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Abstract. Software systems undergo several changes along their life-
cycle and hence, their models may become outdated. To tackle this
issue, we propose an efficient algorithm for adaptive learning, called
partial-Dynamic L∗M (∂L∗M ) that improves upon the state of the art by
exploring observation tables on-the-fly to discard redundant prefixes and
deprecated suffixes. Using 18 versions of the OpenSSL toolkit, we com-
pare our proposed algorithm along with three adaptive algorithms. For
the existing algorithms in the literature, our experiments indicate a
strong positive correlation between number of membership queries and
temporal distance between versions and; for our algorithm, we found a
weak positive correlation between membership queries and temporal dis-
tance, as well, a significantly lower number of membership queries. These
findings indicate that, compared to the state-of-the-art algorithms, our
∂L∗M algorithm is less sensitive to software evolution and more efficient
than the current approaches for adaptive learning.
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1 Introduction

According to Binder [3], software analysis is necessarily a model-based activity,
whether models are in engineers’ minds, informally sketched on papers or for-
mally denoted as an explicit model [4]. Nevertheless, as requirements change
and systems evolve, model maintenance is often neglected due to its high cost
and models are rendered outdated [33]. To tackle this issue, active model learn-
ing [1] has been increasingly used to automatically derive behavioral models
[15,21,30]. Active model learning aims at building a hypothesis H about the
“language” (i.e., the set of possible behaviors) of a system under learning (SUL)
by iteratively providing input sequences and observing outputs [30]. To formu-
late a hypothesis model H, the learning algorithm searches for specific pairs of
sequences to reach and distinguish states, i.e., called transfer and separating
sequences, respectively.



Applying model learning to industrial systems is hampered by scalability
issues [8] as well as the constant changes along their life-cycle [5] that may
require learning from scratch. Adaptive learning [10] is an approach that at-
tempts to speed up learning by reusing the knowledge from existing models.
Studies [5,10,35,13] have shown that pre-existing models can steer learning by
reusing the sequences applied in the past queries and hence, reduce the cost
for re-inferring models from different versions. However, after several changes,
old separating sequences may no longer be able to distinguish states, and lead
to deprecated queries. Similarly, transfer sequences may not lead to different
states anymore, and become redundant. These are known to be major threats to
adaptive learning [13].

In this paper, we address the issues of redundant and deprecated sequence.
To mitigate the aforementioned issues, we introduce partial-Dynamic L∗M (∂L∗M),
an adaptive algorithm where the cost for active model learning is reduced by
exploring observation tables on-the-fly for discarding redundant and deprecated
sequences. Moreover, we present an experiment to compare our technique against
three state-of-the-art adaptive algorithms and evaluate how these sequences can
hamper learning. By this experiment, we answer the following questions:

(RQ1) Is our on-the-fly adaptive technique more efficient than the state-of-the-art
adaptive learning techniques?

(RQ2) Is the effectiveness of adaptive learning strongly affected by the temporal
distance between versions?

In our experiment, we reused 18 Mealy machines from a large-scale analysis
of several versions of the OpenSSL project [26], an open-source and commercial-
grade cryptographic toolkit [23]. To answer RQ1, we used the number of mem-
bership queries (MQ) to learn models with a fixed level of accuracy as a measure of
effectiveness. To answer RQ2, we used the temporal distance between versions,
denoted by the difference between their release dates as measure of software evo-
lution because structural changes (e.g., changed transitions) in black-box setting
are often unknown and behavioral metrics (e.g., percentage of failed tests) may
mislead minor modifications closer to initial states compared to major changes.

Based on our experiments, we find that our ∂L∗M algorithm presented weak
positive correlation between MQs and temporal distance. These findings support
the answer to RQ1 that our algorithm is less sensitive to model evolution and
more efficient than the state-of-the-art adaptive algorithms. On the other hand,
we found that existing adaptive algorithms can have a strong positive correla-
tion between MQs and the temporal distance between the SUL and reused version.
These findings affirmatively answer RQ2 for existing techniques; and corrobo-
rate previous studies [13] where the quality of the reused models is shown as a
factor that affects adaptive learning.

Our contributions: (1) We introduce the ∂L∗M algorithm to mitigate the cost
for re-inferring Mealy machines from evolving systems; and (2) We present an
experiment comparing our proposal to three state-of-the-art adaptive learning
algorithms [5,13] to show that the side-effects of redundant and deprecated se-
quences can be mitigated by exploring reused observation tables on-the-fly. To



date, there is a lack of studies about the pros and cons of adaptive learning
and how much extra (and irrelevant) effort it may take if low-quality models are
re-used, our second contribution provides essential insights to fill in this gap.

