz and Mohammad Reza Mousavi has
been partially supported by grants from the Swedish Knowledge Foundation (Stiftelsen

36

for Kunskaps- och Kompetensutveckling) in the context of the AUTO-CAAS HoGpro-
ject (number: 20140312), Swedish Research Council (Vetenskapsradet) award number:
621-2014-5057 (EffectiveModel-Based Testing of Concurrent Systems), and the EL-
LIIT Strategic Research Environment. The work of Lars Luthmann, Paul Mohr and
Malte Lochau has been supported by the German Research Foundation (DFG) in the
Priority Programme SPP 1593: Design For Future – Managed Software Evolution (LO
2198/2-1).

References

[1] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, J.-F. Raskin, Fea-
tured Transition Systems: Foundations for Verifying Variability-Intensive Sys-
tems and Their Application to LTL Model Checking, IEEE Transactions on Soft-
ware Engineering 39 (8) (2013) 1069–1089. doi:10.1109/TSE.2012.86.

[2] K. Larsen, B. Thomsen, A modal process logic, in: Proc. of the 3rd Annual Sym-
posium on Logic in Computer Science (LICS ’88), IEEE, 1988, pp. 203–210.

[3] K. G. Larsen, L. Xinxin, Equation solving using modal transition systems, in:
Proceedings of ACM/IEEE Symposium on Logic in Computer Science (LICS
1990), IEEE Computer Society, 1990, pp. 108–117.

[4] P. Asirelli, M. H. ter Beek, S. Gnesi, A. Fantechi, Formal description of variability
in product families, in: Proceedings of the 15th International Software Product
Line Conference (SPLC ’11), IEEE, 2011, pp. 130–139.

[5] P. Asirelli, M. H. ter Beek, A. Fantechi, S. Gnesi, A model-checking tool for fam-
ilies of services, in: Proc. of the International Conference on Formal techniques
for distributed systems (FMOODS’11/FORTE’11), Vol. 6722 of Lecture Notes in
Computer Science, Springer, 2011, pp. 44–58.

[6] P. Asirelli, M. H. ter Beek, A. Fantechi, S. Gnesi, A compositional framework to
derive product line behavioural descriptions, in: Proceedings of the 5th Interna-
tional Symposium on Leveraging Applications of Formal Methods, Verification
and Validation. Technologies for Mastering Change (ISoLA ’12), Vol. 7609 of
Lecture Notes in Computer Science, Springer, 2012, pp. 146–161.

[7] K. G. Larsen, U. Nyman, A. Wąsowski, Modal I/O automata for interface and
product line theories, in: R. D. Nicola (Ed.), Proceedings of the 16th European
Symposium on Programming Languages and Systems (ESOP’07), Vol. 4421 of
Lecture Notes in Computer Science, Springer, 2007, pp. 64–79.

[8] M. H. ter Beek, A. Lluch-Lafuente, M. Petrocchi, Combining declarative and
procedural views in the specification and analysis of product families, in: Pro-
ceedings of the 17th International Software Product Line Conference co-located
workshops (SPLC ’13 workshops), ACM, 2013, pp. 10–17.

37

[9] H. Fecher, H. Schmidt, Comparing disjunctive modal transition systems with an
one-selecting variant, The Journal of Logic and Algebraic Programming 77 (1-2)
(2008) 20–39. doi:http://dx.doi.org/10.1016/j.jlap.2008.05.003.

[10] J. Křetínsky, Modal transition systems: Extensions and analysis, Ph.D. thesis,
Masaryk University (2014).

[11] M. H. ter Beek, A. Fantechi, S. Gnesi, F. Mazzanti, Modelling and analysing
variability in product families: Model checking of modal transition systems with
variability constraints, Journal of Logical and Algebraic Methods in Program-
ming 85 (2) (2016) 287 – 315.

