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Abstract

Software product lines (SPLs) facilitate reuse and customization in software
development by genuinely addressing the concept of variability. Product Line Cal-
culus of Communicating Systems (PL-CCS) is a process calculus for behavioral
modeling of SPLs, in which variability can be explicitly modeled by a binary vari-
ant operator. In this paper, we study different notions of behavioral equivalence
for PL-CCS, based on Park and Milner’s strong bisimilarity. These notions enable
reasoning about the behavior of SPLs at different levels of abstraction. We study
the compositionality property of these notions and the mutual relationship among
them. We further show how the strengths of these notions can be consolidated
in an equational reasoning method. Finally, we designate the notions of behav-
ioral equivalence that are characterized by the property specification language for
PL-CCS, called multi-valued modal µ-calculus.

Keywords: Software product line, process theory, product line bisimulation,
strict strong bisimulation, µ-calculus, axiomatization.

1. Introduction

Software product line (SPL) engineering has become a established trend in
software development, where a family of similar software products with minor
differences are developed in tandem, instead of developing each specific software
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product separately [1]. SPL engineering benefits from systematic reuse through-
out the system life cycle and enables mass development and customization of
numerous products. Hence, the development cost and the time to market for an
SPL is substantially decreased, compared to the cumulative development cost and
time of the isolated products [2]. To this aim, various software engineering ac-
tivities have to be adapted to cope with the differences among the artifacts for
different products, called variability. Variability introduces a new complexity di-
mension and hence, this calls for a genuine treatment of variability in different
artifacts (such as requirement specification, architectural design, detailed design,
and implementation artifacts). Such a treatment should also allow for a collective
analysis of product line behavior (e.g., in testing and verification [3, 4] ) to deal
with the inherent complexity of SPLs.

At the highest level of abstraction, an SPL can be specified by a set of features
that satisfy the specific needs of a particular market segment or mission [5]. A
feature identifies “a prominent or distinctive unit of requirement which can be ei-
ther a user-visible behavior, aspect, quality, or characteristic of a software system”
[6]. Hence, a product can be specified by a subset of features. To specify an SPL,
the features are organized in a hierarchical model, called a feature model. It iden-
tifies commonalities and differences among the products of the SPL in terms of
their features and it identifies suitable relations among features, such as optional,
mandatory, or mutually exclusive. More concrete specifications capture struc-
tural and behavioral aspects of an SPL. For instance, the architecture description
languages Koala [7] and xADL [8] concentrate on structural modeling of SPLs.
Modal transition systems (MTSs) [9] and Featured transition systems (FTSs) [10],
however, concentrate on behavioral modeling (we refer to [11] for an overview of
such behavioral models). MTSs capture the behavior of SPLs by defining state
transitions as optional or mandatory, while FTSs annotate transitions with a set of
features. Behavioral models typically come equipped with a product derivation
method; e.g., a product, derived from a feature model, can project an FTS into a
labeled transition system (LTS).

Formal verification techniques provide strong tools to analyze complex sys-
tems to guarantee their correctness. Process algebra is a formal approach to de-
scribe the behavior of communicating concurrent systems in a compositional man-
ner. Product Line Calculus of Communicating Systems (PL-CCS) [12, 13] is an
extension of Milner’s Calculus of Communicating Systems (CCS) [14]. PL-CCS
extends CCS by adding the binary variant operator ⊕i to model behavioral vari-
ability in SPLs. More specifically, process term p1⊕1p2, where p1 and p2 are CCS
process terms, specifies a family of two alternative products, namely p1 or p2 (the
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index i in⊕i is used to designate repeated choices that have to be made in the same
way; when no repetition of indices is present, the indices can be safely ignored).
The semantics of a PL-CCS specification is given in terms of three different mod-
els: the flat semantics, the unfolded semantics, and the configured-transition se-
mantics [12]. A PL-CCS specification can be turned into a product, specified by
a CCS term, by resolving the variability points, i.e., the variant operators, by de-
ciding on whether their right or left process is chosen. The flat semantics of a
PL-CCS term is given in terms of the semantics of all derivable products, denoted
by CCS terms. A product family LTS (PF-LTS) is an extension of an LTS, where
labels and states are paired with configuration vectors that maintain the config-
uration of variants. PF-LTSs provide the unfolded semantics of PL-CCS terms
and are derived through a set of structural rules in a systematic way. The struc-
tural rules given in [12] work on a restricted set of PL-CCS terms in order to be
compositional. The configured-transition semantics is defined over the unfolded
semantics by merging all states that only differ in their configuration parts. This
provides the most succinct model of PL-CCS terms. Hence, in the developments
to come, we mostly focus on the configured-transition semantics of PL-CCS. In
particular, we provide a set of structural rules that derive a configured-transition
semantics for PL-CCS terms directly.

Strict Strong Bisimilarity (≈PL)

• Compositional for PL-CCS
• Too fine, the most distinguishing
• Quantifies over all configurations

Product Line Bisimilarity ('PL)

• Compositional for fully expanded PL-CCS
• Right model for intuitive axioms
• Quantifies over all configurations

Configuration Bisimilarity ('C)

• Compositional for fully expanded PL-CCS
• Right model for intuitive axioms
• Considers the lumped PL-CCS behavior

Full expansion
(Theorem 5)

Identity
(Theorem 2)

Theorems 2 and 5

Figure 1: Our Notions of Behavioral Equivalence for PL-CCS Specifications

Equational reasoning is the cornerstone of the algebraic approach to process
theory. To furnish PL-CCS with a proper equational theory, we study a number of
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notions of behavioral equivalence, based on strong bisimilarity [15]. A summary
of these notions, their properties and the results establishing their relationship is
depicted in Figure 1. We start with a set of axioms that we expect to be sound for
a model of PL-CCS and define the notion of strict strong bisimilarity, which is a
natural extension of strong bisimilarity in the SPL setting. Namely, strict strong
bisimilarity requires bisimilar product lines to behave bisimilarly for all common
configurations. This turns out to be a fully compositional notion for PL-CCS, but
too strong of a notion for some of our intuitive axioms. For example, strict strong
bisimilarity rejects p ⊕i q = q ⊕i p, which is an intuitive axiom. Subsequently,
we introduce a strictly coarser notion, called product line bisimilarity, which does
satisfy the axioms we defined for PL-CCS. However, this notion is shown to sat-
isfy a weaker compositionality property. Namely, it is compositional for a subset
of PL-CCS terms, called fully expanded terms. To remedy the latter issue, we
show that all PL-CCS term can be rewritten into this subset using a sound trans-
formation, thanks to the strong compositional notion of strict strong bisimilarity.
Since strict strong bisimilarity implies product line bisimilarity this transforma-
tion is also sound for the latter notion and hence, resolves its compositionality
issue. Finally, we introduce configuration bisimilarity, which is an alternative yet
equivalent notion for product line bisimilarity. The main motivation for introduc-
ing configuration bisimilarity is that it allows for reasoning about the product line
behavior as a whole and hence, dispenses with scrutinizing individual products’
behaviors.

Our axiomatization is useful to identify common parts (i.e., the mandatory
parts) among the products of a family, to reorganize the functionality of a family
specification to behaviors for which appropriate components exist, to derive prod-
ucts of a family to validate a model in terms of its intended systems (where each
product is specified by a CCS term), and to manipulate functionalities assigned to
products of a product line at the syntactic level.

Regarding an equational theory for PL-CCS, our work improves upon [13],
where a number of algebraic laws to restructure a product line specification were
given. However, we are not aware of any complete axiomatization of PL-CCS to
date. For example, the laws of [13] are restricted to families with the same number
of variants and exclude intuitive equalities like p⊕i q = q ⊕i p and p⊕i p = p. It
is worth noting that our notion of configuration bisimilarity is reminiscent of the
notion of branching bisimilarity introduced in [16].

PL-CCS also comes equipped with a property specification language that is
a variant the multi-valued modal µ-calculus [12]. A configured transition sys-
tem can also be viewed as a multi-valued modal Kripke structure [12] and hence,



1 INTRODUCTION 5

formulae in the multi-valued modal µ-calculus can be evaluated naturally in this
semantic domain. The corresponding model checking method verifies a family at
once, and its result defines the set of products that meet the given property. In
this paper, we show that the multi-valued modal µ-calculus of [12] is the logical
characterization of our notion of product line bisimilarity (and hence, also our no-
tion of configuration bisimilarity). This provides another evidence of suitability
for our main notions of behavioral equivalence.

The contributions of this paper can be summarized as follows:

• We introduce a means to specify product lines with infinite behavior, fol-
lowing the approach of [17], by extending PL-CCS with recursive specifi-
cations.

• We provide a set of structural rules to derive the configured-transition se-
mantics of PL-CCS directly.

• We study different notions of bisimilarity over the configured-transition se-
mantics. To this end, we provide a set of intuitive axioms that should be
satisfied. We prove different compositionality (congruence) results for the
notions of bisimilarity and relate them to each other.

• We provide a sound axiomatization of PL-CCS terms modulo product line
bisimilarity, which additionally allows one to derive any sound equation on
closed terms with finite-state behavior (in technical terms, it is a ground-
complete axiomatization).

• We show that the multi-valued modal µ-calculus is the characterizing logic
for our product line bisimilarity.

The rest of this paper is structured as follows. Section 2 introduces the PL-
CCS syntax and semantics. Section 3 defines our notions of behavioral equiva-
lence and relates them. Section 4 provides a set of sound and complete axioms
to syntactically manipulate product lines. Section 5 illustrates the applicability
of our axiomatization in the analysis of product lines. Section 6 presents the
multi-valued modal µ-calculus as well as a logical characterization of product line
bisimilarity. Section 7 provides an overview of existing approaches on modeling
and verification of SPLs. Finally, Section 8 concludes the paper.
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2. Product Line CCS

To our knowledge, PL-CCS [12, 13] is the first process algebra introduced to
formally specify and verify product lines in an algebraic manner. To give a se-
mantics to PL-CCS terms in [12, 13], the binary variant operators are assigned an
index in a pre-processing step. Following the same principle, we index the binary
variant operator of PL-CCS with a natural number. This allows for defining a
unique semantic model for each PL-CCS term and also specify multiple variation
points that should be resolved in the same manner. Moreover, any unnumbered
PL-CCS term can be considered an indexed PL-CCS term by assigning arbitrary
distinct natural numbers to each and every binary variant operator.

To specify product lines with infinite behavior, we extend PL-CCS with the
recursion operator 〈X|E〉 taken from [17]. It encompasses both the CCS recur-
sion operator recX.t (which is specified in our syntax as 〈X|X def

= t〉) and the
standard way to express recursion in ACP (where usually only guarded recursion
is considered via systems of equations E) [17].

2.1. PL-CCS: Syntax
Let A be the set of process names which are used as recursion variables in

recursive specifications and ranged over by A and B. Moreover assume that Σ a
finite set of input action labels, Σ = {a | a ∈ Σ} is the set of output actions, and
τ 6∈ Σ ∪ Σ the unobservable action. Then, the set of all actions Act is defined as
Σ ∪ Σ ∪ {τ}. By definition, we have that a = a.

The core syntax of PL-CCS comprises deadlock 0, action prefix a.− (for each
a ∈ Act), choice +, binary variant ⊕i where i ∈ N, and parallel composition ‖. It
also includes process renaming [f ] where f : Act 7→ Act is a renaming function
with f(a) = f(a), and f(τ) = τ , restriction \L where L ⊆ Act . Additionally, it
has process names, and recursion operator 〈A|E〉 where E is a recursive specifi-
cation over A, denoted by E(A) for short. A recursive specification is defined by
a set of recursive equations that contains precisely one recursive equationA def

= tA
for each process name A ∈ A, where tA is a term over the PL-CCS signature
and process names from A. The PL-CCS syntax is summarized by the following
grammar:

t ::= 0 | a.t | t+ t | t⊕i t | t ‖ t | t[f ] | t \ L | A | 〈A|E〉

Process term a.t denotes a process that first performs action a and then be-
haves as t. Alternative composition t1 + t2 nondeterministically behaves as t1
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or t2. Variant operator ⊕i defines a behavioral variation point. Family t1 ⊕i t2
consists of the two alternative families specified by t1 and t2. Binary variant op-
erators ⊕i, or variants for short, with identical indices i are resolved in the same
manner. PL-CCS terms can be composed using the parallel composition operator
‖. Process term t1 ‖ t2 denotes the concurrent execution of two processes t1 and
t2, of which the actions can be interleaved or synchronized whenever t1 and t2
are ready to execute an input and the corresponding output action simultaneously.
The process term t[f ] behaves as t, with every action renamed according to the
renaming function f . The process term t \ L can perform any action that is not
included in L. A process name A denotes a specific process, and the recursion
operator 〈A|E〉 represents a solution of the recursive specification E(A) where A
acts as the initial variable. A solution of a recursive specification E(A) is a set of
process terms {sA | A ∈ A} such that if for all A ∈ A, sA is substituted for A,
the equations of E correspond to equal elements (in the model of our equational
theory), i.e., sA = t{sX/X|X ∈ A}, where A def

= t ∈ E. The guardedness
criterion for recursive specifications ensures that this solution is unique. As far
as unguarded recursions are concerned, following the approach of CCS and ACP
[18], we consider the solution that has the least set of transitions. In Section 4,
we explain the guardedness criterion. In the remainder of this paper, we use the
notions of process term, product line, and family interchangeably.

Note that the term defining process name A in a recursive specification may
include recursive specifications. A term is called closed, if every process name A
occurs in the scope of a binding recursive specification E(A) such that A ∈ A.
For instance, in the closed term 〈X|{X def

= a.0⊕1 b.〈Y |{Y def
= Y + c.X}〉}〉, X is

bound by the outer recursive specification. As usual, we use the notation t{s/A}
to denote the substitution of a closed term s for every free occurrence of process
name A in t. We use 〈t|E〉, where E is a recursive specification overA, to denote
t{〈A|E〉/A | A ∈ A}, i.e., t where, for all A ∈ A, all free occurrences of A in t
are replaced by 〈A|E〉.

By adopting 〈A|E〉 instead of the CCS recursion operator, we can easily spec-
ify SPLs in which a process name definition is shared. For instance, 〈p1|{p1 def

=

p2 ‖ p2, p2 def
= b.0⊕1 c.0}〉 is equivalent to the CCS notation µX.(µY.b.0⊕1 c.0 ‖

µY.b.0⊕1 c.0).
Index i is called bounded in t1⊕it2. The bounded indices of term t, denoted by

bi(t), are those that are reachable from the root of its parse tree. We define bi(t) =
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fbi(t, ∅), where the auxiliary function fbi is defined inductively as follows:

fbi(0,S) = ∅ fbi(t \ L,S) = fbi(t,S)
fbi(a.t,S) = fbi(t,S) fbi(t[f ],S) = fbi(t,S)
fbi(t1 + t2) = fbi(t1,S) ∪ fbi(t2,S) fbi(t1 ‖ t2,S) = fbi(t1,S) ∪ fbi(t2,S)
fbi(t1 ⊕i t2,S) = {i} ∪ fbi(t1,S) ∪ fbi(t2,S) fbi(A,S) = ∅
fbi(〈A|E ∪ {A def

= t}〉,S) = fbi(〈t|E ∪ {A def
= t}〉,S ∪ {A}), if A 6∈ S

fbi(〈A|E ∪ {A def
= t}〉,S) = ∅, if A ∈ S.

An index i is free in t, iff it is not bounded. We denote by t[i/j] the term that is
obtained by replacing all ⊕j by ⊕i in t (we dispense with the inductive definition
as it is straightforward).

2.2. PL-CCS Semantics
Intuitively, the behavior of a product line family is defined by the cumulative

behavior of its products. These products are obtained by resolving the choice in
the binary variant operators. The resolution may take place at various points of
execution and hence, to record such choices the semantics needs to record whether
the choice is unresolved (denoted by ?), resolved in favor of the left-hand-side
product (denoted by L), or resolved in favor of the left-hand-side product (denoted
by R). Also resolving one instance of a binary variant operator may resolve the
choice for other instances. For instance, configuring the variant j as R in (a.0⊕i
b.0) ⊕j c.0, makes it unnecessary to configure the variant i. Configuration status
of variation points bounded in a process term with maximum index n are recorded
in a configuration vector ν ∈ {L,R, ?}n, where the ith element of the vector is
denoted by ν|i. We denote by Config the set of all possible configuration vectors,
ranged over by ν and λ. Expression ν|i/x denotes the result of replacing the ith
element of ν by x ∈ {L,R}. A configuration is called full when all its elements
are configured, i.e., are in {L,R}. Two configurations ν and λ that do not have
any conflict on a variation point are called consistent. This concept is formalized
below.

Definition 1 (Consistent configuration vectors [12]). Configuration vectors ν, λ ∈
{L,R, ?}n are consistent, denoted by ν � λ, if and only if ∀i ∈ {1, ..., n} : ((ν|i =
?) ∨ (λ|i =?) ∨ (ν|i = λ|i)).

Given two consistent configuration vectors ν and λ, their unification, denoted
by ν�λmerges the configurations of their variation points as follows: (ν�λ)|i =
X ∈ {L,R, ?} iff either ν|i = X ∧ λ|i =? or ν|i =? ∧ λ|i = X or ν|i = λ|i = X .



2 PRODUCT LINE CCS 9

a.t
a,ν?−−−→ t

: Prefix
t1

a,ν−−→ t′1

t1 + t2
a,ν−−→ t′1

: Choice

t
a,ν−−→ t′ a 6∈ L

t \ L a,ν−−→ t′ \ L
: Res

t1
a,ν−−→ t′1 ν|i 6= R

t1 ⊕i t2
a,ν|i/L−−−−−→ t′1

: Select

t1
a,ν−−→ t′1

t1 ‖ t2 a,ν−−→ t′1 ‖ t2
: Par

〈t|E〉 a,ν−−→ t′ A
def
= t ∈ E

〈A|E〉 a,ν−−→ t′
: Call

t1
a,ν−−→ t′1 t2

a,ν′−−→ t′2 ν � ν ′

t1 ‖ t2 τ,ν�ν′−−−−−−→ t′1 ‖ t′2
: Sync

t
a,ν−−→ t′

t[f ]
f(a),ν−−−−→ t′[f ]

: Rename

Figure 2: Operational Semantics to derive configured-transition system

Configuration vector ν ′ is more concrete than ν (or ν is more abstract than ν ′),
denoted by ν v ν ′, iff ∀i ∈ {1, ..., n} : ((ν|i =?)∨ (ν|i = ν ′|i)) [12]. Hence, each
configuration vector ν represents a set of configuration vectors {ν ′ | ν v ν ′}.