The remaining of this paper is organized as follows: In section 2, we introduce
the concepts of finite state machines, model learning and adaptive learning; In
section 3, we present the ∂L∗M algorithm; In section 4, we design an experiment to
evaluate and analyze the effect of reuse and its correlation with model quality;
and, In section 5, we draw some conclusions and pointout some avenues for
future work. For the sake of reproducibility and repeatability, a lab package is
available at https://github.com/damascenodiego/DynamicLstarM.

2 Background

In this section, we focus on model learning based on complete deterministic
Mealy machines [4,27], hereafter called finite state machines (FSM). FSMs have
been successfully used to learn models of hardware [8], software [13] and com-
munication protocols at an abstract level [26].

2.1 Finite state machines

Definition 1. (Complete Deterministic FSM) An FSM M = 〈S, s0, I, O, δ, λ〉
is a 7-tuple where S is the finite set of states, s0 ∈ S is the initial state, I is the
set of inputs, O is the set of outputs, δ : S × I → S is the transition function,
and λ : S × I → O is the output function.

Initially, an FSM is in the initial state s0. Given a current state si ∈ S,
when a defined input x ∈ I, such that (si, x) ∈ S × I, is applied, the FSM
responds by moving to state sj = δ(si, x) and producing output y = λ(si, x).
The concatenation of two inputs α and ω is denoted by α ·ω. An input sequence
α = x1 ·x2 · ... ·xn ∈ I∗ is defined in state s ∈ S if there are states s1, s2, ..., sn+1

such that s = s1 and δ(si, xi) = si+1, for all 1 ≤ i ≤ n. Transition and output
functions are lifted to input sequences, as usual. For the empty input sequence ε,
δ(s, ε) = s and λ(s, ε) = ε. For a non-empty input sequence α ·x defined in state
s, we have δ(s, α·x) = δ(δ(s, α), x) and λ(s, α·x) = λ(s, α)λ(δ(s, α), x). An input
sequence α is a prefix of β, denoted by α 6 β, when β = α ·ω, for some sequence
ω. An input sequence α is a proper prefix of β, denoted by α < β, when β = α·ω,
for ω 6= ε. The prefixes of a set T are denoted by pref(T ) = {α|∃β ∈ T, α ≤ β}.
If T = pref(T ), it is prefix-closed.

An input sequence α ∈ I∗ is a transfer sequence from s to s′, if δ(s, α) = s′.
An input sequence γ is a separating sequence for si, sj ∈ S if λ(si, γ) 6= λ(sj , γ).
Two states si, sj ∈ S are equivalent if, for all α ∈ I∗, λ(si, α) = λ′(sj , α),
otherwise they are distinguishable. An FSM is deterministic if, for each state
si and input x, there is at most one possible state sj = δ(si, x) and output
y = λ(si, x). Notice that our definition only allows for complete deterministic
FSMs, which are the focus of this paper. If all states of an FSM are pairwise
distinguishable, then the FSM is minimal.

https://github.com/damascenodiego/DynamicLstarM


A set Q of input sequences is a state cover forM if ε ∈ Q and, for all si ∈ S,
there is an α ∈ Q such that δ(s0, α) = si. A set P of input sequences is a
transition cover for M if ε ∈ P and, for all (s, x) ∈ S × I, there are α, αx ∈ P ,
such that δ(s0, α) = s, x ∈ I. A set W of input sequences is characterization
set for M if for all si, sj ∈ S such that, with si 6= sj , there is an α ∈ W where
λ(si, α) 6= λ(sj , α).

Example 1. (The windscreen wiper FSM) Figure 1 depicts a windscreen wiper
system supporting intervaled and fast wiping, if any raindrop is sensed, such that
S = {off , itv , rain}, I = {rain, swItv} and O = {0 , 1}. Transition and output
functions are represented by directed edges labeled with input/output symbols.

itv

rain / 0

rain

rain / 1 swItv / 1 
swItv / 1 

off

 swItv / 0 

rain/0

Fig. 1: The windscreen wiper FSM

2.2 Model learning

Coined by Dana Angluin [1], active model learning was originally designed to
formulate a hypothesis H about the behavior of a SUL as a deterministic finite
automaton (DFA). Model learning has been adapted to several notations [30]
and is often described in terms of the Minimally Adequate Teacher (MAT).