[12] H. Beohar, M. Varshosaz, M. R. Mousavi, Basic behavioral models for software
product lines: Expressiveness and testing pre-orders, Sci. Comput. Program. 123
(2016) 42–60. doi:10.1016/j.scico.2015.06.005.
URL https://doi.org/10.1016/j.scico.2015.06.005

[13] M. H. ter Beek, F. Damiani, S. Gnesi, F. Mazzanti, L. Paolini, On the expressive-
ness of modal transition systems with variability constraints, Science of Computer
Programming 169 (2019) 1 – 17. doi:https://doi.org/10.1016/j.scico.2018.09.006.

[14] M. Varshosaz, M. R. Mousavi, Comparative expressiveness of product line cal-
culus of communicating systems and 1-selecting modal transition systems, in:
Theory and Practice of Computer Science - In Proceedings of 45th International
Conference on Current Trends in Theory and Practice of Computer Science, SOF-
SEM 2019, Nový Smokovec, Slovakia, January 27-30, 2019, 2019, pp. 490–503.
doi:10.1007/978-3-030-10801-4_38.
URL https://doi.org/10.1007/978-3-030-10801-4_38

[15] M. Varshosaz, H. Beohar, M. R. Mousavi, Basic behavioral models for software
product lines: Revisited, Science of Computer Programming 168 (2018) 171 –
185. doi:https://doi.org/10.1016/j.scico.2018.09.001.
URL http://www.sciencedirect.com/science/article/pii/
S0167642318303381

[16] N. D’Ippolito, D. Fischbein, M. Chechik, S. Uchitel, MTSA: The modal transi-
tion system analyser, in: Proceedings of the 23rd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’08), 2008, pp. 475–476.

[17] G. Verdier, J.-B. Raclet, MAccS: a tool for reachability by design, in: Interna-
tional Workshop on Formal Aspects of Component Software, Springer, 2014, pp.
191–197.

[18] J. Křetínskỳ, S. Sickert, MoTraS: A tool for modal transition systems and their ex-
tensions, in: International Symposium on Automated Technology for Verification
and Analysis, Springer, 2013, pp. 487–491.

[19] S. S. Bauer, P. Mayer, A. Legay, MIO workbench: A tool for compositional design
with modal input/output interfaces, in: Proceedings of the 9th International Sym-
posium on Automated Technology for Verification and Analysis (ATVA 2011),
Vol. 6996 of Lecture Notes in Computer Science, Springer, 2011, pp. 418–421.

38

[20] M. H. ter Beek, F. Mazzanti, A. Sulova, VMC: A tool for product variability
analysis, in: D. Giannakopoulou, D. Méry (Eds.), FM 2012: Formal Methods,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 450–454.

[21] M. H. ter Beek, F. Damiani, S. Gnesi, F. Mazzanti, L. Paolini, From featured tran-
sition systems to modal transition systems with variability constraints, in: Pro-
ceedings of Software Engineering and Formal Methods (SEFM’17), Vol. 9276 of
Lecture Notes in Computer Science, Springer International Publishing, 2015, pp.
344–359.

[22] A. Classen, Modelling with FTS: a collection of illustrative examples, Tech. Rep.
P-CS-TR SPLMC-00000001, University of Namur, available online at https:
//pure.fundp.ac.be/ws/files/1051983/69416.pdf (2010).

[23] SEI: A framework for software product line practice, http://www.sei.
cmu.edu/productlines/tools/framework/, accessed: 2017-03-07.

[24] V. Hafemann Fragal, A. Simao, M. R. Mousavi, Validated test models for
software product lines: Featured finite state machines, in: O. Kouchnarenko,
R. Khosravi (Eds.), Revised selected papers of the 13th International Conference
on Formal Aspects of Component Software (FACS’16), Vol. 10231, Springer In-
ternational Publishing, Cham, 2017, pp. 210–227.

[25] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson, Feature-Oriented Domain
Analysis (FODA) Feasibility Study, Tech. Rep. CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University (1990).

[26] C. Baier, J.-P. Katoen, Principles of Model Checking (Representation and Mind
Series), The MIT Press, 2008.