We briefly explained the three different semantic models of PL-CCS terms
in Section 1: the flat semantics, the unfolded semantics, and the configured-
transition semantics [12]. Since our equivalence relation and the multi-valued
modal µ-calculus are defined over the configured-transition semantics, we next
elaborate on how this semantics is derived directly using our structural operational
semantics rules.

The configured-transition semantics induces an LTS, in which the labels are
pairs in Act × Config . Formally, a configured-transition system (CTS) is a tuple
〈S, s0,Act × Config ,→〉, where S is a set of states, s0 ∈ S is an initial state and
→⊆ S ×Act ×Config × S is a set of transition relations. The notation s

α,ν−−→ s′

is used for (s, (α, ν), s′) ∈→ and is representative for all transitions s
α,ν′−−−→ s′,

where ν v ν ′. The CTS semantics of a PL-CCS term t has the set of all terms as
its states, t as the initial states, and the least relation satisfying the rules in Figure 2
as its transition relation.

The rule Prefix indicates the execution of a prefix action, where ν? denotes
a configuration vector in which no element is configured. Choice specifies the
non-deterministic behavior of the choice operator in terms of its operands. Res
defines that term t\L is only allowed to do actions that are not in L. Select defines
the behavior of a family in terms of its products, by deciding about the ith variant
operator. The side condition prohibits any reconfiguration, if it was previously
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configured. Call defines the behavior of 〈A|E〉 in terms of the behavior of the
right-hand side of the equation A

def
= t in the recursive specification E. Par

explains that a process in a parallel composition can proceed independently of the
other parallel component. Sync states that two processes in a parallel composition
can be synchronized on an action, if both are ready to perform input and output
counterparts simultaneously. Since t1 and t2 resolve variants in their scopes, their
resolutions are unified for their parallel composition in Sync. Finally, Rename
renames all actions using a function f .

The symmetric versions of rules Choice, Select , and Par are also present, but
are not given explicitly here for the sake of brevity.

Example 2. Using the rules in Figure 2, the configured-transition semantics of
〈X|E〉, where E = {X def

= (a.(b.X ⊕1 c.0) + d.0)⊕2 e.0}, is given in Figure 3a.
The derivation tree inducing the transition labeled by a, 〈?, L〉 is given below:

:Prefix

a.(b.〈X|E〉 ⊕1 c.0)
a,〈?,?〉−−−−−→ b.〈X|E〉 ⊕1 c.0

:Choice
a.(b.〈X|E〉 ⊕1 c.0) + d.0

a,〈?,?〉−−−−−→ b.〈X|E〉 ⊕1 c.0
:Select

(a.(b.〈X|E〉 ⊕1 c.0) + d.0)⊕2 e.0
a,〈?,L〉−−−−−→ b.〈X|E〉 ⊕1 c.0

:Call
〈X|E〉 a,〈?,L〉−−−−−→ b.〈X|E〉 ⊕1 c.0

Other transitions are derived similarly. On deriving the transitions of b.〈X|E〉⊕1

c.0 with the help of Prefix and Select , only the first variant point can be config-
ured, and consequently it returns to state 〈X|E〉 with the action b, 〈L, ?〉 or state
0 with the action c, 〈R, ?〉, as shown in Figure 3a.

Returning to state 〈X|E〉 in Example 2, makes it possible to reconfigure any
previously configured variant. For the sake of compositionality, resolutions of
variants are open to any possible configuration in our SOS rules. However, as it
is explained in the next paragraph and Section 3.1, in deriving the behavior of a
prduct/a set of related products only consistent resolutions are followed.

The semantic model of each product of t, identified by the full configuration
νf , can be derived by removing the transitions from t whose configuration vec-
tor is not consistent with νf . Let Π(t, νf ) denote the resulting LTS. Formally
speaking, Π(t, νf )

a−→ Π(t′, νf ) iff t
a,ν−−→ t′ and ν v νf . Therefore, only res-

olutions that are consistent with the full configuration, i.e., ν v νf , are allowed
and consequently reconfiguration is prohibited. See Figure 3b, 3c, 3d, and 3e for
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—

〈X|E〉

b.〈X|E〉 ⊕1 c.0 0

a, 〈?, L〉

d, 〈?, L〉

e, 〈?, R〉

b, 〈L, ?〉

c, 〈R, ?〉

(a) 〈X|E〉

a

d

b

(b) 〈L,L〉

a d

c

(c) 〈R,L〉

b e

(d) 〈L,R〉

e

c

(e) 〈R,R〉

Figure 3: The configured-transition system of 〈X|E〉, and Π(〈X|E〉, ν) for the
given configuration vectors

the semantic models of products derived from X for the given configuration vec-
tors 〈L,L〉, 〈R,L〉, 〈L,R〉, and 〈R,R〉 respectively (initial states are highlighted
in gray). It should be noted that the semantic models derived for the configura-
tion vectors 〈L,R〉 and 〈R,R〉 have only one reachable state from the initial state
through the action e.

3. Bisimilarity for Product Lines

Following the approach of ACP [18], we define a set of axioms (as the main
part of our process theory or equational theory) as primary and then investigate
the models that they have. The most intuitive model of a process theory is the
term algebra (the algebra with the same operators of equational theory) modulo a
congruence. In this Section, we first discuss about different notions of equivalence
relation to reason about product lines. Next, we discuss about the congruence
property of the previously defined relations.

Table 1 summarizes the axioms we have in mind for PL-CCS. We look for an
appropriate notion of bisimilarity that supports the given equations. Axioms A1−3
define commutativity, associativity and idempotency for the binary variant oper-
ator. Axioms A1,2 ensure that two families are equivalent when they produce the
same set of products, irrespective of their orders in variant operators. However,
their application is restricted: i should be free in p and q for A1, while i should be
free in r and j should be free in p for A2. For instance, a.0 ⊕1 (b.0 ⊕1 c.0) pro-
duces two products a.0 and c.0, but (b.0⊕1 c.0)⊕1 a.0 produces a.0 and b.0, and
consequently, as expected they are not equivalent. Axiom A3 removes a repeated
product from a family, and implies that two product families are equivalent iff they
produce similar products, irrespective of their multiplicity. Axiom A4 defines dis-
tributivity for prefix over binary variant, while axioms A5,6 define distributivity
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Table 1: The axioms that product line bisimilarity should support.

p⊕i q = q ⊕i p, i 6∈ bi(p) ∪ bi(q) A1 (p⊕i q) + r = (p+ r)⊕i (q + r) A5

(p⊕i q)⊕j r = p⊕i (q ⊕j r), A2 r + (p⊕i q) = (r + p)⊕i (r + q) A6

i 6∈ bi(r) ∧ j 6∈ bi(p)
p⊕i p = p A3 r ‖ (p⊕i q) = (r ‖ p)⊕i (r ‖ q) D1

a.(p⊕i q) = a.p⊕i a.q A4 (p⊕i q) ‖ r = (p ‖ r)⊕i (q ‖ r) D2

for choice over binary variant. These rules allow for postponing the product se-
lection by factorizing the common initial action/behavior respectively. Axioms
D1,2 define distributivity for parallel over binary variant. These two axioms reveal
the difference between alternative choice and binary variant. Axioms A5,6 and
D1,2 are useful to reduce redundancy by factorizing common parts.

3.1. Equivalence Relation
Strong bisimulation [15] is very efficient to check and affords a neat theory:

many other notions in the branching spectrum can be reduced to it by adding
a standard set of axioms [19]. An LTS over a set of labels L is defined by
〈S, s0, L,→〉, where S is a set of states, s0 ∈ S is an initial state, and →⊆
S × L × S is a set of transitions. The notation s a−→ t is used for (s, a, t) ∈→.
We typically identify LTSs with their initial states. Intuitively two labeled tran-
sition systems are equivalent, if they produce the same set of actions (observable
behavior) and have the same branching structure:

Definition 3 (Strong bisimulation). Two LTSs s and t are strongly bisimilar, no-
tation s ∼ t, iff there is a strong bisimulation relation R over their states such
that:

• (s, t) ∈ R, and

• for each pair (s′, t′) ∈ R:

– ∀s′′ · s′ α−→ s′′ ⇒ ∃t′′ · t′ α−→ t′′ and (s′′, t′′) ∈ R, and

– ∀t′′ · t′ α−→ t′′ ⇒ ∃s′′ · s′ α−→ s′′ and (s′′, t′′) ∈ R.

Definition 3 can be readily used for CTSs (since CTSs can be considered LTSs
with a structure on the set of labels L). However, this simple adoption of Defini-
tion 3 can lead to some counter-intuitive observations.
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For example, according to this definition, a.0 + b.0 is strongly bisimilar to
a.0⊕1 b.0. However, these two processes should not be considered equivalent in-
tuitively. The family a.0+b.0 produces one product which has a non-deterministic
behavior in performing actions a and b. By contrast, the family a.0⊕1b.0 produces
two products, namely a.0 and b.0, and each product has deterministic behavior by
performing solely a or solely b. As another concern, this relation cannot identify
a.(b.0 ⊕1 c.0) and a.b.0 ⊕1 a.c.0, while both have two products a.b.0 and a.c.0;
consequently, this bisimulation relation does not support axiom A4. Therefore,
the appropriate notion of bisimilarity over families must find for any product in
one family a product in another such that their behaviors be strong bisimilar.

A full configuration is called valid with respect to term t, if its length is
not less than the maximum index in bi(t). For instance, 〈L〉 is not valid for
b.〈X|E〉 ⊕1 c.0, where E = {(a.(b.X ⊕1 c.0) + d.0) ⊕2 e.0}, while 〈L, ?, L〉 is
valid. Let VFConfig(t) denote the set of all valid full configurations with respect
to t. Intuitively, two product families are equivalent when they produce bisimilar
sets of products:

Definition 4 (Strict strong bisimulation). Two product line terms s and t are
strictly strongly bisimilar, denoted by s ≈PL t, iff for any valid full configura-
tion νf ∈ VFConfig(s) ∩ VFConfig(t), Π(s, νf ) ∼ Π(t, νf ).

However, strict strong bisimilarity does not support axioms A1,2; to see this,
observe that Π(a.0⊕1b.0, 〈L〉) � Π(b.0⊕1a.0, 〈L〉), Π((a.0⊕1b.0)⊕2c.0, 〈L,R〉) �
Π(a.0 ⊕1 (b.0 ⊕2 c.0), 〈L,R〉) and Π((a.0 ⊕2 b.0) ⊕1 c.0, 〈R,L〉) � Π(a.0 ⊕2

(b.0 ⊕1 c.0), 〈R,L〉). However, axiom A3 is supported by strict strong bisim-
ilarity, e.g., (a.0 ⊕1 b.0) ⊕2 (a.0 ⊕1 b.0) ≈PL a.0 ⊕1 b.0 since for any νf ∈
{〈L,R〉, 〈L,L〉, 〈R,R〉, 〈R,L〉}, Π((a.0⊕1 b.0)⊕2 (a.0⊕1 b.0), νf ) ∼ Π(a.0⊕1

b.0, νf ).
To make Definition 4 be insensitive to the placement of families in a bi-

nary variant composition, and consequently to support axioms A1,2, the notion
of bisimulation can be revised as follows.

Definition 5 (Product line bisimulation). Two product line terms s and t are
product line bisimilar, denoted by s 'PL t, if and only if:

• ∀νf1 ∈ VFConfig(s) · ∃νf2 ∈ VFConfig(t) · Π(s, νf1 ) ∼ Π(t, νf2 ), and

• ∀νf2 ∈ VFConfig(t) · ∃νf1 ∈ VFConfig(s) · Π(s, νf1 ) ∼ Π(t, νf2 ).
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Theorem 6. Product line bisimilarity is an equivalence relation.

See Appendix A for the proof. Confining the behaviors of two CTSs into full
configurations disallows any reconfiguration of variants whose resolutions are left
open in the semantic models (as it was explained in Section 2.2).

Matching each and every valid full configuration in the product line bisimi-
larity is very tedious. This process may require examining all possible pairs of
configurations to find a suitable match. (Yet it does eventually reduce to checking
strong bisimilarity for a large number of finite-state behaviors, which is decidable
[20].) Hence, it would be appealing to have an appropriate notion of bisimilar-
ity that decides the equivalence of PL-CCS terms at once (without considering
all full configurations individually). We provide such a relation, called configu-
ration bisimulation next and prove that it coincides with product line bisimilarity.
Therefore, all the results for product line bisimilarity also hold for configuration
bisimilarity. Also, to facilitate reasoning about product lines and also establish
an algebraic theory for product line processes, we provide a sound and complete
axiomatization for product line and configuration bisimilarity. Using this axiom-
atization, a term can be restructured at the syntactic level to its equivalent terms
without the need to generate and compare the state spaces. In the process of
providing a sound and complete axiomatization, we use product line bisimilarity
which makes our proofs much simpler.

First, we define the notion of configuration inspired by [16]. As a first step,
we would like to classify the transitions in terms of their configuration vectors; all
transitions with consistent configurations are called a consistent transition set and
they can potentially belong to a family. Subsequently, we define a bisimulation re-
lation that relates states in terms of their consistent transition sets. In other words,
it is required to relate not only states, but also their consistent transition sets. Con-
sider Figure 4, which illustrates this by an example. The terms in this figure are not
product line bisimilar, as the left one consists of four (behaviorally different) prod-
ucts while the right one consists of two. However, a notion of bisimulation that
only considers consistent transition sets in each state (as shown in Figure 4) cannot
distinguish them. The consistent transition set {(d, 〈L, ?〉), (a, 〈?, ?〉)} can be en-
abled together for a product/family. For instance, consider the product d.0+a.c.0,
which is identified by the full configuration 〈L,R〉 in the left CTS. It is derived
from the consistent transition sets highlighted in Figure 4. These consistent tran-
sition sets are matched to the corresponding sets in the right CTS. However, the
matched sets do not belong to a family, and consequently cannot specify a prod-
uct. The reason stems from the related states b.0⊕2 c.0 and b.0. State b.0⊕2 c.0 is
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(d.0⊕1 e.0) + a.(b.0⊕2 c.0)

0 0b.0⊕2 c.0

0 0

(d.0 + a.b.0)⊕1 (e.0 + a.c.0)

0 0

b.0 c.0

0 0

d,
〈L
, ?
〉 e, 〈R

, ?〉

a
,〈

?
,
?〉

b,
〈?
,
L
〉 c

, 〈?
,
R
〉

d,
〈L〉

e, 〈R〉

a
,
〈L
〉 a

, 〈R
〉

b,
〈?
〉

c, 〈?〉

Figure 4: An example on defining a bisimulation regarding states and consistent
transition sets

reachable by the consistent transition set {(d, 〈L, ?〉), (a, 〈?, ?〉)} for two products
(i.e., {〈L,R〉, 〈L,L〉}). Therefore, its consistent transition set {(c, 〈?, R〉)} is en-
abled for product 〈L,R〉. However, its related state b.0 is only reachable for one
product, which does not generate a matching consistent transition set. To sum-
marize, we need to note for which family a state is reachable in order to match
its enabled consistent transition sets with respect to that family. Furthermore, this
book-keeping family disallows any reconfiguration of variants which have been
previously resolved.

A partitioning of a configuration vector ν consists of configuration vectors
ν1, · · · , νn such that ∀i, j ≤ n · ((i 6= j) ⇒ νi 6� νj), and ∀νf · (ν v νf ⇒
∃j ≤ n · (νj v νf )). For instance, {〈?, L〉, 〈L,R〉, 〈R,R〉} is a partitioning of
〈?, ?〉. A partitioning of ν, denoted by pν , regards configurations over transitions

of s, denoted by Par(s, ν, pν), if and only if ∀ν1 ∈ pν ⇒ ∃α, ν ′1, s′(s
α,ν′1−−−→ s′∧ν ′1 v

ν1)∨@α, ν ′1, s′(s
α,ν′1−−−→ s′∧ν ′1 � ν1). Transitions of swhose configurations are more

abstract than ν ∈ pν1 , where Par(s, ν1, pν1), constitute a consistent transition set.
Assume s and t are related for families ν1 and ν2, respectively. In the below-
defined notion of configuration bisimulation, we match consistent transition sets
of s defined by pν1 , where Par(s, ν1, pν1), to consistent transition sets of t defined
by pν2 , where Par(t, ν2, pν2).

Definition 7 (Configuration bisimulation). A class of binary relations Rν1,ν2 ⊆
S × S, where ν1, ν2 ∈ Config , is a configuration simulation relation if and only
if for each s, t ∈ S such that (s, t) ∈ Rν1,ν2 , there exists pν1 and pν2 , where
Par(s, ν1, pν1) and Par(t, ν2, pν2) such rgar for any ν ′1 ∈ pν1 , there exists ν ′2 ∈ pν2
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and:

• s α,ν′′1−−−→ s′ and ν ′′1 v ν ′1 ⇒ ∃t′, ν ′′2 ·t
α,ν′′2−−−→ t′, ν ′′2 v ν ′2, and (s′, t′) ∈ Rν′1,ν

′
2
;

• t α,ν′′2−−−→ t′ and ν ′′2 v ν ′2 ⇒ ∃s′, ν ′′1 ·s
α,ν′′1−−−→ s′, ν ′′1 v ν ′1, and (s′, t′) ∈ Rν′1,ν

′
2
.

Rν1,ν2 is a configuration bisimulation if Rν1,ν2 and R−1ν1,ν2 are configuration simu-
lations. Two states s, t ∈ S are called configuration bisimilar, denoted by s 'C t,
if and only if (s, t) ∈ Rν?,ν? for some configuration bisimulation relation Rν?,ν? .