In the MAT framework [30], there are two phases: (i) hypothesis construction,
where a learning algorithm poses Membership Queries (MQ) to gain knowledge
about the SUL using reset operations and input sequences; and (ii) hypothesis
validation, where based on the model learnt so far a hypothesis H about the
“language” of the SUL is formed and tested against the SUL using Equivalence
Queries (EQ). The results of the queries are organized in an observation table
that is iteratively refined and used to formulate H.

Definition 2. (Observation Table) An observation table OT = (SM , EM , TM )
is a triple, where SM ⊆ I∗ is a prefix-closed set of transfer sequences (i.e.,
prefixes); EM ⊆ I+ is a set of separating sequences (i.e., suffixes); and TM is a
table where rows are labeled by elements from SM ∪ (SM · I), columns are labeled
by elements from EM , such that for all pre ∈ SM ∪ (SM · I) and suf ∈ EM ,
TM (pre, suf) = λ(δ(q0, pre), suf) where q0 is the initial state.

Two rows pre1, pre2 ∈ SM ∪ (SM · I) are equivalent, denoted by pre1 ∼=
pre2, when for all suf ∈ EM it holds that TM (pre1, suf) = TM (pre2, suf). The
equivalence class of a row r is denoted by [r].

The L∗M algorithm Traditionally, the L∗M algorithm [27] starts with the sets of
prefixes SM = {ε} and suffixes EM = I so that it can reach the initial state
and observe the outputs of the outgoing transitions, respectively. Afterwards, it
poses MQs until the properties of closedness and consistency hold:



Definition 3. (Closedness property) An observation table OT is closed if for all
pre1 ∈ (SM · I), there is a pre2 ∈ SM where pre1 ∼= pre2.

Definition 4. (Consistency property) An observation table OT is consistent if
for all pre1, pre2 ∈ SM , such that pre1 ∼= pre2, it holds that pre1 · α ∼= pre2 · α,
for all α ∈ I.

If an observation table is not closed, the algorithm finds a row s1 ∈ SM ·
I, such that s1 6∼= s2 for all s2 ∈ SM , moves it to SM , and completes the
observation table by asking MQs for the new rows. If the observation table is not
consistent, the algorithm finds s1, s2 ∈ SM , e ∈ EM , i ∈ I, such that s1 ∼= s2 but
TM (s1 · i, e) 6= TM (s2 · i, e), adds i ·e to EM , and completes the observation table
by asking MQs for the new column. Given a closed and consistent observation
table, the L∗M formulates a hypothesis H = (QM , q0M , I, O, δM , λM ) where QM =
{[pre]|pre ∈ SM}, q0M = [ε] and, for all pre ∈ SM , i ∈ I, δM ([pre], i) = [pre · i]
and λM ([pre], i) = TM (pre, i).

After formulating H, L∗M works under the assumption that an EQ can return
either a counterexample (CE) exposing the non-conformance, or yes, if H is
indeed equivalent to the SUL. When a CE is found, a CE processing method adds
prefixes and/or suffixes to the OT and hence refines H. The aforementioned steps
are repeated until EQ = yes. For black-box systems, EQs are often approximated
using random walks [1,12], conformance testing [6,32,9], or both [17,22].

Example 2. (OT from the windscreen wiper FSM) In Table 1, we show an obser-
vation table built using L∗M , a CE = swItv · rain · rain · rain and the Rivest and
Schapire method [25], that uses binary search to find the shortest suffix from CE

that refines a hypothesis. The cost to build this OT is 24 MQs and 1 EQ.

Table 1: OT extracted from the windscreen wiper FSM
rain swItv rain · rain

Sr

ε 0 1 0 · 0
swItv 1 0 1 · 0
swItv · rain 0 1 0 · 1

Sr · Ir

rain 0 1 0 · 0
swItv · swItv 0 1 0 · 0
swItv · rain · rain 1 0 1 · 0
swItv · rain · swItv 0 1 0 · 1

The worst-case complexity of the L∗M algorithm for the number of MQs is
O(|I|2mn + |I|mn2) parameterized on the size of the the input domain I, the
length m of the longest CE and the number of states n of the minimal FSM
describing the SUL. Motivated by the impact of CEs on the complexity of L∗M ,
a wide range of processing methods are found in the literature [15]. Another
important component for model learning is cache filter which can pre-process
queries to eliminate redundancy [20].

2.3 Adaptive learning

Adaptive learning is a variant of model learning which attempts to speed up
learning by reusing pre-existing models from previous/alternative versions [10].