[27] N. Beneš, J. Křetínský, K. G. Larsen, M. H. Møller, J. Srba, Parametric modal
transition systems, in: T. Bultan, P.-A. Hsiung (Eds.), Proceedings of the 9th In-
ternational Symposium on Automated Technology for Verification and Analysis
(ATVA’11), Vol. 6996 of Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 2011, pp. 275–289.

[28] D. Le Berre, A. Parrain, The SAT4J library, Release 2.2, JSAT 7 (2-3).

[29] F. Benduhn, T. Thüm, M. Lochau, T. Leich, G. Saake, A survey on modeling tech-
niques for formal behavioral verification of software product lines, in: Proceed-
ings of the Ninth International Workshop on Variability Modelling of Software-
intensive Systems, (VaMoS’15), ACM, New York, 2015, pp. 80–87.

[30] D. Fischbein, S. Uchitel, V. Braberman, A foundation for behavioural confor-
mance in software product line architectures, in: Proceedings of the ISSTA Work-
shop on Role of software architecture for testing and analysis (ROSATEA’06),
ACM, 2006, pp. 39–48.

39

[31] M. Lochau, J. Kamischke, Parameterized preorder relations for model-based test-
ing of software product lines, in: Proceedings of the 5th Symposium on Leverag-
ing Applications of Formal Methods, Verification and Validation. Technologies
for Mastering Change (ISOLA’ 12), Vol. 7609 of Lecture Notes in Computer
Science, Springer, 2012, pp. 223–237.

[32] J. Křetínský, S. Sickert, On refinements of Boolean and parametric modal tran-
sition systems, in: Z. Liu, J. Woodcock, H. Zhu (Eds.), Proceedings of the 10th
International Colloquium on Theoretical Aspects of Computing (ICTAC 2013),
Springer, 2013, pp. 213–230.

[33] D. Basile, M. H. ter Beek, F. Di Giandomenico, S. Gnesi, Orchestration of dy-
namic service product lines with featured modal contract automata, in: Pro-
ceedings of the 21st International Systems and Software Product Line Confer-
ence - Volume B, SPLC ’17, ACM, New York, NY, USA, 2017, pp. 117–122.
doi:10.1145/3109729.3109741.
URL http://doi.acm.org/10.1145/3109729.3109741

[34] D. Basile, F. Di Giandomenico, S. Gnesi, P. Degano, G.-L. Ferrari, Specifying
variability in service contracts, in: Proceedings of the Eleventh International
Workshop on Variability Modelling of Software-intensive Systems, VAMOS ’17,
ACM, New York, NY, USA, 2017, pp. 20–27. doi:10.1145/3023956.3023965.
URL http://doi.acm.org/10.1145/3023956.3023965

[35] K. G. Larsen, L. Xinxin, Equation solving using modal transition systems, in:
Proc. of the Fifth Annual Symposium on Logic in Computer Science (LICS ’90),
IEEE Computer Society, 1990, pp. 108–117. doi:10.1109/LICS.1990.113738.
URL http://dx.doi.org/10.1109/LICS.1990.113738

[36] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, J.-F. Raskin, Model checking
lots of systems: efficient verification of temporal properties in software product
lines, in: Proceedings of the 32nd International Conference on Software Engi-
neering (ICSE ’10), Vol. 1, ACM, 2010, pp. 335–344.

[37] M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, Beyond Boolean product-line
model checking: dealing with feature attributes and multi-features, in: D. Notkin,
B. H. C. Cheng, K. Pohl (Eds.), Proceedings of the 35th International Conference
on Software Engineering (ICSE ’13), IEEE / ACM, 2013, pp. 472–481.

[38] A. Gruler, M. Leucker, K. Scheidemann, Modeling and model checking software
product lines, in: Proceedings of the Conference on Formal Methods for Open
Object-Based Distributed Systems (FMOODS ’08), Vol. 5051 of Lecture Notes
in Computer Science, Springer, 2008, pp. 113–131.

[39] R. Milner, A Calculus of Communicating Systems, Vol. 92 of Lecture Notes in
Computer Science, Springer, 1982.