For instance, a.(b.0⊕1 c.0) 'C a.c.0⊕1a.b.0 is witnessed by the configuration
bisimulation relations R〈?〉,〈?〉 = {(a.(b.0⊕1 c.0), a.c.0⊕1a.b.0)}, R〈R〉,〈L〉 = {(b.0⊕1

c.0, c.0), (0, 0)}, R〈L〉,〈R〉 = {(b.0 ⊕1 c.0, b.0), (0, 0)}. However a.(b.0 ⊕1 0) 6'C
a.b.0 as the only partitioning of 〈?〉 regarding the state transitions of b.0 ⊕1 0 is
{〈R〉, 〈L〉} and then the behavior b.0 ⊕1 0 for family 〈R〉 cannot be matched to
any behavior of a.b.0.

Theorem 8. For any PL-CCS s and t, s 'PL t⇔ s 'C t.

Proof. We assume s 'PL t, we show that s 'C t. For all valid full configurations
νf1 ∈ VFConfig(s) and νf2 ∈ VFConfig(t), construct Rνf1 ,ν

f
2

as:

R
νf1 ,ν

f
2

= {(s′, t′) | Π(s, νf1 ) ∼ Π(t, νf2 ) witnessed by R′ ∧ (Π(s′, νf1 ),Π(t′, νf2 )) ∈ R′}

It is easy to check that R is a configuration bisimulation relation.
We assume s 'C t is witnessed by the class of configuration bisimulation

relations Rν1,ν2 , where ν1, ν2 ∈ Config , we show that s 'PL t. To this aim, for
any νf1 ∈ VFConfig(s), we find νf2 ∈ VFConfig(t) such that Π(s, νf1 ) ∼ Π(t, νf2 )
and vice versa. Let B = {ν2 | (s′, t′) ∈ Rν1,ν2∧ν1 v νf1 }. Choose b ∈ B such that
@ν ∈ B \ {b} · b v ν. Take a configuration νf2 such that b v νf2 . It is trivial that
R′ = {(Π(s′, νf1 ),Π(t′, νf2 )) | (s′, t′) ∈ Rν1,ν2 ∧ ν1 v νf1 ∧ ν2 v νf2 } is a strong
bisimulation witnessing Π(s, νf1 ) ∼ Π(t, νf2 ). �

Partitioning each family and then matching its consistent transition sets is very
complex and may need to examine all possible partitionings to find a suitable
match. Since product line and configuration bisimilarity coincide, with the aim
to provide a sound and complete axiomatization, we use product line bisimilarity
which makes our proofs much simpler. Therefore, all results for product line
bisimilarity also hold for configuration bisimilarity.
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3.2. Congruence Property
In this section, we study the congruence property of strict and product line

bisimulation relations, and provide a syntactic restriction over PL-CCS terms that
makes product line bisimilarity a congruence with respect to the PL-CCS opera-
tors.

Strict strong bisimilarity is a congruence for PL-CCS terms. For instance,
〈p′2|{p′2

def
= b.0 ⊕1 c.0}〉 ≈PL b.0 ⊕1 c.0, induces that 〈p′2|{p′2

def
= b.0 ⊕1 c.0}〉 ‖

〈p′2|{p′2
def
= b.0⊕1 c.0}〉 ≈PL (b.0⊕1 c.0) ‖ (b.0⊕1 c.0).

Theorem 9. Strict strong bisimilarity is an equivalence and a congruence for the
PL-CCS term algebra.

See Appendix A for the proof.
The case for product line bisimulation is a bit more intricate. To illustrate the

involved issues, observe that (d.0⊕1 e.0) ‖ (b.0⊕1 c.0) 6'PL (d.0⊕1 e.0) ‖ (c.0⊕1

b.0), while b.0 ⊕1 c.0 'PL c.0 ⊕1 b.0. The reason is that the configurations 〈R〉
and 〈L〉 of b.0⊕1 c.0 are matched to the configurations 〈L〉 and 〈R〉 of c.0⊕1 b.0
respectively, but each pair of matched configurations chooses a different product
in d.0⊕1e.0. However, (d.0⊕1e.0)⊕2(b.0⊕1c.0) 'PL (d.0⊕1e.0)⊕2(c.0⊕1b.0),
since ⊕2 makes the configurations of its operands independent of each other. To
guarantee congruence for product line bisimilarity, we impose a constraint on the
PL-CCS syntax. In (d.0 ⊕1 e.0) ‖ (b.0 ⊕1 c.0), there are two binary variants
indexed by 1. Hence, once one resolves the choice between d.0 and e.0, the same
choice has to made between b.0 and c.0. We call a product line fully expanded
when all its variants can be configured independently from the configuration of
other variation points.

This constraint was first introduced in [12] with the different intention of com-
positionality for their structural rules.We revise their definition to enforce that
different binary variant choices can be made independent of each other. To for-
mally define a fully expanded term, we use its term-dependency graph which is
a directed labeled graph. Its construction for a term t is explained on the term
(a.〈Y |E〉+ e.0) ‖ 〈Z|E〉, where E = {Y def

= b.0⊕1 c.Z, Z
def
= c.Z ⊕2 d.Y }. Its nodes

comprise the nodes of the parse tree of t together with additional nodes labeled
〈Ai|Ei〉 and Ei (i.e., the gray and the white nodes in Figure 5, respectively). Its
edges comprise the edges of the parse tree of t (i.e., the thick solid edges in Figure
5) plus edges connecting 〈Ai|Ei〉 to the node labeled Ai in the term-dependency
graph of Ei (i.e., the dashed edges in Figure 5), and the edges of recursive speci-
fications Ei. The term-dependency graph of Ei(Ai) consists of nodes labeled Ai
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for each Ai ∈ Ai, together with the nodes of the parse trees for term ti for each
Ai

def
= ti ∈ Ei. Its edges comprise the edges of the parse trees (i.e., the thin solid

edges in Figure 5) plus the edges connecting Ai to the roots of the parse trees of
the corresponding right-hand sides, i.e., ti (i.e., the thick dashed edges in Figure
5). Additionally, we add edges from leaves of the parse trees labeled Ai to the
node labeled with Ai in its binding recursive specification (i.e., the dotted edges
in Figure 5).

a 〈Y |E〉

.

c 0

.

+ 〈Z|E〉

‖

Z ⊕2

. .

c Z d Y

Y ⊕1

. .

b 0 c Z

Figure 5: The term-dependency graphs of (a.〈Y |E〉 + e.0) ‖ 〈Z|E〉, where E =

{Y def
= b.0⊕1 c.Z, Z

def
= c.Z ⊕2 d.Y }

Definition 10 (Fully expanded terms). A PL-CCS term is fully expanded if and
only if in its term-dependency graph, for each two distinct simple paths starting
at an arbitrary common node and ending at (common or distinct) nodes labeled
with ⊕i, they have both passed through a common node that is labeled with ⊕j ,
for some j 6= i.

Recall that a simple path is a path in a graph which does not have repeating
vertices. This constraint rules out systems such as 〈p1|{p1 def

= p2 ‖ p2, p2 def
=

b.0 ⊕1 c.0}〉, since the parallel composition in the equation of p1 has two simple
paths to⊕1. However, these paths do not pass through a node labeled with⊕j , j 6=
1, beforehand. Nevertheless, it accepts systems such as 〈p4|{p4 def

= (p2 ⊕2 p2) ‖
(b.0⊕3c.0), p2

def
= b.0⊕1c.0}〉, since all simple paths of the parallel composition in

the equation p4 to ⊕1 have already passed through ⊕2, as shown in Figure 6. The
same holds for simple paths of the node labeled with p4. Such systems were not
accepted by the Definition given in [12]. The term-dependency graph of Figure 5
satisfies the condition of Definition 10.
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p2 p2 b 0 c 0

⊕2 . .

⊕3

p4 ‖ p2

b

.

⊕1

.

0 c 0

‖

p2 p2

p1

Figure 6: The term-dependency graphs of p1 and p4; the term-dependency graph
of p2 is shared

Theorem 11. Product line bisimilarity is a congruence on the fully expanded PL-
CCS term algebra.

See Appendix A for the proof. Restricting to fully expanded PL-CCS terms
is not important in practice (when terms are manipulated at the syntactic level),
since a term can be rewritten using our axioms supported by strict strong bisim-
ilarity into a fully expanded form (see Theorem 12 in Section 4.2). Note that
the side condition of axiom A2 guarantees that a fully expanded term remains
fully expanded after being restructured by this axiom. For instance, although
(a.0⊕1 b.0)⊕2 (c.0⊕1 d.0) is fully expanded, a.0⊕1 (b.0⊕2 (c.0⊕1 d.0)) is not.

4. Equational Reasoning on PL-CCS Terms

We extend the axioms given in Section 3 to reason about parallel, recursive
behaviors with finite-state models, and indexed binary variants. To axiomatize
the interleaving behavior of parallel composition and terms with variants with an
identical index, we extend the PL-CCS syntax and semantics with new operators
in Section 4.1.

We provide PL-CCS axioms that are sound with respect to product line bisim-
ilarity in Section 4.2. Furthermore, we identify those that are also valid with
respect to strict strong bisimilarity. Our axiomatization in Table 2 subsumes stan-
dard axioms of CCS for choice operator (C1−4, R1−4, E1−4), axioms of ACP
corresponding to the well-known elimination theorem [21] (P1−3,5,6 and S1,2,4−6),
and axioms of CCS to reason about recursive behaviors [22] (Fold , UnFold , and
Ung). We explain that a term can be manipulated using axioms supported by strict
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strong bisimilarity (without changing the order of operands in binary variants) to
be rewritten into a fully expanded form, and then manipulated with all axioms
valid for product line bisimilarity. We prove ground-completeness (completeness
over closed terms) of our axiomatization for a subset of PL-CCS terms, namely,
those with finite-state behaviors in Section 4.3.

4.1. Extending PL-CCS Framework
Our axiomatization borrows from the process algebra ACP [23] two auxiliary

operators (left merge and communication merge) to axiomatize the interleaving
and the synchronizing behavior of parallel composition, respectively. Further-
more, we extend the process theory with two new sets of indexed operators (left
and right selector), to restrict the behavior of a term regarding configuration of the
variant indexed by that number.

t1
a,ν−−→ t′1

t1 t2
a,ν−−→ t′1 ‖ t2

: LMerge
t1

a,ν−−→ t′1 t2
a,ν′−−→ t′2 ν � ν ′

t1 | t2 τ,ν�ν′−−−−−−→ t1 ‖ t2
: Merge

t
a,ν−−→ t′ ν|i 6= R

L(t, i)
a,ν−−→ L(t′, i)

: LSelect
t

a,ν−−→ t′ ν|i 6= L

R(t, i)
a,ν−−→ R(t′, i)

: RSelect

Figure 7: Operational semantic rules for auxiliary operators

In the left merge composition t1 t2, the left operand (t1) performs an action
and then continues in parallel with t2. In the communication merge t1 | t2, both
operands are synchronized on their initial actions and then continue in parallel
composition. The left selector operator L(t, i) makes all variants indexed by i be
configured as left. Therefore, it only allows behaviors whose configurations on
the variant indexed by i are consistent with left. The right selector operatorR(t, i)
behaves symmetrically. The structural operational semantics rules of operators to
derive CTSs are given in Figure 7.

4.2. PL-CCS Axiomatization
We proceed to complete the axiomatization of PL-CCS modulo product line

bisimilarity. The axioms are given in Table 2. Axioms C1−4 define commutativity,
associativity, idempotence, and unit element for the choice operator.

Axiom P1 defines the parallel composition of two families in an interleaving
semantics, as in the process algebra ACP [23]; Axiom P2 explains the behavior of
the left merge operator in terms of its left operand, if it can do an action. However,
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if it cannot do any action, the result is a deadlock, as explained by P6. Axioms
P3,4 define left-distributivity of choice and binary variant over the left merge oper-
ator, respectively. Axiom P5 defines right-distributivity of binary variant over the
left merge operator. Axiom S1 defines the commutativity property for the com-
munication merge operator. Axioms S2,3 (together with S1) define distributivity
of choice and binary variant over the communication merge operator respectively.
Axioms S4,5,6 define the behavior of communication merge operator; when the
operands are ready to do matched input and output communication actions, they
can be synchronized and the result of their synchronization is the unobservable
action τ as explained by S4. However, if either they are not matched (S5) or one
of the operands cannot do any action (S6), the result is a deadlock.

Axioms R1,4 and E1,2,4 define the behavior of renaming and restriction opera-
tors respectively. Axioms R2,3 and E3,5 define distributivity of choice and binary
variant over the renaming and restriction operators, respectively.

Axiom Dec decomposes a recursive specificationE made up of multiple (finitely-
many) equations into several nested recursive specifications made up of a single
equation. Axiom UnFold expresses the existence of a solution for any recursive
specification E: the constant 〈A|E〉 is a solution of the recursive specification E.
Fold expresses uniqueness of a solution for a guarded recursive specification: if
y is a solution for A in E, and E is guarded, then y = 〈A|E〉. Note that UnFold
and Fold correspond to the Recursive Definition Principle (RDP) and Recursive
Specification Principle (RSP) in ACP. An occurrence of a process name A in t is
called guarded, if and only if this occurrence is in the scope of an action prefix
operator. A recursive specification is called guarded, if and only if all occurrences
of all its process names in the right-hand sides of all its equations are guarded, or
it can be rewritten to such a recursive specification using the axioms of the theory
and the equations of the specification [17]. This guardedness criterion ensures
that any product line has a unique solution. Axiom Ung makes it possible to turn
the unguarded recursive specification {A def

= A + t} into a guarded one. Axiom
Dri derives the products of a recursive specification: the solution of a recursive
specification 〈A|{A def

= t1 ⊕i t2}〉 is 〈A|{A def
= t1}〉 ⊕i 〈A|{A def

= t2}〉. Axioms
UnFold , Fold , and Ung are standard for CCS terms (with finite state behaviors
modulo branching bisimulation) [22].

Axioms N1−5 handle binary variants with an identical index. Whenever the
left (right) operand is selected in p ⊕i q, then all i-indexed variants in p (q),
should select their left (right) operands accordingly. Axiom N5 removes all oc-
currences of ⊕i at the root of p ⊕i q in operands p and q. In other words, with
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Table 2: The axiomatization of PL-CCS terms.

p+ q = q + p C1 (p+ q) + r = p+ (q + r) C2

p = p+ p C3 0 + p = p C4

p ‖ q = (p q) + (q p) + (p | q) P1 p | q = q | p S1

a.p q = a.(p ‖ q) P2 (p+ q) | r = (p | r) + (q | r) S2

(p+ q) r = (p r) + (q r) P3 (p⊕i q) | r = (p | r)⊕i (q | r) S3

(p⊕i q) r = (p r)⊕i (q r) P4 (a.p) | (a.q) = τ.(p ‖ q) S4

p (q ⊕i r) = (p q)⊕i (p r) P5 (a.p) | (b.q) = 0, (b 6= a) ∨ (a = τ) S5

0 p = 0 P6 0 | p = 0 S6

(a.p)[f ] = f(a).(p[f ]) R1 (a.p) \ L = a.(p \ L), a 6∈ L E1

(p+ q)[f ] = (p[f ]) + (q[f ]) R2 (a.p) \ L = 0, a ∈ L E2

(p⊕i q)[f ] = (p[f ])⊕i (q[f ]) R3 (p+ q) \ L = (p \ L) + q \ L) E3

0[f ] = 0 R4 0 \ L = 0 E4

(p⊕i q) \ L = (p \ L)⊕i (q \ L) E5

L(p⊕i q, i) = L(p, i) N1 L(p⊕j q, i) = L(p, i)⊕j L(q, i), i 6= j N2

R(p⊕i q, i) = R(q, i) N3 R(p⊕j q, i) = R(p, i)⊕j R(q, i), i 6= j N4

p⊕i q = L(p, i)⊕i R(q, i) N5 p = p[k/j], k 6∈ bi(p) N6

〈A|E ∪ {B def
= t}〉 = 〈〈A|E〉|{B def

= t}〉 Dec

〈A|{A def
= t}〉 = 〈t|{A def

= t}〉 UnFold

s = t{s/A} ⇒ s = 〈A|{A def
= t}〉, A is guarded in t Fold

〈A|{A def
= A+ t}〉 = 〈A|{A def

= t}〉 Ung

〈A|{A def
= t1 ⊕i t2}〉 = 〈A|{A def

= t1}〉 ⊕i 〈A|{A def
= t2}〉 Dri
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the help of N1−5, the occurrence of i in subtrees of p ⊕i q becomes unique. For
instance, consider the product line 〈X|{X def

= b.X ⊕1 a.0}〉, with two products
〈X|{X def

= b.X}〉 and 〈X|{X def
= a.0}〉 obtained using axiom Dri . However,

by applying axiom UnFold and substituting of X with its defining term, one can
derive 〈X|{X def

= b.X ⊕1 a.0}〉 = (b.(〈X|{X def
= b.X ⊕1 a.0}〉) ⊕1 a.0) =

b.(〈X|{X def
= b.X}〉 ⊕1 〈X|{X def

= a.0}〉) ⊕1 a.0. By axioms A4 and N1,5,

b.(〈X|{X def
= b.X}〉 ⊕1 〈X|{X def

= a.0}〉) ⊕1 a.0 is reduced to b.〈X|{X def
=

b.X}〉 ⊕1 a.0, which derives two products b.〈X|{X def
= b.X}〉 and a.0 (that are

strongly bisimilar to the products of 〈X|{X def
= b.X⊕1a.0}〉). AxiomN6 changes

the index of a binary variant term. For example, (a.0 ⊕1 b.0) ⊕2 (c.0 ⊕1 d.0) =
(a.0 ⊕1 b.0) ⊕2 (c.0 ⊕3 d.0). Consequently, axiom A2 can be applied, resulting
(a.0⊕1 b.0)⊕2 (c.0⊕1 d.0) = a.0⊕1 (b.0⊕2 (c.0⊕3 d.0)).

It should be noted that t ≈PL s implies t 'PL s. All axioms, except for
A1,2 and N6, are supported by strict strong bisimilarity. Generally speaking, to
manipulate a PL-CCS term, as stated in Theorem 12, first it can be converted
into a fully expanded form with the help of axioms supported by strict strong
bisimilarity, and then manipulated with all axioms.