In adaptive learning, transfer and/or separating sequences built from pre-existing
models are used to initialize learning algorithms with sets of prefixes and suffixes
(possibly) better than the traditional sets of sequences to reach the initial state
(i.e., SM = {ε}) and collect outputs from outgoing transitions (i.e., EM = I).
Thus, a reduction on the number of MQs and EQs may be obtained. In this context,
we are aware of four studies that address adaptive learning [10,35,13,5].

Groce, Peled & Yannakakis [10] introduce an approach where inaccurate
(but not completely irrelevant) models are reused to reduce the time spent on
model learning and model checking. They evaluate the benefits of reusing either
transfer sequences, or separating sequences, or both; compared to learning from
scratch. Their results indicate that adaptive learning is useful especially when
modifications are minor or when they may have a very limited effect on the
correctness of properties checked.

Windmüller, Neubauer, Steffen, Howar & Bauer [35] present an adaptive
learning technique which periodically infers automata from evolving complex
applications. Moreover, they show that learning algorithms which reuse sepa-
rating sequences from models of previous versions are capable of finding states
maintained in newer versions.

Huistra, Meijer & van de Pol [13] show that the benefits of adaptive learning
are influenced by (i) the complexity of the SUL, (ii) differences between the
reused version and the SUL, and (iii) the quality of the suffixes. Thus, if a set
of reused separating sequences has bad quality (i.e., low ability to re-distinguish
states), irrelevant queries may be posed, and hence extra effort will be required.
To mitigate that, the authors suggest that calculating a subset of good separating
sequence should provide a reduction on the number of deprecated sequences.

Chaki, Clarke, Sharygina & Sinha [5] introduce DynamicCheck, an approach
to reduce the cost for model checking software upgrades. Central to their ap-
proach is Dynamic L∗, an adaptive learning algorithm which reuses observation
tables from previous versions for inferring DFAs [1]. As result, upgrade checking
can succeed in a small fraction of the time to verify its reference version [5].
Next, we briefly present Dynamic L∗ in terms of Mealy machines.

Dynamic L∗ Normally, L∗M starts with S = {ε}, E = I and, if there is any pre-
viously learnt model from some reference version vref , it misses opportunities for
optimizing the learning process. To this end, Dynamic L∗ restores the agreement
of an outdated table OTo = (Sr, Er, To) built from vref by re-posing MQs to the
updated release vupdt to build an updated observation table OTr = (Sr, Er, Tr).

Definition 5. (Agreement) An OTr = (Sr, Er, Tr) agrees with vupdt if and only
if, for all s ∈ (Sr ∪ Sr · Iu) and e ∈ Er, it holds that Tr(s, e) = λu(s, e), such
that λu is the output function of vupdt.

After restoring the agreement, the observation table OTr may have redundant
prefixes and deprecated suffixes. To discard them, the Dynamic L∗ searches for
a smaller SR ⊆ Sr with the same state coverage capability but less prefixes,
referred to as well-formed cover [5].



Definition 6. (Well-Formed cover subset) Let Sr be the set of prefixes from an
observation table OTr in agreement with vupdt; a subset SR ⊆ Sr is well-formed
cover, if and only if (i) SR is prefix-closed, (ii) for all s1, s2 ∈ SR, it holds that
s1 6∼= s2, and (iii) SR is a maximal subset from Sr.

After finding a SR ⊆ Sr, we use a Column function to group prefixes into
equivalence classes given a subset of suffixes. Thus, we search for an optimal
subset of suffixes ER ⊆ Er, referred to as the experiment cover [5].

Definition 7. (Column Function) Let SR be well-formed cover, an observation
table OTR′ = (SR, Er, TR′) derived from OTr, the input set Iu of vupdt, and an
e ∈ Er; the column function is Col(SR, e) : SR × Er → {B1, B2, ..., Bn} where
Bi are non-empty partitions of SR (i.e., Bi ⊆ SR), ∩ni=1Bi = ∅, ∪ni=1Bi = SR,
Col(SR, ε) = {SR} and x, y ∈ Bi if and only if T (x, e) = T (y, e).

An ER ⊆ Er is an experiment cover subset iff for all distinct e1, e2 ∈ ER,
it holds that Col(SR, e1) 6= Col(SR, e2) and for all e′ ∈ ER there is an e ∈ Er

where Col(SR, e) = Col(SR, e
′). Finally, L∗M is initialized with the subsets SR

and ER. Thus, the time for upgrade model checking can be reduced to a small
fraction of the time needed to verify its reference version from the scratch [5].