[40] S. Shoham, O. Grumberg, Multi-valued model checking games, J. Comput. Syst.
Sci. 78 (2) (2012) 414–429.

40

Appendix A.

Lemma 1. Considering the definition of the function const(), given in Definition 7,
this function always has a maximal fixed point.

Proof. Consider an FTS fts = (P, A, F,→,Λ, pinit); given mts=(Q,A,−→♦,−→�

, qinit), where Q = P × B(F); we prove const((p, e)), for (p, e) ∈ Q, always has
a maximal fixed point as follows. We prove this function is monotone and hence has
a fixed point. To this end, we show const i((p, e)) =⇒ const i−1((p, e)) by applying
induction on the index of the function. In the base case for any (p, e) ∈ Q we have:

const0((p, e)) =e

const1((p, e)) =e ∧
∧

(p,a,f,p′)∈must((p,e))

(
const0((p′, e ∧ f))

)
∧

∧
(p,a,f,p′)∈may((p,e))

(
¬f ∨ (const0((p′, e ∧ f)))

)
∧

∧
(p,a,f,p′)∈exc((p,e))

¬f

Thus, it holds const1((p, e)) =⇒ const0((p, e)).
In the inductive step we consider: for any (p, e) ∈ Q, ∀j≤i−1 constj((p, e)) =⇒

const i−2((p, e)). Then, we prove const i((p, e)) =⇒ const i−1((p, e)) as well. Based
on the above definition:

const i((p, e)) =e ∧
∧

(p,a,f,p′)∈must((p,e))

(
const i−1((p′, e ∧ f))

)
∧

∧
(p,a,f,p′)∈may((p,e))

(
¬f ∨ (const i−1((p′, e ∧ f)))

)
∧

∧
(p,a,f,p′)∈exc((p,e))

¬f

and also it holds:

const i−1((p, e)) =e ∧
∧

(p,a,f,p′)∈must((p,e))

(
const i−2((p′, e ∧ f))

)
∧

∧
(p,a,f,p′)∈may((p,e))

(
¬f ∨ (const i−2((p′, e ∧ f)))

)
∧

∧
(p,a,f,p′)∈exc((p,e))

¬f

41

Given the premise in the inductive step it holds: ∀(p′,e′)∈Q const i−1((p′, e′)) =⇒
const i−2((p′, e′)). Hence, it holds:∧

(p,a,f,p′)∈must((p,e))

(
const i−1((p′, e∧f))

)
=⇒

∧
(p,a,f,p′)∈must((p,e))

(
const i−2((p′, e∧

f))
)

and
∧

(p,a,f,p′)∈may((p,e))

(
¬f∨(const i−1((p′, e∧f)))

)
=⇒

∧
(p,a,f,p′)∈may((p,e))

(
¬f∨

(const i−2((p′, e ∧ f)))
)
.

Hence, it holds const i((p, e)) =⇒ const i−1((p, e)).

Lemma 2. Consider an arbitrary fts = (P, A, F,→,Λ, pinit) and a set of MTSsM∈
context(fts). Consider mts=(Q,A,−→♦,−→�, qinit) s.t. mts ∈ M and λ ∈ Λmts , it
holds: (

∀(p,e)∈Q λ |= e ∧ λ |= f
)
⇒(

∀(p,f,a,p′)∈→ ((p, e), a, (p′, e ∧ f)) ∈−→♦
)

Proof. Based on item 4.(a) in Definition 8, there exists a path in the set of finite
paths of mts such as ρ : qinit a0 (p1, e1) a1 · · · (pn−1, en−1) an−1 (p, e), in which
∀1≤i≤n−1 ei = ei−1 ∧ fi, and e = en−1 ∧ fn−1. Based on Definition 8, in each
transition (p, e)

a−→ (p′, e′), it holds e′ =⇒ e and as λ |= e, it can be concluded
that ∀1≤i≤n−1 λ |= ei, and also as qinit = (pinit ,

∨
λ∈Λ λ) it holds that λ |=

∨
λ∈Λ λ.