Theorem 12. Any PL-CCS term t can be rewritten by axioms A4−6, D1,2, P4,5,
S1,3, R3, E5, Dri , and N1−5 into a form that is fully expanded.

See Appendix B for the proof. With the help of axioms A4−6, P4,5, S1,3, R3,
E5, and Dri , one can convert a PL-CCS term into a term such that its binary
variants do not occur in the scope of any CCS operators. Then, by axioms N1−5,
the term becomes fully expanded. Therefore, it can be manipulated using all the
axioms. The soundness of derivations, when the order of binary variants operands
are fixed, follows from Theorem 9, and when terms are fully expanded, follows
from Theorem 11.

Theorem 13 (Soundness). The axiomatization, given in Tables 1 and 2, is sound
for the term algebra IP (PL-CCS)/ 'PL, i.e., for all closed PL-CCS terms t1 and
t2, t1 = t2 implies t1 'PL t2.

See Appendix C for the proof.

Example 14. Axioms D1,2 in Table 1 can be derived from the other remaining
axioms. The derivation for D1 is:

r ‖ (p⊕i q) =P1 r (p⊕i q) + (p⊕i q) r + r | (p⊕i q)
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=P4,5,S2,3 (r p⊕i r q) + (p r ⊕i q r) + (r | p⊕i r | q)
=A5,6 (((r p+ p r + r | p)⊕i (r p+ p r + r | q))⊕i
((r p+ q r + r | p)⊕i (r p+ q r + r | q)))⊕i
(((r q + p r + r | p)⊕i (r q + p r + r | q))⊕i
((r q + q r + r | p)⊕i (r q + q r + r | q)))
=N1,3,5 (r p+ p r + r | q)⊕i (r q + q r + r | q)
=P1 (r ‖ p)⊕i (r ‖ q).

In [13], a set of algebraic laws was provided including A4, A6, D1, and Dri .
Their algebraic laws are sensitive to the numbering of variants and the placement
of their operands. Therefore, the laws do not support idempotence and commuta-
tivity properties of the binary variant (axioms A1,3). By prohibiting application of
axioms A1,2 and N6 while removing variants with an identical index with the help
of axioms N1−5, we can rewrite a term into a fully expanded one. Subsequently,
with the help of axioms A1,2 and N6, our axiomatization becomes insensitive to
the placement of operands in binary variants or binary variant indices.

4.3. Completeness of the Axiomatization for Finite-state Behaviors
We prove that the axiomatization in Table 1 and 2 is ground-complete for

PL-CCS terms with finite-state models modulo product line bisimilarity. Follow-
ing the approach of [17], to restrict to PL-CCS terms with finite-state transition
systems, we provide a syntactical restriction for constants 〈A|E〉. We consider so-
called finite-state PL-CCS, denoted by PL-CCSf , which is obtained by extending
PL-CCS with essentially finite-state recursive specifications: a recursive specifi-
cation E is essentially finite-state, if it has only finitely many equations and in
the right-hand sides of all equations of E, no process name occurs in the scope
of static operators, namely, parallel composition, left- and communication merge,
restriction, and renaming operators.

For instance, PL-CCS term 〈Y |{Y def
= (a.0⊕1 b.0) ‖ c.Y }〉 is not a finite-state

PL-CCS process. To see this, observe that it can derive the sequence of transitions

〈Y |{Y def
= (a.0 ⊕1 b.0) ‖ c.Y }〉 c,〈?〉−−−→ (a.0 ⊕1 b.0) ‖ 〈Y |{Y def

= (a.0 ⊕1 b.0) ‖
c.Y }〉 c〈?〉−−→ (a.0⊕1b.0) ‖ (a.0⊕1b.0) ‖ 〈Y |{Y def

= (a.0⊕1b.0) ‖ c.Y }〉 c,〈?〉−−−→ . . .,
which leads to an infinite state space. This sequence results from the occurrence
of process name Y in the context of a parallel composition.

Proposition 15 (Finite-state behaviors). Consider a PL-CCSf term t;the transi-
tion system for t generated by the operational rules has only finitely many states.
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This Proposition can be proved by resolving the binary variants, which are
finite. Therefore, a finite set of CCS terms are derived such that each CCS term
generates finitely many states [22].

Theorem 16 (Completeness). The axiomatization, given in Tables 1 and 2 is
ground-complete for the term algebra IP (PL-CCSf )/ 'PL, i.e., for all closed
finite-state PL-CCSf terms t1 and t2, t1 'PL t2 implies t1 = t2.

See Appendix D for the proof.

5. Product Line Analysis

The advantage of our sound and complete axiomatization is that we can prove
equality of PL-CCS terms at a syntactic level by transforming one term to another.
Hence, one does not need to generate the huge state space, which was required to
check the notions of bisimilarity introduced in Section 3. This process can be
facilitated and mechanized with the help of theorem provers, or term rewriting
systems. Consequently, terms can be transformed by our axiomatization into a
basic form, such as linear process specifications in the mCRL2 language [24, 25],
over which different analyses can be performed, either manually or using tools.
This basic form acts as a symbolic representation of the state space of a model,
which is comparatively small. A set of tools such as model checker, state space
visualizer, and behavioral simulator exist that run over this basic representation
and can be adapted to our setting. Furthermore, a number of optimization ap-
proaches such as τ -confluence reduction [26], that work on the level of this basic
format, can simplify it prior to any analysis. The transformation process into a
basic form can be mechanized in the same way as [27] within a small amount of
time. Similarly, PL-CCS terms can be reduced to their possible products (which
are simple CCS terms) in a syntactic way to be validated in terms of their intended
properties.

A formal framework for modeling and analyzing SPLs should support mod-
ular design, derivation (configuration) of individual systems from a product line
model, and restructuring them into various syntactic forms [13]. Our process the-
ory supports them all. In our case, we support a few different forms of restructur-
ing: for example, we support “moving variation points throughout the hierarchical
specification of an SPL towards its leaves or its root” [13]. We also support “mod-
eling individual systems using a higher or lower degree of common parts” [13].
Therefore, a designer can model the functionality of an SPL irrespective of the
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existing components. Later with the aim of reuse, the functionality can be re-
structured to behaviors for which appropriate components exist. A restructuring
mechanism is also appealing when a new functionality (which corresponds to a
new feature) is added. We illustrate how our framework supports deriving prod-
ucts or restructuring of SPLs in following sections.

5.1. Deriving Products of a family
Using our axiomatization, one can derive the products of a family, i.e., rewrite

a process term into a term which comprises binary variants of CCS terms.

Example 17. For instance, consider CCS terms p, q, and s (which naturally do
not contain the binary variant operator); the family (q⊕1 (a.(s⊕2 p))⊕3 a.s can
generate three pairwise non-bisimilar products:

(q⊕1(a.(s⊕2 p)))⊕3 a.s =A2

q ⊕1 ((a.(s⊕2 p))⊕3 a.s) =A4 q ⊕1 ((a.s⊕2 a.p)⊕3 a.s) =A1

q ⊕1 ((a.p⊕2 a.s)⊕3 a.s) =A2 q ⊕1 (a.p⊕2 (a.s⊕3 a.s)) =A3

q ⊕1 (a.p⊕2 a.s)

Example 18. We can compare product lines 〈p1|{p1 def
= p2 ‖ p2, p2 def

= b.0 ⊕1

c.0}〉 and 〈p′1|{p′1
def
= b.0 ⊕1 c.0 ‖ b.0 ⊕2 c.0}〉. p1 generates two non-bisimilar

products, while p′1 generates three pairwise non-bisimilar products, concluding
p1 6= p′1. To see this, observe the following derivations:

p1 =UnFold 〈p2|{p1 def
= p2 ‖ p2,

p2
def
= b.0⊕1 c.0}〉 ‖ 〈p2|{p1 def

= p2 ‖ p2, p2 def
= b.0⊕1 c.0}〉

=UnFold (b.0⊕1 c.0) ‖ (b.0⊕1 c.0)
=P1,C3 ((b.0⊕1 c.0) (b.0⊕1 c.0)) + ((b.0⊕1 c.0) | (b.0⊕1 c.0))
=P4,5,S3 ((b.0 b.0⊕1 c.0 b.0)⊕1 (b.0 c.0⊕1 c.0 c.0))+

((b.0 | b.0⊕1 c.0 | b.0)⊕1 (b.0 | c.0⊕1 c.0 | c.0))
=N1,3,5 (b.0 b.0)⊕1 (c.0 c.0) + (b.0 | b.0)⊕1 (c.0 | c.0)
=P2,S5,C3,4 b.(0 ‖ b.0)⊕1 c.(0 ‖ c.0)
=P1,6,S6 b.b.0⊕1 c.c.0

p′1 =UnFold (b.0⊕1 c.0) ‖ (b.0⊕2 c.0)
=D1,2 ((b.0 ‖ b.0)⊕2 (b.0 ‖ c.0))⊕1 ((c.0 ‖ b.0)⊕2 (c.0 ‖ c.0))
=P1,6,S6 (b.b.0⊕2 (b.c.0 + c.b.0))⊕1 ((c.b.0 + b.c.0)⊕2 c.c.0)
=A1−3,C1 b.b.0⊕1 ((b.c.0 + c.b.0)⊕2 c.c.0)
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Next, we show that every PL-CCS term can be rewritten into a normal form
comprising binary choices over CCS products.

Theorem 19. Let
⊕

i≤npi denote (p0 ⊕1 (p1 ⊕2 (. . .⊕n pn) . . .)) if n > 0, and p0
if n = 0. Using the axiomatization in Tables 1 and 2, each PL-CCS term t can be
rewritten into the form

⊕
i≤npi, where pis are CCS processes.

See Appendix B for the proof. With the help of axioms A4−6, D1,2, P4,5, S1,3,
R3, E5, and Dri , one can convert a PL-CCS term into another term such that its
binary variants do not occur in scope of any CCS operators. Later by axiom N1−6,
the indices of variants become unique. Therefore, by A1,2, it can be rewritten into
the desired format.

5.2. Restructuring a product family
With the help of our axiomatization, we can factorize the common parts and

simplify the structure of product line terms. We can also identify the mandatory
parts of a product line; the parts that exist in any product.

Example 20. Consider a Sensor process that is replicated in different parts of a
car windscreen WindScreen, such as wiper WipFam and fog remover FogFam
[12]:

WindScreen
def
= WipFam ⊕1 FogFam

WipFam
def
= Sensor ‖Wiper

FogFam
def
= Sensor ‖ FogRem

where Sensor detects the different conditions of precipitation, Wiper and FogRem
offer different operational modes for wiper arm movement, and windscreen warmer
concerning environmental conditions, respectively. Using our axioms, WindScreen
specification is restructured as follows:

WindScreen
def
= WipFam ⊕1 FogFam

=UnFold (Sensor ‖Wiper)⊕1 (Sensor ‖ FogRem)
=D1 Sensor ‖ (Wiper ⊕1 FogRem)

The new specification for WindScreen reveals that Sensor is the mandatory part
of our windscreen family. The structural specification (i.e., the architecture) of
WindScreen consists of two components, a Sensor and a component, which can
be either Wiper or FogRem.
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Assume that the Sensor has two qualities, namely, high and low. The low
quality sensor cannot distinguish between heavy and little rain (specified by hvy
and ltl actions) and can only discriminate between no rain and rain [12]. The
high quality sensor can, however, make such distinctions as specified below:

Sensor
def
= SensL⊕2 SensH

SensL
def
= non.SensL + ltl .Raining + hvy .Raining + noRain.SensL

Raining
def
= non.SensL + ltl .Raining + hvy .Raining + rain.Raining

SensH
def
= non.SensH + ltl .Medium + hvy .Heavy + noRain.SensH

Medium
def
= non.SensH + ltl .Medium + hvy .Heavy + rain.Medium

Heavy
def
= non.SensH + ltl .Medium + hvy .Heavy + hvyRain.Heavy

The specification of Sensor can be similarly examined to reveal the common
behaviors. To this aim, we first restructure SensL ⊕2 SensH to factor out the
common behaviors:

SensL⊕2 SensH =UnFold

(non.SensL + ltl .Raining + hvy .Raining + noRain.SensL)⊕2

(non.SensH + ltl .Medium + hvy .Heavy + noRain.SensL) =N1,3,5

((non.SensL + ltl .Raining + hvy .Raining + noRain.SensL)⊕2

(non.SensH + ltl .Raining + hvy .Raining + noRain.SensL))⊕2

((non.SensL + ltl .Medium + hvy .Heavy + noRain.SensH )⊕2

(non.SensH + ltl .Medium + hvy .Heavy + noRain.SensH )) =A4,5

(non.(SensL⊕2 SensH ) + ltl .Raining + hvy .Raining + noRain.SensL)⊕2

(non.(SensL⊕2 SensH ) + ltl .Medium + hvy .Heavy + noRain.SensH ) =UnFold

(non.Sensor + ltl .Raining + hvy .Raining + noRain.SensL)⊕2

(non.Sensor + ltl .Medium + hvy .Heavy + noRain.SensH ) =N1,3,5,A4,5

non.Sensor + ltl .(Raining ⊕2 Medium) + hvy .(Raining ⊕2 Heavy)+

noRain.Sensor

Similarly Raining ⊕2 Medium and Raining ⊕2 Heavy can be examined:

Raining ⊕2 Medium =UnFold ,N1,3,5,A4,5

non.(SensL⊕2 SensH ) + ltl .(Raining ⊕2 Medium) + hvy .(Raining ⊕2 Heavy)+

rain.(Raining ⊕2 Medium)



6 LOGICAL CHARACTERIZATION 29

Raining ⊕2 Heavy =UnFold ,N1,3,5,A4,5

non.(SensL⊕2 SensH ) + ltl .(Raining ⊕2 Medium) + hvy .(Raining ⊕2 Heavy)+

(rain.(Raining ⊕2 Heavy)⊕2 hvyRain.(Raining ⊕2 Heavy))

By applying Fold , the new specification of Sensor is obtained as follows:

Sensor
def
= non.Sensor + ltl .RainMed + hvy .RainHvy + noRain.Sensor

RainMed
def
= non.Sensor + ltl .RainMed + hvy .RainHvy + rain.RainMed

RainHvy
def
= non.Sensor + ltl .RainMed + hvy .RainHvy+

(rain.RainHvy ⊕2 hvyRain.RainHvy)

The new specification explains that resolving variability between SensL and SensH
can be postponed until the variability between performing output actions rain and
hvyRain is resolved in case it is possible to have heavy rain.

In [28], PL-CCS was compared with FTS in addressing variability via mod-
eling the above-mentioned example. There, it was concluded that modeling in
PL-CCS can result in verbose descriptions since common parts have to be dupli-
cated [29]. However, in our experience, PL-CCS facilitates modular design with-
out forcing the designer to factor out common parts. Later the specification can be
restructured as illustrated by the above-given example. For instance, actions non,
ltl , hvy , and noRain are common among SensL and SensR, while their behaviors
does not change after performing actions non and noRain. Such common actions
and behaviors are factored our by rewriting SensL ⊕2 SensR to non.Sensor +
ltl .(Raining ⊕2 Medium) + hvy .(Raining ⊕2 Heavy) + noRain.Sensor . There-
fore, the modeler is not forced to identify common actions and behaviors to derive
its model. The semantics of our resulting specification is even more compact than
the FTS model of [28] by factorizing out common behaviors as much as possible;
the part of behavior in which both sensors does not change their behaviors as long
as action hvy is performed, is factored out in our case.

6. Logical Characterization

In this Section, we show that product line bisimilarity induces the same iden-
tification of PL-CCS terms as the multi-valued modal µ-calculus. In this Section,
we first review the logic and then explain how it characterizes product line bisim-
ilarity.
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6.1. Multi-Valued Modal µ-Calculus
The multi-valued modal µ-calculus [12] combines Kozen’s modal µ-calculus

[30] and multi-valued µ-calculus as defined by Grumberg and Shoham [31]. Let
V be the set of propositional variables. The set of multi-valued modal µ-calculus
formulae is given by the following grammar:

ϕ ::= true | false | Z | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈a〉ϕ | [a]ϕ | ηZ.ϕ, η ∈ {ν, µ}

where a ∈ Act and Z ∈ V , and the fixed point quantifiers µ and ν are variable
binders.

Let mv − Lµ denote the set of closed formulae generated by the above gram-
mar. The semantics of a formula for a PL-CCS term is the set of configurations
satisfying it. All configurations satisfy true in all states. A configuration ν ′ sat-
isfies a formula φ1 ∨ φ2 in state s if it satisfies either φ1 or φ2 in state s. A
configuration ν ′ satisfies a formula 〈a〉ϕ in state s if it has a transition s

a,ν−−→ s′

such that ν v ν ′ and ν ′ satisfies ϕ in state s′. A configuration ν ′ satisfies a formula
[a]ϕ in state s if for all transitions s

a,ν−−→ s′ such that ν v ν ′, ν ′ satisfies ϕ in state
s′. Equations with recursive variables are used to describe properties of behaviors
with an infinite depth. For instance, X def

= 〈a〉X ∨ 〈b〉true specifies configura-
tions (i.e., products) that they satisfy 〈b〉true either in the initial state, or the state
reached after performing a (possibly infinite) sequence of a-actions (with consis-
tent configurations). Since an equation may have many solutions, the maximum
and minimum solutions are selected by νZ.φ and µZ.φ, respectively. Considering
Z as a mapping from the states to a set of configurations, µZ.φ is valid for the
smallest mapping Z that satisfies the equation Z = φ. Similarly νZ.φ is valid
for the largest mapping Z that satisfies equation Z = φ. For instance, the prop-
erty µX.〈a〉X ∨ 〈b〉true specifies that “eventually an action b follows a (possibly
empty) sequence of a actions”. This property holds for the configuration 〈L,L〉
in the state 〈X|E〉 of CTS in Figure 3a.

The semantics of ϕ, denoted by [[ϕ]], is a function S → IP (Config) that defines
the set of configurations that satisfy formula ϕ for each given state. Given an
environment ρ : V → (S → IP (Config)), which maps free variables in ϕ to
S → IP (Config), [[ϕ]]ρ defines the semantics of ϕ with respect to ρ in Table 3.