3 The partial-Dynamic L∗M algorithm

For evolving systems, significant updates can lead adaptive learning to pose
several irrelevant queries composed by redundant and deprecated sequences.
Thus, calculating a “useful” subset of sequences should mitigate this risk [13].
To achieve this goal, we introduce partial-Dynamic L∗M (∂L∗M), an extension of
the adaptive algorithm proposed in [5] and briefly described in Section 2.3. Our
algorithm improves upon the state-of-the-art by exploring observation tables
on-the-fly to avoid irrelevant queries rather than indiscriminately re-asking MQs.

The term partial applies as the ∂L∗M algorithm copes with reused observa-
tion tables by exploring them using depth-first search (DFS) to find redundant
prefixes; and breadth-first search (BFS) to find deprecated suffixes. Our ∂L∗M
algorithm comprises three sequential steps which are discussed in the next sub-
sections using two versions of the windscreen wiper as running examples.

Example 3. (Updated windscreen wiper) Let the FSMs in Figures 1 and 2 be
the reference version vref and updated release vupdt of an evolving system, re-
spectively. Added elements are shown in dotted lines.

prm

swPrm / 1

itv

swItv / 1

rain / 0

rain

swPrm / 1

 swItv / 1 

rain / 1rain/0 swItv / 1 

swPrm / 0

off

swPrm / 0

rain/0

 swItv / 0 

Fig. 2: Windscreen wiper with permanent movement



We refer to their representation as minimal FSMs and counterpart elements
as Mr = 〈Qr, q0r , Ir, Or, δr, λr〉 and Mu = 〈Qu, q0u , Iu, Ou, δu, λu〉.

3.1 (Step 1) On-the-fly exploration of the reused table

Let Sr and Er be prefixes and suffixes of an observation table OTr = (Sr, Er, Tr).
Since we do not know how the states may have changed, OTr may be outdated,
redundant prefixes may emerge from Sr and no longer reach the same states
[13], respectively. Thus, an updated observation table OTR′ = (SR, Er, TR′) has
to be built by restoring the agreement of OTr to vupdt. To achieve this, instead of
indiscriminately re-asking queries, we explore the tree representation of Sr · Iu
on-the-fly using depth-first search (DFS) to pose MQs and build an updated ta-
ble OTR′ . In this tree representation, paths leading from root to nodes represent
elements from Sr · Iu and nodes are annotated using rows of the updated ob-
servation table OTR′ . Thus, we can identify prefixes leading to states already
discovered by Er and find a well formed cover subset SR ⊆ Sr.

Example 4. (Well-formed cover) Figure 3 shows parts of the tree representation
of an OTR′ built from an outdated observation table with prefixes and suffixes
Sr = {ε, swItv , swItv · rain, swItv · rain · rain, wItv · rain · rain · swItv , rain}
and Er = {rain, swItv , swPrm, rain · rain}, respectively.

{0,1,1,00}

{0,1,0,01}
{1,0,1,10}

swItv swPrm
rain

swItv

rain

{0,1,1,00}

{0,1,0,00}
{0,1,1,00}

{1,0,1,10}
swPrm

sw
Itv

swPrm
sw

Itv

rain

Fig. 3: Well-formed cover subset SR generated from Sr

The well-formed cover subset is denoted by black arrows and discarded pre-
fixes are in gray. The cost to find this well-formed cover subset is 40 MQs, in
contrast to 76 MQs to completely restore the agreement of OTr to vupdt.

3.2 (Step 2) Building an experiment cover tree

After finding SR ⊆ Sr, we use the upper part from OTR′ = (SR, Er, TR′) to search
for an experiment cover subset. An experiment cover subset ER ⊆ Er can be
obtained by finding the subsets of equivalent suffixes and picking a representative
element from each set [5]. To achieve this, we propose an optimization technique
that runs a breadth first search (BFS) on a tree representation of Er, referred
to as experiment cover tree, in a similar fashion to homing trees [4].



Definition 8. (Experiment cover tree) Consider the updated observation table
OTR′ = (SR, Er, TR′) and an input domain Iu; an experiment cover tree is a
rooted tree that satisfies the following constraints:

1. The root node is labeled as lbl(root) = Col(SR, ε);

2. Each edge e is labeled with one suffix e ∈ Er;

3. Each node n linked to parent np by edge e is labeled as lbl(n) = Col(lbl(np), e);

4. Non-leaf nodes n have outgoing edges for all suffixes Er\ER(n), where ER(n)

is the set of suffixes labeling the edges in the path from root to n;

5. A node n is leaf iff

(a) for all Bi ∈ lbl(n), |Bi| = 1; or

(b) there is a lower node nl where lbl(n) = lbl(nl).