Hence, the premise of the above implication holds for all the states in ρ, that is an
initial path that ends in (p, e). Next, we use induction through the path to prove
the above implication holds. Since λ ∈ Λmts , then λ =⇒ const(qinit). As-
sume that the iterations for computing the function const are fixed in k steps that is
constk(qinit) = constk−1(qinit) (a fixed point exists according to Lemma 1).

We consider the base step of induction:

constk(qinit) =e ∧
∧

(pinit ,a,f,p′)∈must((p,e))

(
constk−1((p′, e ∧ f))

)
∧

∧
(pinit ,a,f,p′)∈may((p,e))

(
¬f ∨ (constk−1((p′, e ∧ f)))

)
∧

∧
(pinit ,a,f,p′)∈exc((p,e))

¬f

Based on item 4.(a) in Definition 8, e1 =
∨
λ∈Λ λ ∧ f0. Since, λ =⇒ constk(qinit),

and λ |= e1, from the above formula it can be concluded that ∀(qinit ,f0,a,p′)∈→
(qinit , a, (p

′, e1)) ∈−→♦. Otherwise ¬f0, is considered as one of the conjunctions in
construction of constk((p, e)), and as λ |= constk(qinit) then λ |= ¬f0, which contra-
dicts λ |= f0.

42

Next, we assume that the implication holds for step n− 1 in induction.

constk−n+1((pn−1, en−1)) =e ∧
∧

(pn−1,a,f,p′)∈must((p,e))

(
constk−n((p′, e ∧ f))

)
∧

∧
(pn−1,a,f,p′)∈may((p,e))

(
¬f ∨ (constk−n((p′, e ∧ f)))

)
∧

∧
(pn−1,a,f,p′)∈exc((p,e))

¬f

As e = en−1 ∧ fn−1 and since λ |= en−1 hence, λ |= fn−1. Since, we assume
that the above implication holds in this step of induction it can be concluded that
∃((pn−1, en−1), a, (p, e)) ∈−→♦. Hence, given that λ |= fn−1, and according to the
construction of constk−n+1((pn−1, en−1)) given above it can be seen that λ =⇒
constk−n((p, e)).

Next, we prove that the implication holds in step n. According to the previous case
it holds λ =⇒ constk−n((p, e)).

constk−n((p, e)) =e ∧
∧

(p,a,f,p′)∈must((p,e))

(
constk−n−1((p′, e ∧ f))

)
∧

∧
(p,a,f,p′)∈may((p,e))

(
¬f ∨ (constk−n−1((p′, e ∧ f)))

)
∧

∧
(p,a,f,p′)∈exc((p,e))

¬f

As λ =⇒ f and λ =⇒ constk−n((p, e)), it can be concluded that ∀(p,f,a,p′)∈→
((p, e), a, (p′, e∧f)) ∈−→♦. Otherwise, ¬f , is considered as one of the conjunctions in
construction of constk−n((p, e)), and as λ |= constk−n((p, e)) then λ |= ¬f , which
contradicts λ |= f .

Appendix B.

As mentioned in Section 3, each FTS represents the behavior of all products in a
product line as a whole. Labeled Transition Systems (LTSs) have been used as the
underlying semantic domain for FTSs. The behavior of an individual product can be
represented as an LTS, which is induced from the FTS. Beohar et al. in [12], provide
a product-derivation relation to specify valid LTSs implementing an FTS. Moreover,
Classen et al. in [1] have provided the definition of a project operator for deriving the
LTSs corresponding to the products of a product line. The former one is a semantical
definition of product derivation while the latter has more syntactic essence. In this
appendix, we show that for considered FTSs the set of LTSs induced by each of these
definitions are equal modulo bisimilarity. This is presented in Theorem 4 and its proof.
In the following, first, we give the definition of some of the constructs used in the rest of

43

this appendix (the rest is included in Section 3). The definition of the project operator
given by Classen et al. in [1] is as follows.