Example 21. Regarding the rules in Table 3, the semantics of [[〈b〉true]] in the state
(b.〈X|E〉 ⊕1 c) of the CTS in Figure 3a is {〈L,R〉, 〈L,L〉}, since Rb(b.〈X|E〉 ⊕1

c.0, 〈X|E〉) = {〈L,R〉, 〈L,L〉} and [[true]](〈X|E〉) = IP (Config). It can be shown
that f = {(b.〈X|E〉 ⊕1 c.0) 7→ {〈L,R〉, 〈L,L〉}, 〈X|E〉 7→ {〈L,L〉}, 0 7→ ∅} is the
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Table 3: Semantics of multi-valued modal µ-calculus [12]

[[true]]ρ = λs.IP (Config) [[〈a〉ϕ]]ρ = λs.
⋃{{ν | ∃s′ · s ν,a−−→ s′} ∩ [[ϕ]]ρ(s

′)}
[[false]]ρ = λs.∅ [[[a]ϕ]]ρ = λs.

⋂{{ν | @s′ · s ν,a−−→ s′} ∪ [[ϕ]]ρ(s
′)}

[[Z]]ρ = ρ(Z) [[µZ.ϕ]]ρ =
⋂{f | [[ϕ]]ρ[Z 7→f ] ⊆ f}

[[ϕ1 ∧ ϕ2]]ρ = [[ϕ1]]ρ ∩ [[ϕ2]]ρ [[νZ.ϕ]]ρ =
⋃{f | f ⊆ [[ϕ]]ρ[Z 7→f ]}

[[ϕ1 ∨ ϕ2]]ρ = [[ϕ1]]ρ ∪ [[ϕ2]]ρ

semantics of µX.〈a〉X ∨ 〈b〉true since [[〈a〉X]][X 7→f ] = λs.
⋃{Ra(s, s′) ∩X(s′)} =

{〈X|E〉 7→ {〈L,L〉}, b.〈X|E〉 ⊕1 c 7→ ∅, 0 7→ ∅}, [[〈b〉true]] = {b.〈X|E〉 ⊕1 c 7→
{〈L,R〉, 〈L,L〉}, 〈X|E〉 7→ ∅, 0 7→ ∅}, f = [[〈a〉X ∨ 〈b〉true]][X 7→f ], and it is the
minimum mapping that satisfies the equation X = 〈a〉X ∨ 〈b〉true.

6.2. Relation to Product Line Bisimilarity
Model checking logical formula φ over a PL-CCS term is supposed to result

in the set of full configurations for which the property holds. Intuitively, two PL-
CCS terms are logically equivalent when for each logical formula, there exists a
non-empty set of products in one product line satisfying it if and only if there exists
such a non-empty set in the other. For instance, (a.0 + b.0)⊕1 b.0 is not logically
equivalent to a.0 ⊕1 b.0 as the logical formula 〈a〉true ∧ 〈b〉true is satisfied by
the former for the configuration 〈L〉, but it is not satisfied by the latter for any
configuration.

Definition 22 (Logical equivalence). Two PL-CCS terms s and t are logically
equivalent, denoted by s ∼L t, iff ∀ϕ ∈ mv − Lµ · ([[ϕ]](s) 6= ∅ ⇔ [[ϕ]](t) 6= ∅).

As stated before, product line bisimilarity and logical equivalence coincide.
The following Theorem states that if two PL-CCS terms are not product line
bisimilar, then there is a logical formula that can distinguish them.

Theorem 23. For any PL-CCS terms s and t, s 'PL t iff s ∼L t.

See Appendix E for the proof.

7. Related Work

There are a vast number of languages to specify software product lines for the
purpose of specifying different aspects of variability [32, 33, 34, 35, 36, 37, 38,
12, 13, 39, 29, 40, 10, 41, 42, 43, 44]. Among them some frameworks, such as
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[32, 33, 34, 35], do not directly address formal reasoning. On the other hand, there
are formal frameworks to reason about some aspects of SPLs, such as [36, 37, 38,
12, 13, 39, 29, 40, 10, 41, 42, 43, 44].

Regarding modeling issues, several approaches are classified by [29] in terms
of treating variability as either a first class citizen [34, 39, 38, 41, 42, 43, 44] or
as part of the behavioral model [35, 36, 37, 32, 12, 33]. In the former approaches,
variability is separately modeled and related to other models (data and behavior),
called base models. Therefore, variability is explicitly traceable in base models
and its evolution is automatically propagated to the base models. As opposed to
other process-algebraic approaches [41, 42, 44], PL-CCS expresses variability as
part of its behavioral model; In [41, 42], the cross-tree constraints of feature mod-
els are related to the behavior of products using a CCS-like process algebra, while
in [44], process terms are tagged with the sets of specific products where they
are enabled using a CSP-like process algebra. In [11], some of the fundamental
formal behavioral models for SPLs are compared in terms of their expressiveness.

Our approach follows the line of research on process algebra for SPLs [12,
13, 41, 42, 45, 44]. It also offers several reasoning capability: model-checking
based on a multi-valued modal µ-calculus over CTSs given in [12], and equa-
tional reasoning based on a set of rules to restructure PL-CCS terms, extending
the approach of [13]. Along these lines, the safety and liveness properties of
SPLs as well as consistency of configurations are checked in [41, 42] by en-
coding their semantic rules in the Maude rewriting logic. In [45], the algebraic
framework mCRL2 [24, 25], is used for modular verification of SPLs. There, tai-
lored property-preserving reductions were applied to a product line modeled in
mCRL2 using the reduction modulo branching bisimulation of mCRL2 tool set.
Two pre-congruence behavioral relations to compare the behavior of a product ei-
ther against a product or a family are proposed in [44]. In contrast, we offer a set
of behavioral equivalence relations over CTSs supported by a sound and complete
axiomatization to reason about families at the syntactic level. To this aim, a family
can be restructured to another, while its functionality is preserved. Our approach
is hence complementary to the aforementioned approaches in the literature.

The work of [46] is analogous to us in that it takes an axiomatic approach to
software product lines. However, there approach has a different intention, namely,
to axiomatizes product family concepts that characterize a generic product line
formalism. Their approach indicates that all operators of a formalism are distribu-
tive over the binary variant operator. Our axioms D1,2, A5,6, P4,5, S3 (together
with S1), R3, and E5 conform to this result. Furthermore, it expresses that binary
variant operators with different indices are distributive and provides rules to sim-



7 RELATED WORK 33

plify specifications when two i-indexed variants are directly nested. These rules
are derivable in our setting by axioms A3 and N1−6 as follows:

(P⊕jQ)⊕i (P ⊕j O) =A3

((P ⊕j Q)⊕i (P ⊕j O))⊕j ((P ⊕j Q)⊕i (P ⊕j O)) =N5

L((P ⊕j Q)⊕i (P ⊕j O), j)⊕j R((P ⊕j Q)⊕i (P ⊕j O), j) =N1−4

(L(P, j)⊕i L(P, j))⊕j (R(Q, j)⊕i R(O, j)) =N2,N4

L(P ⊕i P, j)⊕j R(Q⊕i O, j) =A3,N5 P ⊕j (Q⊕i O)

P⊕i(Q⊕i O) =N5 L(P, i)⊕i R(Q⊕i O, i) =N4

L(P, i)⊕i R(O, i) =N5 P ⊕i O

Similarly, (P ⊕j O)⊕i (Q⊕j O) = (P ⊕j Q)⊕iO and (P ⊕iQ)⊕iO = P ⊕iO
can be derived from our equational theory.

Other related techniques to our behavioral equivalence are conformance no-
tions that are used to iteratively refine partial behavioral models; they can conse-
quently be used to relate a product behavior to a family model. Refinement as well
as conformance between SPLs modeled by modal I/O automata is studied in [37].
A notion of behavioral conformance on MTS-based specifications is defined in
[36], which preserves 3-valued weak µ-calculus. Modal transition systems (MTS)
[36] and I/O modal automata [37] capture variability by defining transitions as op-
tional and mandatory. A notion of input-output conformance on FTSs is defined
in [47, 48] with the aim of devising a model-based testing trajectory for SPLs.
In [49], pre-orders over FTSs preserving LTL properties are given with respect
to specific products. As opposed to these approaches, our equivalence relation
is defined over CTS and preserves multi-valued modal µ-calculus. Providing a
comprehensive and formal comparison of the different notions of SPL pre-orders
in the literature is among our future work. In [16], a feature-oriented notion of
branching bisimulation over FTSs and its associated minimization algorithm were
introduced in order to reduce a model prior to its verification. Our configuration
bisimulation was inspired by [16] and adopting its minimization algorithm is also
among our future directions for research.

Remaining approaches mainly use a model checking technique to reason about
SPLs; these include checking safety properties over Statecharts in [38], LTL over
FTSs [29], CTL over modal I/O automata [39], MHML, a deontic logic interpreted
over MTSs [40], and fLTL (an extension of LTL) over FTSs in [10].



8 CONCLUSIONS AND FUTURE WORK 34

8. Conclusions and Future Work

We proposed an equational reasoning technique to reason about software prod-
uct lines at the syntactic level. To this aim, we defined product line bisimilarity by
finding a mapping between products of two terms, identified by their configuration
vectors. We also introduced a configuration-oriented bisimilarity that compares
families at once. We proved that product line and configuration bisimilarity co-
incide. To facilitate checking the bisimilarity relations, we provided a sound and
complete axiomatization over closed and finite-state behaviors. We characterized
the distinguishing power of our equivalence relations in terms of a multi-valued
modal µ-calculus.

Instead of working at the semantic level and finding a mapping between prod-
ucts, one can use our axioms and restructure a term to its equivalent terms, e.g.,
such that the mandatory and optional parts are factored out separately. The re-
structuring mechanism can also be initiated to group the functionality of an SPL
to behaviors for which appropriate components exist. Furthermore, one can derive
the possible products of a term, specified by CCS terms to validate an SPL model
in terms of its various products.

We intend to exploit the PL-CCS process theory as a formal framework for
specifying the structural and behavioral aspects of product lines, following the
approach of [50]. We intend to investigate a basic form, such as linear process
specification in mCRL2, over which different analysis and optimizations can be
executed. Then, PL-CCS terms can be automatically transformed into the basic
form in the same way of [27]. Finding a minimization algorithm for configuration
bisimulation is another line of research. Furthermore, pre-order notions of liter-
ature can be compared in the general setting of FTS, which is a very expressive
model for SPLs [11].
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Appendix A. Proofs of Theorems 6, 9, and 11

We first prove that product line bisimilarity is an equivalence relation, and
then prove its congruence property on fully expanded PL-CCS terms. Later, we
show that strict strong bisimilarity is an equivalence relation and constitutes a
congruence on PL-CCS terms

Appendix A.1. Proof of Theorem 6
Theorem 6. Product line bisimilarity is an equivalence relation.
Proof. To show that product line bisimilarity is an equivalence, we must show
that it is reflexive, symmetric, and transitive. Reflexivity and symmetry follow
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immediately from the reflexivity and symmetry properties of strong bisimilarity.
Hence, it only remains to prove transitivity.

Consider PL-CCS terms s, t, r such that s 'PL t, and t 'PL r. Following Def-
inition 5, for any valid full configuration νf1 with respect to s, there exists a valid
full configuration νf2 with respect to t such that Π(s, νf1 ) ∼ Π(t, νf2 ). For any νf2 ,
there exists a valid full configuration νf3 with respect to r such that Π(t, νf2 ) ∼
Π(r, νf3 ). Transitivity of strong bisimilarity results in Π(s, νf1 ) ∼ Π(r, νf3 ). The
same argument holds for any valid full configuration νf3 with respect to r, con-
cluding that s 'PL r.

Appendix A.2. Proof of Theorem 11
Theorem 11. Product line bisimilarity constitutes a congruence on fully expanded
PL-CCS terms.
Proof. Consider arbitrary product line r such that s � r and t � r are fully ex-
panded, where � ∈ {+,⊕, ‖} and s 'PL t; also consider renaming function φ,
L ⊆ Act ; to show that product line bisimilarity is a congruence on fully expanded
PL-CCS terms we need to prove the following statements:

1. α.s 'PL α.t ;

2. s+ r 'PL t+ r;

3. s⊕i r 'PL t⊕i r;

4. s \ L 'PL t \ L;

5. s[φ] 'PL t[φ];

6. s ‖ r 'PL t ‖ r;

We only prove cases 1, 3, and 6 as the proof of remaining cases is almost iden-
tical. Let ν · λ denote the concatenation of two configuration vectors ν and λ by
appending the elements of λ at the end of ν. Furthermore, assume that |ν| denotes
the length of configuration vector ν, and max (S) denotes the maximum index in
set S such that max (∅) = 0. Note that any full configuration νf with respect to
s � r can be written as either νs · λ1 or νr · λ2 for some νs ∈ VFConfig(s) and
νr ∈ VFConfig(r). The following two lemmata are required for the proof. In
following proofs, we use ≡ to denote syntactic equivalence.

Lemma 24. For each PL-CCS term t, t
a,ν−−→ t′, where |ν| ≥ max (bi(t)), implies

t
a,ν·λ?−−−−−→ t.
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Proof. The proof is straightforward by induction on the structure of t. The only
interesting cases are given below:

• t ≡ t1 ⊕i t2: by SOS rule Select , t
a,ν−−→ t′1, since t1

a,ν′−−→ t′1 and ν ′|i 6= R,

and ν = ν ′|i/L. By induction, t1
a,ν′·λ?−−−−−→ t′1 while ν ′|i 6= R ⇒ (ν ′ ·

λ?)|i 6= R. Consequently by SOS rule Select , t
a,ν·λ?−−−−−→ t′1 holds. The

same discussion holds when t
a,ν−−→ t′2 as the result of t2

a,ν′−−→ t′2.

• t ≡ t1 ‖ t2: by SOS rule Sync, we have t
τ,ν′�ν′′−−−−−−→ t′1 ‖ t′2, since

t1
a,ν′−−→ t′1 and t2

a,ν′′−−−→ t′2, and ν ′ � ν ′′. By induction, t1
a,ν′·λ?−−−−−→ t′1 and

t2
a,ν′′·λ?−−−−−−→ t′2. Since (ν ′ ·λ?) � (ν ′′ ·λ?), then by SOS role Sync, we have

t
τ,(ν′�ν′′)·λ?−−−−−−−−−−−→ t′1 ‖ t′2. The same argument holds when t

a,ν−−→ t′1 ‖ t2 or

t
a,ν−−→ t1 ‖ t′2 by SOS rule Par as the results of t1

a,ν′−−→ t′1 or t2
a,ν′−−→ t′2,

respectively.

�

Lemma 25. For each PL-CCS term t, t
a,ν−−→ t′ implies t

a,ν′−−→ t, where ν = ν ′ ·λ?
and |ν ′| ≥ max (bi(t)).

Proof. By induction on the structure of t. The only interesting cases are:

• t ≡ t1 ⊕i t2: by SOS rule Select , we have t
a,ν−−→ t′1, since t1

a,ν′−−→ t′

and ν ′|i 6= R, and ν ≡ ν ′|i/L. By induction, we obtain t1
a,ν′′−−−→ t′, where

ν ′ ≡ ν ′′ · λ? and |ν ′′| ≥ max (bi(t)). Since i ∈ bi(t), then i < |ν ′′|, and

consequently ν ′′|i 6= R. Therefore by SOS rule Select , t
a,ν′′|i/L−−−−−→ t′1 holds.

The same argument holds when t
a,ν−−→ t′2 as the result of t2

a,ν′−−→ t′2.

• t ≡ t1 ‖ t2: by SOS rule Sync, we obtain t
τ,ν1�ν2−−−−−−→ t′1 ‖ t′2, since

t1
a,ν1−−−→ t′1 and t2

a,ν2−−−→ t′2, and ν1 � ν2. By induction, t1
a,ν′1−−−→ t′1 and

t2
a,ν′2−−−→ t′2, where ν1 = ν ′1 · λ?, ν2 = ν ′2 · λ?, and |ν ′1|, |ν ′2| ≥ max (bi(t)).

Therefore, ν1 � ν2 implies ν ′1 � ν ′2, and by SOS rule Sync, we have that

t
a,ν′1�ν′2−−−−−−→ t′1 ‖ t′2. The same argument holds when t

a,ν−−→ t′1 ‖ t2 or

t
a,ν−−→ t1 ‖ t′2 by SOS rule Par as the results of t1

a,ν′−−→ t′1 or t2
a,ν′−−→ t′2,

respectively.
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�
We now proceed with the proof of Theorem 11. Following Definition 5, s 'PL

t implies that for any full configuration νf1 with respect to s, there exists a valid
full configuration νf2 with respect to t such that Π(s, νf1 ) ∼ Π(t, νf2 ) holds. In
the remainder of the proof, we assume that Π(s, νf1 ) ∼ Π(t, νf2 ) is witnessed by
strong bisimulation relationR.
Case 1. We have that νf1 ∈ VFConfig(s) and νf2 ∈ VFConfig(t) and hence, νf1 ∈
VFConfig(a.s) and νf2 ∈ VFConfig(a.t). Therefore, we only need to prove that
Π(a.s, νf1 ) ∼ Π(a.t, νf2 ). To this end, we prove that the closure of R with action
prefixing, denoted by R′ is a strong bisimulation relation. We formally define R′
as R ∪ {(Π(a.s, νf1 ),Π(a.t, νf2 )) | (Π(s, νf1 ),Π(t, νf2 )) ∈ R}. It remains to show
the transfer conditions of Definition 3 for each pair inR′. The case for the pairs in
R holds vacuously. We only need to show the transfer conditions for an arbitrary
pair (Π(a.s, νf1 ),Π(a.t, νf2 )) ∈ R′. Assume that Π(a.s, νf1 )

a−→ (s′, νf1 ) for some
s′. This transition can only be due to SOS rule Prefix and s′ must be s. Hence, we
have that a.s

a,ν?−−−→ s and ν? v νf1 . Similarly, it follows from SOS rule Prefix and
the definition of the LTS semantic of product lines that Π(a.t, νf2 )

a−→ Π(t, νf2 ).
Due to the definition of R′, we have that (Π(s, νf1 ),Π(t, νf2 )) ∈ R and hence
(Π(s, νf1 ),Π(t, νf2 )) ∈ R′, which was to be shown.
Case 3. Following the Definition 5, we prove that for any valid full configuration
νf
′
1 with respect to s ⊕i r, there exists a valid full configuration νf ′2 with respect

to t⊕i r such that Π(s⊕i r, νf ′1) ∼ Π(t⊕i r, νf ′2) holds. Since s⊕i r and t⊕i r
are fully expanded, then i is fresh in s, t, and r. Regarding the value of νf ′1|i, two
cases can be considered:

1. νf ′1|i = L: Let νf ′1 = νf1 · λ1, then take νf ′2 = νf1 · λ2 such that Π(s, νf1 ) ∼
Π(t, νf2 ) and νf ′1|i = νf

′
2|i. ConstructR′1 as:

R′1 = {(Π(s⊕i r, νf ′1),Π(t⊕i r, νf ′2))}∪
{(Π(s′, νf

′
1),Π(t′, νf

′
2))|(Π(s′, νf1 ),Π(t′, νf2 )) ∈ R} .