The experiment cover tree is built using BFS and, if a node d satisfying 5a is
found, the suffixes labeling the path from root to d is returned as the experiment
cover subset ER. Otherwise, we traverse the whole experiment cover tree and
the first node d found with maximum separating capability is selected as the
ER, i.e., max(|Col(SR, ER(d))|). Neither MQs nor EQs are posed in this step.

Example 5. (Experiment cover) Figure 4 shows a fragment of the experiment
cover tree generated from the subset SR in Figure 3 and the set of suffixes
Er = {rain, swItv , swPrm, rain · rain}. The subset ER is highlighted in black.

rain
rain · rain

swItv

{ε,swItv·rain,
swPrm}
{swItv}

{ε,swItv}
{swItv·rain,
swPrm}

{ε,swPrm}
{swItv·rain}
{swItv}

{ε,swItv,swItv·rain, swPrm}

{ε,swItv·rain,
swPrm}
{swItv}

swPrm

{ε}{swItv} {swItv·rain}
{swPrm}

swPrm

Fig. 4: Experiment cover tree

3.3 (Step 3) Running L∗M using the outcomes of ∂L∗M

At this point, redundant prefixes and deprecated suffixes are discarded and we
initialize the L∗M algorithm using the well-formed and experiment cover subsets,
rather than Su = {ε} and Eu = I. As results, we expect to build in the first
iteration an observation table with higher state discovery capability at a reduced
number of queries, especially if vref and vupdt are not drastically different.

Example 6. In Table 2, we summarize the number of MQs and EQs posed to the
SULs in Figures 1 and 2 by five model learning algorithms: L∗M ; our ∂L∗M ; an
adaptive approach, referred to as Adp, where L∗M starts with suffixes from a pre-
vious version [13]; and two straightforward implementations of the Dynamic L∗

algorithm for Mealy machines, referred to as DL∗M and DL∗M+. The latter differs by
restoring the properties of closedness and consistency to avoid the loss of prefixes
s1, s2 ∈ SR where s1 ∼= s2 and ∃(i, e) ∈ (Iu, Er), TR′(s1 · i, e) 6= TR′(s2 · i, e). In
this example, the ∂L∗M algorithm posed the lowest number of MQs.



Table 2: Reuse approaches and number of queries

Algorithm
Reuse Restore

SUL OT
Number of

Prefixes Suffixes properties MQs EQs

L∗
M [27] - - -

vref - 18 2
vupdt - 48 2

Adp [13] No Complete No vupdt OTr 48 1
DL∗M [5]

Indiscriminate
No vupdt OTr 76 2

DL∗M+ Yes vupdt OTr 81 1
∂L∗M On-the-fly No vupdt OTr 43 1

4 Empirical evaluation

According to Huistra et al. [13], the more the states of a SUL have been changed,
the lower is the number of suffixes with good quality. Therefore, we expect
a higher number of irrelevant queries from state-of-the-art adaptive learning
algorithms when older versions are re-used.

4.1 Research questions

To evaluate adaptive learning in different settings, we extended the LearnLib
framework [17] with the algorithms in Table 2. Thus, we investigated if our ∂L∗M
algorithm is more efficient than three state-of-the-art adaptive algorithms (RQ1)
and the impact of the temporal distance in their effectiveness (RQ2).

As a measure of software evolution, we opted for the temporal distance be-
tween the versions in terms of their release dates as structural changes (e.g.,
changed transitions) in black-box setting are often unknown; and behavioral
metrics (e.g., percentage of failed test cases) may mislead minor modifications
closer to initial states compared to major changes [34]. As a measure of effec-
tiveness, we used the number of MQs and EQs posed by each adaptive learning
algorithm compared to traditional learning using the L∗M algorithm [27].

In Table 3, we formulated hypotheses about the influence of the temporal
distance on the number of queries, denoted by ∆T; and the average difference
between the number of MQs and EQs posed by the adaptive learning and L∗M ,
denoted by µMQ and µEQ.