Definition 13. Consider an FTS fts = (P, A, F,→,Λ, pinit), and a product λ ∈ Λ.
The projection of fts on λ, denoted by fts|λ, is an LTS (P, A,→′, pinit), where →′=
{(P, a,Q) | ∃(P, a, φ,Q) ∈→ · φ |= λ}

Based on the definition of the project operator, some of the transitions of an FTS
may be eliminated in the resulting LTS. Hence, a subset of the states in the LTS may
only be reachable from the initial state. We define an auxiliary function to find the
reachable states from the intial state of an LTS resulted after projection. Assuming that
fts|λ = (P, A,→′, pinit); we define the set of states reachable from a state P ∈ P, de-
noted by Reach(P), such thatP ∈ Reach(P) and ∀Q′ ∈ Reach(P) ∃(Q, a, φ,Q′) ∈→′
· Q ∈ Reach(P).

Finally, the definition of bisimulation for LTSs is as follows.

Definition 14. Assume lts=(S, A,→, sinit) and lts ′=(S′, A′,→′, s′init). We say lts ∼
lts ′, iff there exists a relation R ⊆ S × S′ that holds the following conditions (cf.
Definition 7.1. in [26]):

(α) (sinit , s
′
init) ∈ R.

(β) ∀(s, s′) ∈ R the following holds:

(1) For all (s, a, t) ∈→ there exists (s′, a, t′) ∈→′ such that (t, t′) ∈ R,

(2) For all (s′, a, t′) ∈→′ there exists (s, a, t) ∈→ such that (t, t′) ∈ R.

Next, we show that the set of LTSs derived from an FTS using the above given
definitions is the same (up to bisimilarity).

Theorem 4. For each FTS fts the set of LTSs induced by applying the project operator
given in Definition 13 and the set of LTSs that are valid implementations of fts based
on Definition 6, are equal modulo bisimilarity.

Proof. To prove the above theorem, we consider the following two obligations:

• Obligation 1: For an FTS fts , ∀lts ∈ LTS · lts . fts ∃λ ∈ Λ · lts ∼ fts|λ.

Consider an arbitrary lts = (S, A,→, sinit) and an FTS fts = (P, A, F,→
,Λ, pinit) such that lts . fts . Based on Definition 6, it holds there exists λ ∈ Λ
and Rλ ⊆ P × S such that (pinit , sinit) ∈ Rλ and Rλ satisfies the following
transfer properties.

(a) ∀P,Q,a,s,φ
(
P Rλ s ∧ P

φ/a−−→ Q ∧ λ |= φ
)
⇒ ∃t · s

a−→ t ∧ QRλ t;

(b) ∀P,a,s,t
(
P Rλ s ∧ s

a−→ t
)
⇒ ∃Q,φ · P

φ/a−−→ Q ∧ λ |= φ ∧QRλ t.

44

Consider the LTS resulting from projection of fts on λ that is fts|λ = (P, A,→′
, pinit). (Based on Definition 13 the set of states in an LTS resulted from project-
ing an FTS on a product configuration remains the same. To avoid confusion in
the rest of the proof we use P to denote the state in the LTS (resulted from pro-
jection) that corresponds to the same state P in the FTS.) We show lts ∼ fts|λ.
To this end, we define a relation R such that ∀P ∈ P, s ∈ S · (P, s) ∈ R ⇔
(P, s) ∈ Rλ ∧ P ∈ Reach(pinit).

Next, we show R is a bisimulation relation. As (pinit , sinit) ∈ Rλ and pinit ∈
Reach(pinit) it holds (pinit, sinit) ∈ R. First, we show R satisfies condition
(β).(1) in Definition 14. Consider an arbitrary pair (P, s) ∈ R; based on Defini-
tion 13:

∀(P, a,Q) ∈→′ ∃(P, a, φ,Q) ∈→ · φ |= λ (1)

Furthermore, as (P, s) ∈ Rλ, based on (a) it holds:

P
φ/a−−→ Q ∧ φ |= λ⇒ ∃t ∈ S · s a−→ t ∧ (Q, s′) ∈ Rλ (2)

As P ∈ Reach(pinit) and (P, a,Q) ∈→′ it holds Q ∈ Reach(pinit). Hence,
(Q, s′) ∈ Rλ (3).