We prove that R′1 satisfies the transfer conditions of Definition 3. We only
examine the transfer conditions for for an arbitrary pair (Π(s⊕ir, νf ′1),Π(t⊕i
r, νf

′
2)) ∈ R′1 as the pairs inR trivially satisfy the transfer conditions. Sup-

pose that Π(s ⊕i r, νf ′1)
a−→ p. This transition can only be due to SOS

rule Select and transition s
a,ν−−→ s′, where ν v νf

′
1, and p ≡ Π(s′, νf

′
1).

Hence, we have that s ⊕i r
a,ν|i/L−−−−−→ s′. By Lemma 25, s

a,νs−−−→ s′, where
ν = νs · λ?, νs v νf1 and νs|i =?. Therefore, it follows from the def-
inition of the LTS semantic of product lines that Π(s, νf1 )

a−→ Π(s′, νf1 ).
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Furthermore, Π(s, νf1 ) ∼ Π(t, νf2 ) implies that Π(t, νf2 )
a−→ Π(t′, νf2 ) , and

Π(s′, νf1 ) R Π(t′, νf2 ). Similarly, it follows from the definition of the LTS
semantic of product lines that t

a,νt−−→ t′, where νt v νf2 , νt|i =?. Thus, by

Lemma 24, t
a,ν′−−→ t′, where ν ′ = νt · λ? and ν ′ v νf

′
2. From SOS rule

Select and the definition of the LTS semantic of product lines, it follows
that Π(t ⊕i r, νf ′2)

a−→ Π(t′, νf
′
2). Due to the definition of R′, we have that

(Π(s′, νf1 ),Π(t′, νf2 )) ∈ R and hence (Π(s′, νf1 ),Π(t′, νf2 )) ∈ R′, which
was to be shown. The same discussion holds when Π(t ⊕i r, νf ′2)

a−→ p.
Concluding thatR′1 is a strong bisimulation.

2. νf ′1|i = R: Let νf ′1 = νf · λ1, where νf is a valid configured configuration
with respect to r, then take νf ′2 = νf · λ2 such that νf ′1|i = νf

′
2|i. Construct

R′2 as:

R′2 = {(Π(s⊕i r, νf ′1),Π(t⊕i r, νf ′2))} ∪ {(Π(r′, νf
′
1),Π(r′, νf

′
2))} .

We prove that R′2 satisfies the transfer conditions of Definition 3. We only
examine the transfer conditions for for an arbitrary pair (Π(s⊕ir, νf ′1),Π(t⊕i
r, νf

′
2)) ∈ R′2 as the pairs in {(Π(r′, νf

′
1),Π(r′, νf

′
2))} trivially satisfy the

transfer conditions. Suppose that Π(s ⊕i r, νf ′1)
a−→ p. This transition can

only be due to SOS rule Select and transition r
a,ν−−→ r′, where ν v νf

′
1,

and p ≡ Π(r′, νf
′
1). Hence, we have that s ⊕i r

a,ν|i/R−−−−−→ r′. By Lemma
25, r

a,νr−−−→ r′, where ν = νr · λ? and νr v νf . Hence, by Lemma 24,

r
a,ν′−−→ r′, where ν ′ = νr · λ?, and ν ′ v νf

′
2. From SOS rule Select

and the definition of the LTS semantic of product lines, it follows that
Π(t ⊕i r, νf ′2)

a−→ Π(r′, νf
′
2), and by the definition of R′2 we have that

Π(r′, νf
′
1) R′2 Π(r′, νf

′
2), which was to be shown. The same discussion

holds when Π(t ⊕i r, νf ′2)
a−→ p. Concluding that R′2 is a strong bisimula-

tion.

The same discussion holds for any valid full configuration νf
′
2 with respect to

t⊕i r. We conclude that s⊕i r 'PL t⊕i r.
Case 6. Since s ‖ r and t ‖ r are fully expanded and the root of their parse tree
is parallel composition, s and t cannot have any binary variant in common with
r, i.e., bi(s) ∩ bi(r) = ∅ and bi(t) ∩ bi(r) = ∅. Consequently, for any νf1 ∈
VFConfig(s), there exists a νf2 ∈ VFConfig(t) such that ∀i ∈ bi(r)(νf1 |i = νf2 |i).
Following the Definition 5, we prove that for any νf ′1 ∈ VFConfig(s ‖ r), there
exists νf ′2 ∈ VFConfig(t ‖ r) such that Π(s ‖ r, νf ′1) ∼ Π(t ‖ r, νf ′2) holds. To
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this aim, for any νf ′1 = νf1 · λ1, take νf ′2 = νf2 · λ2 such that Π(s, νf1 ) ∼ Π(t, νf1 )
and ∀i ∈ bi(r)(νf1 |i = νf2 |i). ConstructR′ as

R′ = {(Π(s′ ‖ r′, νf ′1),Π(t′ ‖ r′, νf ′2))|(Π(s′, νf1 ),Π(t′, νf2 )) ∈ R}

We show that it satisfies the transfer conditions of Definition 3.
For an arbitrary pair Π(s′ ‖ r′, νf ′1) R′ Π(t′ ‖ r′, νf ′1), suppose that Π(s′ ‖

r′, νf
′
1)

a−→ p. Using the SOS rules Par and Sync, three cases can be considered:

1. This transition can be due to SOS rule Par and s′
a,ν′1−−−→ s′′, where ν ′1 v νf

′
1.

Hence, we have that s′ ‖ r′
a,ν′1−−−→ s′′ ‖ r′, and p ≡ Π(s′′ ‖ r′, νf

′
1).

By Lemma 25, s′
a,νs−−−→ s′′, where ν ′1 = νs · λ? and νs v νf1 . Thus,

it follows from the definition of the LTS semantic of product lines that
Π(s′, νf1 )

a−→ Π(s′′, νf1 ). Furthermore, Π(s′, νf1 ) R Π(t′, νf2 ) implies that
Π(t′, νf2 )

a−→ Π(t′′, νf2 ) and Π(s′′, νf1 )RΠ(t′′, νf2 ). Similarly, it follows from
the definition of the LTS semantic of product lines that t′

a,νt−−→ t′′, where

νt v νf2 and consequently by Lemma 24, t′
a,ν′2−−−→ t′′, where ν ′2 = νt · λ?

and ν ′2 v νf
′
2. By SOS rule Par , t′ ‖ r′ a,ν′2−−−→ t′′ ‖ r′ and consequently,

Π(t′ ‖ r′, νf ′2)
a−→ Π(t′′ ‖ r′, νf ′2). Due to the definition of R′ we have that

Π(s′′, νf1 )R Π(t′′, νf2 ), and hence Π(s′′ ‖ r′, νf ′1)R′ Π(t′′ ‖ r′, νf ′2), which
was to be shown.

2. This transition can be due to SOS rule Par and r′
a,ν′−−→ r′′, where ν ′ v

νf
′
1. Hence, we have that s′ ‖ r′ a,ν′−−→ s′ ‖ r′′ and p ≡ Π(s′ ‖ r′′, νf ′1).

Therefore, by Lemmas 25 and 24, r′
a,ν′′−−−→ r′′, where ν ′′ v νf

′
2. Thus, by

SOS rule Par , t′ ‖ r′ a,ν′′−−−→ t′ ‖ r′′, where ν ′′ v νf
′
2, and consequently,

Π(t′ ‖ r′, νf ′2)
a−→ Π(t′ ‖ r′′, νf ′2). Due to the definition of R′ we have that

Π(s′, νf1 ) R Π(t′, νf2 ), and hence Π(s′ ‖ r′′, νf ′1) R′ Π(t′ ‖ r′′, νf ′2), which
was to be shown.

3. This transition can be due to SOS rule Sync and transitions s′
a,ν′1−−−→ s′′ and

r′
a,ν′−−→ r′′, where ν ′1 v νf

′
1, ν

′ v νf
′
1, and ν ′1 � ν ′, and consequently

p ≡ Π(s′′ ‖ r′′, νf ′1). Hence, we have that s′ ‖ r′ τ,ν′1�ν′−−−−−−→ s′′ ‖ r′′. By
Lemma 25, s′

a,νs−−−→ s′′, where ν ′1 = νs · λ? and νs v νf1 . It follows from the
definition of the LTS semantic of product lines that Π(s′, νf1 )

a−→ Π(s′′, νf1 ).
Furthermore, Π(s′, νf1 ) R Π(t′, νf2 ) implies that Π(t′, νf2 )

a−→ Π(t′′, νf2 ) and



APPENDIX A PROOFS OF THEOREMS 6, 9, AND 11 45

Π(s′′, νf1 ) R Π(t′′, νf2 ). It follows that t′
a,νt−−→ t′′, where νt v νf2 , and

consequently, by Lemma 24, t′
a,ν′2−−−→ t′′, where ν ′2 = νt · λ? and ν ′2 v νf

′
2.

Since νs v νf1 and νt v νf2 , then ν ′1 � ν ′ and ∀i ∈ bi(r)(νf1 |i = νf2 |i)
imply that ν ′2 � ν ′ and ν ′2 � ν ′ v νf

′
2. By SOS rule Sync, we have that

t′ ‖ r′ τ,ν′2�ν′−−−−−−→ t′′ ‖ r′′ and hence, Π(t′ ‖ r′, νf ′2)
τ−→ Π(t′′ ‖ r′′, νf ′2).

Due to the Definition ofR′, we have that Π(s′′, νf1 )R Π(t′′, νf2 ) and hence,
Π(s′′ ‖ r′′, νf ′1)R′ Π(t′′ ‖ r′′, νf ′2).

The same discussion holds when Π(t′ ‖ r′, νf ′2)
a−→ p. Concluding that R′ is a

strong bisimulation, and consequently s ‖ r 'PL t ‖ r.

Appendix A.3. Proof of Theorem 9
Theorem 9 - Part 1. Strict strong bisimilarity is an equivalence relation.
Proof. To show that strict strong bisimilarity is an equivalence, we must show
that it is reflexive, symmetric, and transitive. Reflexivity and symmetry follow
immediately from the reflexivity and symmetry properties of strong bisimilarity.
Hence, it only remains to prove transitivity.

Consider PL-CCS terms s, t, and r such that s ≈PL t, and t ≈PL r; following
Definition 4 for any valid full configuration νf1 ∈ VFConfig(s) ∩ VFConfig(t)
and νf2 ∈ VFConfig(t) ∩ VFConfig(r), it holds that Π(s, νf1 ) ∼ Π(t, νf1 ), and
Π(t, νf2 ) ∼ Π(r, νf2 ). Without loss of generality, we assume that max (bi(s)) ≥
max (bi(t)) ≥max (bi(r)) (the proof of all other cases is almost identical). There-
fore, νf1 = νr · λ1 · λ2, νf2 = νr · λ2, where νr ∈ VFConfig(r). We prove that
Π(s, νf1 ) ∼ Π(r, νf1 ). ConstructR as

R = {(Π(s′, νf1 ),Π(r′, νf1 )) | Π(s′, νf1 ) ∼ Π(t′, νf1 ) ∧ Π(t′, νf2 ) ∼ Π(r′, νf2 )}

We prove thatR satisfies the transfer conditions of Definition 3.
For an arbitrary pair (Π(s′, νf1 ),Π(r′, νf1 )) ∈ R, consider that Π(s′, νf1 )

α−→
Π(s′′, νf1 ) since s′

α,ν′1−−−→ s′′, where ν ′1 v νf1 . Hence, Π(s′, νf1 ) ∼ Π(t′, νf1 ) implies
that Π(t′, νf1 )

α−→ Π(t′′, νf1 ) and Π(s′′, νf1 ) ∼ Π(t′′, νf1 ). It follows that t′
α,ν2−−−→ t′′,

where ν2 v νf1 . By Lemma 25, it holds that t′
α,ν′2−−−→ t′′, where ν2 = ν ′2 · λ?

and ν ′2 v νf2 and consequently Π(t′, νf2 )
α−→ Π(t′′, νf2 ). Therefore, Π(t′, νf2 ) ∼

Π(r′, νf2 ) implies that Π(r′, νf2 )
α−→ Π(r′′, νf2 ) and Π(t′′, νf2 ) ∼ Π(r′′, νf2 ). It fol-

lows that r′
α,ν′3−−−→ r′′, where ν ′3 v νf2 . Consequently, by Lemma 24, r′

α,ν3−−−→ r′′,
where ν3 = ν ′3 · λ? and ν3 v νf1 . Hence, Π(r′, νf1 )

α−→ Π(r′′, νf1 ). Due to the
Definition of R, we have that Π(s′′, νf1 ) ∼ Π(t′′, νf1 ) and Π(t′′, νf2 ) ∼ Π(r′′, νf2 )
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and hence, (Π(s′′, νf1 ),Π(r′′, νf1 )) ∈ R, which was to be shown. The same dis-
cussion holds when r′

α,ν3−−−→ r′′, where ν3 v νf1 . Concluding that R is a strong
bisimulation, and consequently s ≈PL r.
Theorem 9 - Part 2. Strict strong bisimilarity is congruence on PL-CCS terms.
Proof. To show that strict strong bisimilarity is a congruence on PL-CCS terms
with respect to the PL-CCS operators, we need to prove that for any arbitrary
product line r, renaming function φ, and L ⊆ Act , s ≈PL t implies following
cases:

1. α.s ≈PL α.t ;

2. s+ r ≈PL t+ r;

3. s⊕i r ≈PL t⊕i r;

4. s \ L ≈PL t \ L;

5. s[φ] ≈PL t[φ];

6. s ‖ r ≈PL t ‖ r;

We only prove cases 1, 3, and 6; the proof of remaining cases is almost identical.
Note that ∀νf ′ ∈ VFConfig(s� r)∩VFConfig(t� r)⇒ ∃νf ∈ VFConfig(s)∩
VFConfig(t)(νf

′
= νf · λ), where � ∈ {+,⊕, ‖, , |}. For any valid full config-

uration νf with respect to s and t, we assume Π(s, νf ) ∼ Π(t, νf ) is witnessed by
strong bisimulationR.
Case 1. We have that νf ∈ VFConfig(s) ∩ VFConfig(t), and hence, νf ∈
VFConfig(a.s)∩VFConfig(a.t). Therefore, we only need to prove that Π(a.s, νf ) ∼
Π(a.t, νf ). To this end, we prove that the closure of R with action prefixing, de-
noted by R′ is a strong bisimulation relation. It remains to show the transfer
conditions of Definition 3 for each pair in R′. The case for the pairs in R holds
vacuously. We only need to show the transfer conditions for an arbitrary pair
(Π(a.s, νf1 ),Π(a.t, νf2 )) ∈ R′. Assume that Π(a.s, νf )

a−→ (s′, νf ) for some s′.
This transition can only be due to SOS rule Prefix and s′ must be s. Hence, we
have that a.s

a,ν?−−−→ s and ν? v νf . Similarly, it follows from SOS rule Prefix and
the definition of the LTS semantic of product lines that Π(a.t, νf )

a−→ Π(t, νf ).
Due to the definition of R′, we have that (Π(s, νf ),Π(t, νf )) ∈ R and hence
(Π(s, νf ),Π(t, νf )) ∈ R′, which was to be shown.
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Case 3. Following the Definition 4, we prove that for any valid full configuration
νf
′ with respect to s⊕ir and t⊕ir, Π(s⊕ir, νf ′) ∼ Π(t⊕ir, νf ′) holds. Construct

R′ as:

R′ = {(Π(s⊕i r, νf ′),Π(t⊕i r, νf ′))} ∪ {(Π(t′, νf
′
),Π(t′, νf

′
))}∪

{(Π(s′, νf
′
),Π(t′, νf

′
))|(Π(s′, νf ),Π(t′, νf )) ∈ R} .

We prove that R′ satisfies the transfer conditions of Definition 3. We only prove
the transfer conditions for the pair (Π(s ⊕i r, νf ′),Π(t ⊕i r, νf ′)) ∈ R′ as for
others, the proof is trivial (the proof for pairs such as (Π(s′, νf

′
),Π(t′, νf

′
)) ∈ R′

follows from Lemmas 24 and 25).
Suppose that Π(s ⊕i r, νf ′) a−→ p. Regarding the value of νf ′|i two cases can

be considered:

1. νf ′|i = L: This transition can be due to SOS rule Select and s
a,ν−−→ s′,

where ν v νf
′, and p ≡ Π(s′, νf

′
). Hence, we have that s⊕i r

a,ν|i/L−−−−−→ s′.
By Lemma 25, s

a,νs−−−→ s′, where ν = νs · λ?, and νs v νf . There-
fore, from the definition of the LTS semantic of product lines it follows
that Π(s, νf )

a−→ Π(s′, νf ). Furthermore, Π(s, νf ) ∼ Π(t, νf ) implies
that Π(t, νf )

a−→ Π(t′, νf ) and Π(s′, νf ) ∼ Π(t′, νf ). Similarly, it follows

that t
a,νt−−→ t′, where νt v νf . Thus, by Lemma 24, t

a,ν′−−→ t′, where

ν ′ = νt · λ?, and ν ′ v νf
′. By Select , t ⊕i r

a,ν′|i/L−−−−−→ t′ and conse-
quently Π(t ⊕i r, νf ′) a−→ Π(t′, νf

′
). Due to the definition of R′, we have

that Π(s′, νf ) ∼ Π(t′, νf ) and hence, Π(s′, νf
′
) R′ Π(t′, νf

′
), which was to

be shown.