Table 3: Hypotheses
Measure Hypotheses Description

µMQ
HµMQ

0 The ∂L∗M requires an equivalent µMQ
HµMQ

1 The ∂L∗M requires a higher µMQ
HµMQ

2 The ∂L∗M requires a lower µMQ

µEQ
HµEQ

0 The ∂L∗M requires an equivalent µEQ
HµEQ

1 The ∂L∗M requires a higher µEQ
HµEQ

2 The ∂L∗M requires a lower µEQ

∆T
H∆T

0 The ∂L∗M is influenced by the temporal distance
H∆T

1 The ∂L∗M is not influenced by the temporal distance



For each scenario 〈vl, OTr〉, such that vl is a SUL and OTr is an observation
table built from a reference version vr, we used the Mann-Whitney-Wilcoxon
(MWW) to check if there was statistical significance (p < 0.01) between the
number of queries posed by the adaptive algorithms. To measure the scientific
significance of our results [18], we used the Vargha-Delaney’s Âc,t effect size
[31,36] to assess the probability of one algorithm outperforming another [2].
If Âc,t < 0.5, then the treatment t poses more queries than, the control c.

If Âc,t = 0.5, they are equivalent. To categorize the magnitude, we used the

intervals between Âc,t and 0.5 suggested by [11,29]: 0 ≤ negligible < 0.147,
0.147 ≤ small < 0.33, 0.33 ≤ medium < 0.474 or 0.474 ≤ large ≤ 0.5. Finally,
we used the Pearson’s correlation coefficient to evaluate the relationship between
the temporal distance between versions 〈vl, vr〉 to the numbers of MQs and EQs.

4.2 Subject Systems

As evolving system, we reused 18 Mealy machines learned in a large scale anal-
ysis of several versions of OpenSSL [26], an open-source and commercial-grade
cryptographic toolkit [23]. In Figure 5, we depict over 14 years of development
branches from the server-side of OpenSSL. SULs are denoted by white boxes
with arrows pointing out to their previous release in the branch, the number
of implemented states in parentheses, and behavioral overlaps (i.e., equivalent
FSMs) are grouped by dashed areas.
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Fig. 5: OpenSSL server-side: 18 FSMs versions used as SUL

4.3 Experiment design

Let 〈vl, OTr〉 be a learning scenario where vl is the SUL, and OTr is an observation
table built from a reference version vr. For all 18 versions and their precedents,
we measured the difference between the numbers of MQs and EQs posed by each
adaptive algorithm and L∗M , such that positive values denote adaptive learning
posing more queries; and their temporal distance in years. For each version vr,
we built 500 different OTr = (Sr, Er, Tr) with prefix-closed state cover sets Sr

created using randomized DFS and Er = Iu ∪Wr, such that Wr is a W set for
vr; and calculated the µMQs and µEQs. For processing CE, we used the Suffix1by1
[14], and the CLOSE FIRST strategy to close tables [19]. To build EQs, we used
the Wp method for conformance testing [9] with an upper bound m = 2.



4.4 Analysis of results

In this section, we analyze the µMQs and µEQs posed by the adaptive algorithms
and their relationship to the temporal distance within 〈vl, vr〉. For the averages,
we calculated the difference between the numbers of MQs and EQs posed by each
adaptive algorithm and learning from scratch using the L∗M algorithm.

By analyzing the release dates for all versions [24], we found a strong positive
correlation (r = 0.72) between the temporal distance and difference of numbers
of states implemented in each pair of versions. These findings corroborate de
Ruiter [26] findings that OpenSSL improved over time and recent versions were
more succinct (i.e., had fewer states). Moreover, they also indicate that the
OpenSSL server-side represents an evolving system that can pose interesting
challenges to adaptive learning algorithms, e.g., the reuse of larger and older
versions may impact the benefits of adaptive learning.

Average difference of EQs In Figure 6, we depict boxplots for the µEQs as a
function of the temporal distance within 〈vl, vr〉. To keep the figure uncluttered,
we calculated the boxplots for time windows of one year. Outliers are depicted
as red dots.
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Fig. 6: Boxplots of the µEQs posed by adaptive and traditional learning



By analyzing the µEQs and the learnt observation tables, we found that Iu
turned out to be a good set of separating sequences. The Iu set allowed to
discover most of the states from OpenSSL and, since the reused observation
tables included Iu, the resulting µEQs happened to be quite similar, and whiskers
turned out to be very close to their boxes.
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Fig. 7: Histograms of the effect sizes for EQs posed by the adaptive algorithms

In Figure 7, we show histograms to the effect size for EQs, where ∂L∗M is the
control method, i.e., Â < 0.5 means that the ∂L∗M algorithm posed less queries
than the other adaptive algorithm. The MWW test indicated a statistically
significant difference (p < 0.01) between ∂L∗M and the other adaptive algorithms;
however, as the histograms indicate, the effect sizes were mostly categorized as
negligible.