From (1), (2), and (3) it can be concluded that (Q, s′) ∈ R. Finally, we conclude
that for each (P, s) ∈ R it holds:

P
a−→
′
Q⇒ s

a−→ t ∧ (Q, t) ∈ R (i)

Next, we show thatR satisfies condition (β).(2) in Definition 14.

Considering an arbitrary pair (P, s) ∈ R and a transition (s, a, t) ∈→; based on
(b) it holds:

∃Q,φ · P φ/a−−→ Q ∧ φ |= λ ∧ (Q, t) ∈ Rλ(4)

For P
φ/a−−→ Q where φ |= λ, based on Definition 13, it holds P a−→

′
Q (5).

Furthermore, as (P, s) ∈ R then P ∈ Reach(pinit) and consequently as P a−→
′

Q it holds Q ∈ Reach(pinit). Hence, (Q, t) ∈ R (6).

Thus, from (4), (5), and (6) we can conclude that for each arbitrary pair (P, s) ∈
R it holds:

s
a−→ s′ ⇒ P

a−→ Q ∧ (Q, t) ∈ R (ii)

From (i), (ii), and (pinit, sinit) ∈ R, given Definition 14, we conclude thatR is
a bisimulation relation and that lts ∼ fts|λ.

45

• Obligation 2: For an FTS fts , ∀λ ∈ Λ ∃lts ∈ LTS · lts . fts ∧ fts|λ ∼ lts .

Consider FTS fts = (P, A, F,→,Λ, pinit); for λ ∈ Λ we assume fts|λ =
(P, A,→′, pinit). (Same as before, to avoid confusion we use P to denote the
state in the LTS, resulted from projection, which corresponds to the same state P
in the FTS.) We show that the identical LTS (as fts|λ) implements fts consider-
ing the product-derivation relation given in Definition 6. To this end, we define
a relationR ⊆ P× Reach(pinit), such that ∀P ∈ Reach(pinit) · (P,P) ∈ R.

As pinit ∈ Reach(pinit) it holds (pinit ,pinit) ∈ R. Next, we show that R
satisfies the two transfer properties given in Defintion 6.

Consider a pair (P,P) ∈ R: for a transition P
φ/a−−→ Q where φ |= λ, based on

Definition 13, it holds (P, a,Q) ∈→′ (1).

As (P, a,Q) ∈→′ and P ∈ Reach(pinit) then Q ∈ Reach(pinit). Thus, it
holds (Q,Q) ∈ R (2).

Given (1) and (2), it holds:

∀(P,P) ∈ R, Q ∈ P, a ∈ A, φ ∈ B(F) · P φ/a−−→ Q ∧ φ |= λ⇒ P
a−→ Q ∧

(Q,Q) ∈ R (iii)

Which is the fist transfer property in Definition 6. Next, we proveR satisfies the
second transfer property in the definition.

Consider a pair (P,P) ∈ R; for each transition P
a−→
′
Q, based on Definition

13, it holds ∃(P, a, φ,Q) ∈→ · φ |= λ (3).

As P ∈ Reach(pinit), and P
a−→
′
Q it holds Q ∈ Reach(pinit). Thus,

(Q,Q) ∈ R (4).

Hence, from (3) and (4) we conclude that:

∀(P,P) ∈ R,Q ∈ P, a ∈ A · P a−→ Q⇒ ∃φ ∈ B(F) · P φ/a−−→ Q ∧ φ |= λ ∧

(Q,Q) ∈ R (iv)

From (iii), (iv), and (pinit ,pinit) ∈ R, based on Definition 6, we conclude that
R is a product-derivation relation. Hence, it holds ∀λ ∈ Λ ∃lts ∈ LTS · lts .
fts ∧ fts|λ ∼ lts .

46