2. νf |i = R: This transition can be due to SOS rule Select and r
a,ν−−→ r′,

where ν v νf
′, and p ≡ Π(r′, νf

′
). Hence, we have that s ⊕i r

a,ν|i/R−−−−−→ r′

and similarly, t ⊕i r
a,ν|i/R−−−−−→ t′. It follows from the definition of the LTS

semantic of product lines that Π(t⊕i r, νf ′) a−→ Π(r′, νf
′
). By the definition

ofR′, Π(r′, νf
′
)R′ Π(r′, νf

′
).

The same discussion holds when Π(t ⊕i r, νf ′) a−→ p. Concluding that R′ is a
strong bisimulation. Consequently s⊕i r ≈PL t⊕i r.
Case 6. Following the Definition 4, we prove that for any valid full configuration
νf
′ with respect to s ‖ r and t ‖ r, Π(s ‖ r, νf ′) ∼ Π(t ‖ r, νf ′) holds. Construct

R′ as

R′ = {(Π(s′ ‖ r′, νf ′),Π(t′ ‖ r′, νf ′))|(Π(s′, νf ),Π(t′, νf )) ∈ R}
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We show that it satisfies the transfer conditions of Definition 3.
For an arbitrary pair Π(s′ ‖ r′, νf ′) R′ Π(t′ ‖ r′, νf ′), suppose that Π(s′ ‖

r′, νf
′
)

a−→ p. Using the SOS rules Par and Sync, three cases can be considered:

1. This transition can be due to SOS rule Par and s′
a,ν′1−−−→ s′′, where ν ′1 v νf

′,

and p ≡ Π(s′′ ‖ r′, νf ′). Hence, we have that s′ ‖ r′ a,ν′1−−−→ s′′ ‖ r′. By
Lemma 25, s′

a,νs−−−→ s′′, where ν ′1 = νs · λ? and νs v νf . It follows from the
definition of the LTS semantic of product lines that Π(s′, νf )

a−→ Π(s′′, νf ).
Furthermore, Π(s′, νf ) R Π(t′, νf ) implies that Π(t′, νf )

a−→ Π(t′′, νf ) and
Π(s′′, νf ) R Π(t′′, νf ). It follows that t′

a,νt−−→ t′′, where νt v νf , and

consequently by Lemma 24, t′
a,ν′2−−−→ t′′, where ν ′2 = νt · λ? and ν ′2 v νf

′.

By SOS rule Par , t′ ‖ r′ a,ν′2−−−→ t′′ ‖ r′ and hence, Π(t′ ‖ r′, νf ′) a−→ Π(t′′ ‖
r′, νf

′
). Due to the Definition of R′, we have that Π(s′′, νf ) R Π(t′′, νf )

and hence Π(s′′ ‖ r′, νf ′)R′ Π(t′′ ‖ r′, νf ′), which was to be shown.

2. This transition can be due to SOS rule Par and r′
a,ν′−−→ r′′, where ν ′ v νf

′,
and p ≡ Π(s′ ‖ r′′, νf ′). Hence, we have that s′ ‖ r′ a,ν′−−→ s′ ‖ r′′ and

similarly, t′ ‖ r′ a,ν′−−→ t′ ‖ r′′, where ν ′ v νf
′. Therefore, it follows that

Π(t′ ‖ r′, νf ′) a−→ Π(t′ ‖ r′′, νf ′). Due to the Definition of R′, we have that
Π(s′ ‖ r′′, νf ′)R′ Π(t′ ‖ r′, νf ′′), which was to be shown.

3. This transition can be due to SOS rule Sync and transitions s′
a,ν′1−−−→ s′′ and

r′
a,ν′−−→ r′′, where ν ′1 v νf

′, ν ′ v νf
′, and ν ′1 � ν ′, and consequently

p ≡ Π(s′′ ‖ r′′, νf ′). Hence, we have that s′ ‖ r′ τ,ν′1�ν′−−−−−−→ s′′ ‖ r′′. By
Lemma 25, s′

a,νs−−−→ s′′, where ν ′1 = νs · λ? and νs v νf . It follows from the
definition of the LTS semantic of product lines that Π(s′, νf )

a−→ Π(s′′, νf ).
Furthermore, Π(s′, νf ) R Π(t′, νf ) implies that Π(t′, νf )

a−→ Π(t′′, νf ) and
Π(s′′, νf ) R Π(t′′, νf ). It follows that t′

a,νt−−→ t′′, where νt v νf , and

consequently, by Lemma 24, t′
a,ν′2−−−→ t′′, where ν ′2 = νt · λ? and ν ′2 v

νf
′. Since νs v νf and νt v νf , then νs � νt. Therefore, ν ′1 � ν ′

implies ν ′2 � ν ′ and ν ′2 � ν ′ v νf
′. By SOS rule Sync, we have that

t′ ‖ r′ τ,ν′2�ν′−−−−−−→ t′′ ‖ r′′ and hence, Π(t′ ‖ r′, νf ′) τ−→ Π(t′′ ‖ r′′, νf ′).
Due to the Definition ofR′, we have that Π(s′′, νf )R Π(t′′, νf ) and hence,
Π(s′′ ‖ r′′, νf ′)R′ Π(t′′ ‖ r′′, νf ′).
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The same discussion holds when Π(t′ ‖ r′, νf )′ a−→ p. Concluding that R′ is a
strong bisimulation.

Appendix B. Proof of Theorem 12 and 19

In this Section, we first prove Theorem 12 and then we provide a proof for
Theorem 19. To this aim, we prove that each PL-CCS term can be rewritten by
axioms A4−6, D1,2, P4,5, S1,3, R3, E5, Dri , and N1−5 into a form where no binary
variant occurs in the scope of a CCS-operator.

We prove this by structural induction on the syntax of term t. The base case
of the induction, where t ≡ 0, holds trivially. We distinguish the following cases
based on the structure of t:

• if t ≡ a.t′, then t can be rewritten into the required form by applying the
induction hypothesis on t′, and subsequently applying axiom A4.

• if t ≡ t′1+t′2, then t can be rewritten into the required format by applying the
induction hypothesis on t′1 and t′2, and then applying axioms A5,6. Assume
that ` t′1 = p1 ⊕i p2 and ` t′2 = q1 ⊕j q2. By axioms A5,6 ` t = ((p1 +
q1)⊕j (p1+q2))⊕i ((p2+q1)⊕j (p2+q2)). These two axioms are applied to
each pi + qj , where i, j ∈ {1, 2} repeatedly until the operands of + become
CCS terms.

• if t ≡ t′1 ⊕ t′2, t can be rewritten into the required format by applying the
induction hypothesis on t′1 and t′2.

• if t ≡ t′1 ‖ t′2, then t can be rewritten into the required format by applying
the induction hypothesis on t′1 and t′2, and then applying axioms D1,2. As-
sume ` t′1 = p1 ⊕i p2 and ` t′2 = q1 ⊕j q2. By axioms D1,2 ` t = ((p1 ‖
q1)⊕j (p1 ‖ q2))⊕i ((p2 ‖ q1)⊕j (p2 ‖ q2)). These two axioms are applied to
each pi ‖ qj , where i, j ∈ {1, 2} repeatedly until the operands of ‖ become
CCS terms.

• if t ≡ t′1 t′2, then t can be rewritten into the required format by applying the
induction hypothesis on t′1 and t′2, and then applying axioms P4,5. Assume
` t′1 = p1 ⊕i p2 and ` t′2 = q1 ⊕j q2. By axioms P4,5 ` t = ((p1 q1) ⊕j
(p1 q2)) ⊕i ((p2 q1) ⊕j (p2 q2)). These two axioms are applied to each
pi qj , where i, j ∈ {1, 2} repeatedly until the operands of become CCS
terms.
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• if t ≡ t′1 | t′2, then t can be rewritten into the required format by applying the
induction hypothesis on t′1 and t′2, and then applying axioms S1,3. Assume
` t′1 = p1⊕ip2 and ` t′2 = q1⊕j q2. By axioms S1,3 ` t = ((p1 | q1)⊕j (p1 |
q2))⊕i ((p2 | q1)⊕j (p2 | q2)). These two axioms are applied to each pi | qj ,
where i, j ∈ {1, 2} repeatedly until the operands of | become CCS terms.

• if t ≡ 〈A|{A def
= t′}〉, then by applying the induction hypothesis, we obtain

` t′ = p1 ⊕i p2. By axiom Dri ` t = 〈A|{A def
= p1}〉 ⊕i 〈A|{A def

= p2}〉.
We apply this axiom repeatedly to p1 and p2, until no binary variant operator
occurs in the equations defining A.

Hence, t is rewritten into a form where no binary variant is in the scope of CCS
operator, i.e., ` t = p1 ⊕i p2, where p1 and p2 are also in this form. For all
j ∈ bi(p1⊕ip2), first applyN5 to any subterm p′⊕j q′, i.e. ` p′⊕j q′ = L(p′, j)⊕j
L(q′, j) and thenN1−4 to make j free in p′ and q′. We claim that the resulting term
t′′ ≡ p′1⊕ip′2 is fully expanded, otherwise there is a simple path from⊕j to another
⊕j . This is impossible due to application of N1−5.

For all j ∈ bi(p′1)∩ bi(p′2), apply N6 to p′2, and replace all occurrences of j by
a fresh index k 6∈ bi(p′1) ∪ bi(p′2) to derive t′′′. Hence, all indices are unique, and
the term is fully expanded. Theorem 19 is proved by applying axioms A1,2 to t′′′.

Appendix C. Soundness of Axiomatization

To prove the soundness of axioms, we show that all axioms exceptA1,2 andN6

are sound with respect to strict strong bisimilarity, while A1,2 and N6 are sound
with respect to product line bisimilarity.

To show the soundness of A1, for any νf1 ∈ VFConfig(p ⊕i q), we define
νf2 ∈ VFConfig(q ⊕i p) such that |νf1 | = |νf2 | and ∀j 6=i(νf1 |j = νf2 |j), (νf1 |i =

R ⇒ νf2 |i = L), and (νf1 |i = L ⇒ νf1 |i = R). We show that Π(p ⊕i q, νf1 ) ∼
Π(q ⊕i p, νf2 ). To this aim, we show thatR = {(Π(p⊕i q, νf1 ),Π(q ⊕i p, νf2 ))} ∪
{(Π(t, νf1 ),Π(t, νf2 ))} is a strong bisimulation. Regarding νf1 |i, two cases can be
distinguished. We only discuss the case where νf1 |i = L, as the other can be dealt
with in the same fashion.

We show that the transfer conditions hold for the pair (Π(p ⊕i q, νf1 ),Π(q ⊕i
p, νf2 )) ∈ R, as for others, the proof is straightforward. Suppose Π(p⊕i q, νf1 )

a−→
Π(p′, νf1 ), since p

a,ν1−−−→ p′, where ν1 v νf1 and ν1|i =?. Therefore, ν1 v
νf2 . By SOS rule Select , q ⊕i p a,ν2−−−→ p′, where ν2 = ν1|i/R, ν2 v νf2 , and
Π(p′, νf1 )RΠ(p′, νf2 ). The same discussion holds when Π(q⊕ip, νf2 )

a−→ Π(p′, νf2 ).
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Similarly, for any νf2 ∈ VFConfig(q ⊕i p), we define νf1 ∈ VFConfig(q ⊕i
p) as discussed in above. Concluding that p ⊕i q 'PL q ⊕i p. Axiom A2

is proved similar to A1: for any νf1 ∈ VFConfig((p ⊕i q) ⊕j r), we define
νf2 ∈ VFConfig(p ⊕i (q ⊕j r)) such that |νf1 | = |νf2 | and ∀k 6=i,k 6=j(νf1 |k = νf2 |k),
(νf1 |i = R ∧ νf1 |j = R) ⇒ (νf2 |i = R ∧ νf2 |j = R), (νf1 |i = L ∧ νf1 |j = R) ⇒
(νf2 |i = R ∧ νf2 |j = R), (νf1 |i = R ∧ νf1 |j = L) ⇒ (νf2 |i = R ∧ νf2 |j = L),
and (νf1 |i = L ∧ νf1 |j = L) ⇒ (νf2 |i = L ∧ νf2 |j = L). It can be easily shown
that Π((p ⊕i q) ⊕j r, νf1 ) ∼ Π(p ⊕i (q ⊕j r), νf2 ). Axiom N6 is proved similar
to A1,2: for any νf1 ∈ VFConfig(p), we define νf2 ∈ VFConfig(p[k/i]) such that
νf2 = νf1 · λ and νf1 |i = νf2 |k.

For axiom A3, we show that for any νf ∈ VFConfig(p⊕i p) (which implicitly
implies νf ∈ VFConfig(p)), Π((p ⊕i p), νf ) ∼ Π(p, νf ). It is trivial that R =
{(Π((p⊕i p), νf )} ∪ {(Π(t, νf ),Π(t, νf ))} is a strong bisimulation. Axioms N1,3

are proved similarly.
For axiom A4, for any νf ∈ VFConfig(a.(p ⊕i q)) (which implicitly implies

νf ∈ VFConfig(a.p ⊕i a.q)), Π(a.(p ⊕i q), νf ) ∼ Π(a.p ⊕i a.q, νf ). Regarding
the value of νf |i, two cases can be distinguished. We only discuss the case that
νf |i = L, as the other cases can be proven identically. Therefore, we show that

R = {(Π(a.(p⊕i q), νf ),Π(a.p⊕i a.q, νf )), (Π((p⊕i q), νf ),Π(p, νf ))}∪
{(Π(t, νf ),Π(t, νf ))}

is a strong bisimulation and satisfies the transfer conditions of Definition 3. For
the pair (Π(a.(p⊕i q), νf ),Π(a.p⊕i a.q, νf )) ∈ R, suppose Π(a.(p⊕i q), νf ) a−→
Π(p ⊕ qi, νf ) since by SOS rule Prefix a.(p ⊕i q) a,ν?−−−→ p ⊕i q, where ν? v νf .

By SOS rules Prefix and Select , a.p ⊕i a.q
a,ν?|i/L−−−−−→ p, ν?|i/L v νf . There-

fore, Π(a.p ⊕i a.q, νf ) a−→ Π(p, νf ) , and Π((p ⊕i q), νf ) R Π(p, νf ). The same
discussion holds when Π(a.p ⊕ a.q, νf )

a−→ Π(p, νf ). Furthermore, for the pair
(Π((p ⊕i q), νf ),Π(p, νf )) ∈ R, assume that Π((p ⊕i q), νf ) a−→ Π(p′, νf ) since

p⊕i q a,ν−−→ p′ and ν v νf . Therefore, p
a,ν′−−→ p′, where ν ′|i/L = ν, and ν ′ v νf .

Consequently Π(p, νf )
a−→ Π(p′, νf ) and Π(p′, νf ) R Π(p′, νf ). The same dis-

cussion holds when Π(p, νf )
a−→ Π(p′, νf ). Transfer conditions trivially hold for

pairs like (Π(t, νf ),Π(t, νf )) ∈ R. Consequently R is a strong bisimulation,
concluding that a.(p⊕i q) ≈PL a.p⊕i a.q.

To prove axiom A5, for any νf ∈ VFConfig((p ⊕i q) + r) (which implic-
itly implies νf ∈ VFConfig((p + r) ⊕i (q + r))), it is straightforward to show
that Π((p ⊕i q) + r, νf ) ∼ Π((p + r) ⊕i (q + r), νf ) witnessed by the strong
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bisimulation relation R = {(Π((p ⊕i q) + r, νf ),Π((p + r) ⊕i (q + r), νf ))} ∪
{(Π(t, νf ),Π(t, νf ))}. Axioms A6, P4,5 R3, E5, N2,4,5, S3 are proved similar to
A5.

For axiom C1, it can be proved that for any νf ∈ VFConfig(p + q) (which
implicitly implies νf ∈ VFConfig(q + p)) Π(p + q, νf ) ∼ Π(q + p, νf ). It is
easy to show thatR = {(Π(p+ q, νf ),Π(q + p, νf ))} ∪ {(Π(t, νf ),Π(t, νf ))} is
a strong bisimulation. Axioms C2−4, P1−3,6, S1,2,4,5,6, R1,2,4, and E1−4 are proved
similarly.

Axioms Dec, UnFold , Fold , and Ung are standard [17]. We provide a full
proof for the new axiom Dri . To prove axiom Dri , we show that for any νf ∈
VFConfig(〈A|{A def

= t1⊕it2}〉) (which implicitly implies νf ∈ VFConfig(〈A|{A def
=

t1}〉 ⊕i 〈A|{A def
= t2}〉)), Π(〈A|{A def

= t1 ⊕i t2}〉, νf ) ∼ Π(〈A|{A def
= t1}〉 ⊕i

〈A|{A def
= t2}〉, νf ). We only discuss on the case when νf |i = L as the other can

be dealt with in the same way. To this aim, we prove that R = {(Π(〈t|{A def
=

t1 ⊕i t2}〉),Π(〈t|{A def
= t1}〉 ⊕i 〈t|{A def

= t2}〉, νf ))} ∪ {(Π(〈t|{A def
= t1 ⊕i

t2}〉),Π(〈t|{A def
= t1}〉, νf ))} is a strong bisimulation.

The transfer conditions of Definition 3 for the pair (Π(〈t|{A def
= t1⊕it2}〉, νf ),

Π(〈t|{A def
= t1}〉 ⊕i 〈t|{A def

= t2}〉, νf )) can be examined by structural induction
over the syntax of t. The base case of induction for t ≡ 0 is trivial.

• if t ≡ a.t′, then by rule Prefix , 〈a.t′|{A def
= t1 ⊕i t2}〉 a,ν?−−−→ 〈t′|{A def

= t1 ⊕i
t2}〉 and ν? v νf . Similarly, 〈a.t′|{A def

= t1}〉 ⊕i 〈a.t′|{A def
= t2}〉

a,ν?|i/L−−−−−→
〈t′|{A def

= t1}〉. Hence, Π(〈a.t′|{A def
= t1 ⊕i t2}〉, νf ) a−→ Π(〈t′|{A def

=

t1⊕i t2}〉, νf ), Π(〈a.t′|{A def
= t1}〉 ⊕i 〈a.t′|{A def

= t2}〉, νf ) a−→ Π(〈t′|{A def
=

t1}〉, νf ), and Π(〈t′|{A def
= t1 ⊕i t2}〉, νf )R Π(〈t′|{A def

= t1}〉, νf ).

• if t ≡ t1 + t2, then by rule Choice, either 〈t1 + t2|{A def
= p ⊕i q}〉 a,ν1−−−→

〈t′1|{A
def
= p ⊕i q}〉 or 〈t1 + t2|{A def

= p ⊕i q}〉 b,ν2−−→ 〈t′2|{A
def
= p ⊕i q}〉,

and ν1 v νf or ν2 v νf , since 〈t1|{A def
= p ⊕i q}〉 a,ν1−−−→ 〈t′1|{A

def
=

p ⊕i q}〉 or 〈t2|{A def
= p ⊕i q}〉 b,ν2−−→ 〈t′2|{A

def
= p ⊕i q}〉. Hence, Π(〈t1 +

t2|{A def
= p ⊕i q}〉, νf ) a−→ Π(〈t′1|{A

def
= p ⊕i q}〉, νf ) or Π(〈t1 + t2|{A def

=

p ⊕i q}〉, νf ) b−→ Π(〈t′2|{A
def
= p ⊕i q}〉, νf ). By induction, Π(〈t1|{A def

=

p ⊕i q}〉, νf ) ∼ Π(〈t1|{A def
= p}〉 ⊕i 〈t1|{A def

= q}〉, νf ) and Π(〈t2|{A def
=
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p ⊕i q}〉, νf ) ∼ Π(〈t2|{A def
= p}〉 ⊕i 〈t2|{A def

= q}〉, νf ). Therefore,
Π(〈t1|{A def

= p}〉 ⊕i 〈t1|{A def
= q}〉, νf ) a−→ Π(〈t′1|{A

def
= p}〉, νf ), or

Π(〈t2|{A def
= p}〉 ⊕i 〈t2|{A def

= q}〉, νf ) b−→ Π(〈t′2|{A
def
= p}〉, νf ), and

Π(〈t′1|{A
def
= p ⊕i q}〉, νf ) R Π(〈t′1|{A

def
= p}〉, νf ), and Π(〈t′2|{A

def
=

p ⊕i q}〉, νf ) R Π(〈t′2|{A
def
= p}〉, νf ). Consequently, Π(〈t1 + t2|{A def

=

p}〉⊕i 〈t1+ t2|{A def
= q}〉, νf ) a−→ Π(〈t′1|{A

def
= p}〉, νf ) or Π(〈t1+ t2|{A def

=

p}〉 ⊕i 〈t1 + t2|{A def
= q}〉 b−→ Π(〈t′2|{A

def
= p}〉, νf ). The same discussion

holds when 〈t1 + t2|{A def
= p}〉 ⊕i 〈t1 + t2|{A def

= q}〉 a,ν1−−−→ 〈t′1|{A
def
= p}〉

or 〈t1 + t2|{A def
= p}〉 ⊕i 〈t1 + t2|{A def

= q}〉 b,ν2−−→ 〈t′2|{A
def
= q}〉.

• if t ≡ t1 ⊕j t2, t ≡ t1 ‖ t2, t ≡ t1 t2, t ≡ t1 | t2, t ≡ t′ \ L, or t ≡ t′[f ],
then the proof is almost identical to the previous case.

• if t ≡ 〈A|{A def
= t1⊕it2}〉, then Π(〈A|{A def

= t1⊕it2}〉, νf ) a−→ Π(〈t′1|{A
def
=

t1 ⊕i t2}〉, νf ) since 〈A|{A def
= t1 ⊕i t2}〉 a,ν−−→ 〈t′1|{A

def
= t1 ⊕i t2}〉, where

ν v νf , and by SOS rules call and Select , 〈t1|{A def
= t1 ⊕i t2}〉 a,ν′−−→

〈t′1|{A
def
= t1⊕it2}〉, where ν ′|i/L = ν. Therefore, by induction Π(〈t1|{A def

=

t1⊕it2}〉, νf ) ∼ Π(〈t1|{A def
= t1}〉, νf ), and hence Π(〈t1|{A def

= t1}〉, νf ) a−→
Π(〈t′1|{A

def
= t1}〉, νf ), and Π(〈t′1|{A

def
= t1}〉, νf ) ∼ Π(〈t′1|{A

def
= t1 ⊕i

t2}〉, νf ). Thus, by SOS rules Select and Call , Π(〈A|{A def
= t1}〉⊕i〈A|{A def

=

t2}〉, νf ) a−→ Π(〈t′1|{A
def
= t1}〉, νf ) and Π(〈t′1|{A

def
= t1⊕it2}〉, νf )RΠ(〈t′1|{A

def
=

t1}〉, νf ). The same discussion holds when Π(〈A|{A def
= t1}〉 ⊕i 〈A|{A def

=

t2}〉 a−→ 〈t′1|{A
def
= t1}〉.

The transfer conditions of Definition 3 for the pair (Π(〈t|{A def
= t1⊕it2}〉, νf ),Π(〈t|

{A def
= t1}〉) can be examined by structural induction over the syntax of t as dis-

cussed in above.

Appendix D. Ground-Completeness of Axiomatization

We are going to prove Theorem 16, that the axiomatization of PL-CCS is
ground-complete for closed, finite-state terms modulo product line bisimilarity.
The idea behind the ground-completeness proof, following the approach of [14],
is to show that t = s via the intermediate results t = t⊕i s and t⊕i s = s, which
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imply that t = t⊕i s = s. The following lemmata are required before explaining
the proof.

Lemma 26. Let t, s, and r be fully expanded. If (t⊕i s)⊕j r 'PL r, where i 6= j,
i 6∈ bi(t) ∪ bi(s) and j 6∈ bi(r), then t⊕j r 'PL r and s⊕j r 'PL r.

Proof. We show that t ⊕j r 'PL r as the other case is symmetric. Regarding
Definition 5, we must show that

• for any νf ′1 ∈ VFConfig(t⊕j r), there exists νf ′2 ∈ VFConfig(r) such that
Π(t⊕j r, νf ′1) ∼ Π(r, νf

′
2).

Assume νf ′1|j = L; hence, νf ′1 can be written as νt·λ, where νt ∈ VFConfig(t).
Consider νf 1 ∈ VFConfig((t ⊕i s) ⊕j r) such that νf 1|i = L, νf 1|j =

L, and ∀k ≤ |νt| ∧ (k 6= i)(νf 1|k = νf
′
1|k). Hence, by Definition 5,

(t ⊕i s) ⊕j r 'PL r implies that there exists νf2 ∈ VFConfig(r) such that
Π((t⊕i s)⊕j r, νf1 ) ∼ Π(r, νf2 ). Define νf ′2 = νf 2. It immediately follows
that Π(t⊕j r, νf ′1) ∼ Π(r, νf

′
2).

Assume νf ′1|j = R, so it can be written as νf ′1 = νr · λ, where νr ∈
VFConfig(r). Consider νf 1 ∈ VFConfig((t⊕is)⊕jr) such that νf 1|j = R,
and ∀k ≤ |νr|(νf 1|k = νf

′
1|k). Define νf ′2 = νr. It immediately follows

that Π(t⊕j r, νf ′1) ∼ Π(r, νf
′
2).

• for any νf ′2 ∈ VFConfig(r), there exists νf ′1 ∈ VFConfig(t ⊕j r) such
that Π(t ⊕j r, νf ′1) ∼ Π(r, νf

′
2). Take νf ′1 such that νf ′1|j = R and ∀k ≤

|νr| ∧ (k 6= j)(νf
′
1|k = νf

′
2|k). It follows immediately that Π(t⊕j r, νf ′1) ∼

Π(r, νf
′
2).

�

Lemma 27. Let
⊕

i≤n pi, where n > 0, be a PL-CCS term such that pis are CCS
terms. Then Π(

⊕
i≤n pi, νf ) ∼ pj , where νf |j = L and ∀k < j(νf |k = R).

Proof. It is straightforward to check that for a given CCS term p, Π(p, νf ) ∼ p
since νf has no effect on deriving transitions of p (νf is only considered in rules
Select , RSelect , and LSelect). Therefore, Π(

⊕
i≤n pi, νf )

a−→ Π(p′, νf ), since⊕
i≤n pi

a,ν−−→ p′, where ν v νf . Hence, by SOS rule Select , pj
a,ν?−−−→ p′ and

∀k < j(ν|k) = R and ν|j = L. �
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Theorem. For all closed finite-state PL-CCSf terms t1 and t2, t1 'PL t2 implies
t1 = t2.
Proof. By Theorem 19, PL-CCSf terms t and s can be derived by our axiom-
atization into fully expanded terms t′ ≡ ⊕

i≤n pi and s′ ≡ ⊕
j≤m qj , where pis

and qis are CCS term such that every recursive specification E included in pis or
qis is essentially finite state. Since our axiomatization subsumes CCS axioma-
tization, completeness of CCS axiomatization for closed finite-state CCS terms
[17] implies p ∼ q ⇔ p = q. The soundness of our axiomatization yields
t 'PL t′ and s 'PL s′. By transitivity of product line bisimilarity, t′ 'PL s′.
Therefore, it is enough to prove that t′ ⊕i s′ 'PL s′ ⇒ t′ ⊕i s′ = s′ and
t′ 'PL t′ ⊕i s′ ⇒ t′ = t′ ⊕i s′, where i is free in s′ and t′. These properties
are sufficient to prove the theorem as follows: If t′ 'PL s

′, then, by the fact that
product line bisimilarity is reflexive (i.e., t′ 'PL t′ and s′ 'PL s′) and the fact
that product line bisimilarity is a congruence on fully expanded PL-CCS terms,
we have t′ ⊕i t′ 'PL s′ ⊕i t′ and t′ ⊕i s′ 'PL s′ ⊕i s′ (note that t′ ⊕i s′ is still
fully expanded). The soundness of axiomatization, more in particular the validity
of Axiom A3, implies that t′ ⊕i t′ 'PL t

′ and s′ ⊕i s′ 'PL s
′. Using symmetry

and transitivity of product line bisimilarity, t′ 'PL t
′ ⊕i s′ and t′ ⊕i s′ 'PL s

′ are
obtained. Thus, above properties yield that t′ = t′ ⊕i s′ and t′ ⊕i s′ = s′. These
last results can be combined to show that t′ = t′ ⊕i s′ = s′. Consequently, t = t′

and s = s′ together with t′ = s′ result t = s.
For all fully expanded PL-CCSf terms t′ ⊕i s′, t′ and s′, where t′ ≡⊕

i≤n pi
and s′ ≡⊕

j≤m qj , t
′ ⊕i s′ 'PL s

′ implies t′ ⊕i s′ = s′, is proven by induction on
number of CCS terms of t′, i.e. n. The proof of t′ 'PL t

′⊕i s′ implies t′ = t′⊕i s′
is similar and therefore omitted.

The base case of the induction corresponds to the case that n = 0. Therefore,
p1⊕is′ 'PL s implies for νf 1, where νf 1|1 = L, there exists νf 2 such that Π(p1⊕i
s′, νf 1) ∼ Π(s′, νf 2). By Lemma 27, Π(p1 ⊕i s′, νf 1) ∼ p1 and Π(s′, νf 2) ∼ qk,
where νf 2|k = L and ∀j < k(νf 2|j = R). Therefore, p1 ∼ qk and consequently
by completeness of axiomatization of CCS, p1 = qk. Thus, p1 ⊕i s′ = qk ⊕i⊕

j≤m qj =A1,A2,A3 s′.
Assume that for all 0 < w < n such that t′ ≡⊕

i≤w pi, t
′⊕i s′ 'PL s

′ implies
t′⊕is′ = s′. We prove that t′⊕is′ 'PL s

′, where t′ ≡⊕
i≤n pi, implies t′⊕is′ = s′.

By Lemma 26, t′ ⊕i s′ 'PL s′ implies p1 ⊕i s′ 'PL s′ and (
⊕

1<i≤n pi) ⊕i
s′ 'PL s′. By application of axiom N6,

⊕
1<i≤n pi can be derived into t′′ ≡⊕

k<n pk. Therefore, by soundness of axiomatization and transitivity of product
line bisimilarity, (

⊕
k<n pk)⊕i s′ 'PL s

′. By induction p1⊕i s′ = s′, t′′⊕i s′ = s′.
Therefore, t′⊕is′ = (p1⊕1(

⊕
1<i≤n pi))⊕is′ =N6 (p1⊕z(

⊕
1<i≤n pi))⊕is′ =A1,A2
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(
⊕

1<i≤n pi)⊕z (p1⊕i s′) = (
⊕

1<i≤n pi)⊕z s′ = t′′⊕i s′ = s′, where z is a fresh
index such that z > m, z > n, and z 6= i.

Appendix E. Proof of Theorem 23

We use the following so called reduction Lemma taken from [51] to complete
the proof. The right-hand sides of the bi-implications express the unfolding of the
fixed points: in case of minimum, a single element p, is removed while for the
maximum it is added.

Lemma 28. For ψ a monotonic function on a powerset Pow(D) with p ∈ D, we
have:

p ∈ µV.ψ(V )⇔ p ∈ ψ(µV.(ψ(V ) \ {p})),
p ∈ νV.ψ(V )⇔ p ∈ ψ(νV.(ψ(V ) ∪ {p})).

The proof Theorem of 23 follows:
“⇒” Suppose r 'PL s and let ϕ ∈ mv − Lµ. We prove that for all valid

full configuration νf1 ∈ VFConfig(r) and νf2 ∈ VFConfig(s) that Π(r, νf1 ) ∼
Π(s, νf2 ), νf1 ∈ [[ϕ]](r) iff νf2 ∈ [[ϕ]](s). The proof is managed by induction on the
structure of ϕ.

1. If ϕ = true, then obviously νf1 ∈ [[ϕ]](r) and νf2 ∈ [[ϕ]](s).

2. If ϕ = ϕ1 ∧ ϕ2, then by definition νf1 ∈ [[ϕ1]](r) and νf1 ∈ [[ϕ2]](r), and the
claim follows by straightforward induction.

3. If ϕ = ϕ1 ∨ ϕ2, it is proved similar to previous case.

4. If ϕ = 〈a〉ϕ′, then by definition νf1 ∈ [[ϕ]](r), if νf1 ∈ Ra(r, r
′) and

νf1 ∈ [[ϕ′]](r′) for some r′. Hence νf1 ∈ Ra(r, r
′) implies that r

a,ν1−−−→ r′

for some ν1 such that ν1 v νf1 . Consequently Π(r, νf1 )
a−→ Π(r′, νf1 ).

By assumption, Π(r, νf1 ) ∼ Π(s, νf2 ) implies Π(s, νf2 )
a−→ Π(s′, νf2 ) and

Π(r′, νf1 ) ∼ Π(s′, νf2 ). Thus s
a,ν2−−−→ s′ for some ν2 that ν2 v νf2 and

νf2 ∈ Ra(s, s
′). Concluding by induction that νf2 ∈ [[ϕ′]](s′), the claim

follows.

5. If ϕ = [a]ϕ′, then by definition νf1 ∈ [[ϕ]](r) implies that for all s′:

• either νf1 ∈ Ra(r, r
′) and νf1 ∈ [[ϕ′]](r′): Hence νf1 ∈ Ra(r, r

′) im-
plies that r

a,ν1−−−→ r′ for some ν1 such that ν1 v νf1 . Consequently
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Π(r, νf1 )
a−→ Π(r′, νf1 ). By assumption, Π(r, νf1 ) ∼ Π(s, νf2 ) implies

Π(s, νf2 )
a−→ Π(s′, νf2 ) and Π(r′, νf1 ) ∼ Π(s′, νf2 ). Thus s

a,ν2−−−→ s′ for
some ν2 that ν2 v νf2 and νf2 ∈ Ra(s, s

′). Concluding by induction
that νf2 ∈ [[ϕ′]](s′), the claim follows.

• or νf1 6∈ Ra(r, r
′): Hence there exists no transition that r

a,ν1−−−→ r′

for some ν1 such that ν1 v νf1 . Consequently Π(r, νf1 ) 6a−→. By
assumption, Π(r, νf1 ) ∼ Π(s, νf2 ) implies Π(r, νf1 ) 6a−→, and hence
νf2 6∈ Ra(s, s

′) for any s′.

6. Ifϕ = µZ.φ, then by Lemma 28, νf1 ∈ [[ϕ]](r) implies νf1 ∈ [[φ]]ρ[Z 7→µZ.φ\{νf1 }]
(r).

By induction νf2 ∈ [[φ]]ρ[Z 7→µZ.φ\{νf2 }]
(s), and hence νf2 ∈ [[ϕ]](s).

7. Ifϕ = νZ.φ, then by Lemma 28, νf1 ∈ [[ϕ]](r) implies νf1 ∈ [[φ]]ρ[Z 7→νZ.φ∪{νf1 }]
(r).

By induction νf2 ∈ [[φ]]ρ[Z 7→νZ.φ∪{νf2 }]
(s), and consequently νf2 ∈ [[ϕ]](s).

“⇐” Suppose r ∼L s. We prove that for any valid full configuration νf1 ∈
VFConfig(r), there exists νf2 ∈ VFConfig(s) such that Π(r, νf1 ) ∼ Π(s, νf2 ).
To this aim, we assume that Π(r, νf1 ) is image finite, i.e., {Π(r′, νf1 )|Π(r, νf1 )

a−→
Π(r′, νf1 )} is finite. The result can be lifted to general cases in the same vein as
[14]. For νf1 ∈ VFConfig(r), we find ϕ ∈ mv − Lµ such that it characterizes the
strong bisimulation class for Π(r, νf1 ), called characteristic formula, following the
approach of [52]. Since νf1 ∈ [[ϕ]](r), by Definition 22, there exists νf2 ∈ [[ϕ]](s).
Therefore, Π(r, νf1 ) ∼ Π(s, νf2 ).

Similarly for any valid full configuration νf2 ∈ VFConfig(s), we can find
νf1 ∈ VFConfig(r) that Π(r, νf1 ) ∼ Π(s, νf2 ).