Added to this, the Pearson’s correlation coefficient indicated a very weak to
no correlation between µEQs and temporal distance. The number of rounds also
happened to be approximately the same, i.e., one round for all versions with
less than 14 states and two to five for all other versions. These findings support
the hypothesis HµEQ

0 that our adaptive learning algorithm ∂L∗M required an µEQs
similar to traditional learning.

Average difference of MQs In Figure 8, we depict boxplots for the µMQs as a
function of the temporal distance between vl and vr. To keep the figure unclut-
tered, we calculated one boxplot for each time window of a year.

By analyzing the µMQs, we found that Adp posed around 50 additional MQs
when versions older than four years were reused. An increment on the µMQs also
emerged for the DL∗M and DL∗M+ where up to 800 extra MQs occurred to be required.
Our results indicated more significant increments on the number of MQs when
the temporal distance was maximum (i.e., 14 years).

For the existing adaptive learning algorithms, we found a strong to very
strong correlation between µMQs and the temporal distance within 〈vl, vr〉. Thus,
our findings corroborate to Huistra et al. [13] indicative that the quality of
the reused sequences is a factor that can underpower adaptive learning. Conse-
quently, the existing adaptive learning algorithms posed a large number of MQs
composed by redundant prefixes and deprecated suffixes.
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Fig. 8: Boxplots of the µMQs posed by adaptive and traditional learning

Differently from the state-of-the-art adaptive learning algorithms, our ∂L∗M
algorithm turned out to be more robust than the other algorithms. In Figure 9,
we show histograms for the effect sizes of the ∂L∗M algorithm compared to the
three other adaptive techniques.
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Fig. 9: Histograms of the effect sizes for MQs posed by the adaptive algorithms

For the ∂L∗M algorithm compared to the other algorithms, we found a signifi-
cant difference (p < 0.01) on the number of MQs, and a weak positive correlation
between the µMQs and temporal distance, with effect sizes mostly categorized as
large. Thus, our results favoured the hypothesis HµMQ

2 that identifies ∂L∗M as the
algorithm showing the lowest µEQs compared to the other adaptive techniques,
and answered RQ1 by placing our on-the-fly technique as more efficient than
the existing adaptive algorithms in terms of MQs.



Benefits of adaptive learning vs. temporal distance For all the adaptive
learning algorithms, the Pearson’s correlation coefficients indicated very weak
positive correlation (≤ 0.20) between number of EQs and temporal distance.
These findings corroborate the mostly constant µEQ seen in Figure 6.

For the algorithms Adp, DL∗M and DL∗M+, we observed the Pearson’s coefficients
indicated strong positive correlations (0.73, 0.78 and 0.80, respectively) between
number of MQs and temporal distance. Alternatively, for our ∂L∗M algorithm, we
observed weak positive correlation (0.33) between number of MQs and temporal
distance. Thus, we confirm the hypothesis H∆T

1 that the ∂L∗M algorithm is not
influenced by the temporal distance between versions and affirmatively answer
RQ2 by showing that the effectiveness of existing adaptive learning techniques
are indeed affected by the temporal distance between versions.

4.5 Threats to validity

Internal validity: Threats to internal validity concern with the influences that
can affect the casual relationship between the treatment and outcomes. One el-
ement that forms a threat to internal validity is the temporal distance between
versions as a measure of software evolution. We found a strong positive corre-
lation (r = 0.72) between temporal distance and difference in the numbers of
states of the underlying FSMs. Hence, we found the temporal distance as a rea-
sonable measure, at least for this particular case. Failed test-cases may not be
good measures, as they do not reflect the point of failure in the SUL semantics,
e.g., minor changes close to initial states against major changes on the language.

External validity: Threats to external validity concern with generalization.
To guarantee the reliability of our experiment results, we relied on the LearnLib
framework [17] to implement adaptive learning algorithms. Our study is based
essentially on the OpenSSL toolkit; and this poses a threat to external validity.
However, since the OpenSSL has realistic size and structure, we believe that
our findings are generalizable to other real systems. We plan to mitigate this by
extending our study to other systems, such as software product lines [7].

5 Conclusions and future work

Real systems pass through many changes along their life-cycle and, as we often
do not know how states may have changed, behavioral models tend to become
outdated, incomplete, or even deprecated. To deal with these issues, several
studies have proposed the application of active model learning to automatically
derive behavioral models.

Particularly, adaptive model learning is a variant of active learning which
has been studied to speed up model inference by reusing transfer and separating
sequences from previously learnt observation tables. However, software evolution
may degrade the quality of existing artifacts so that they may no longer distin-
guish states and compose redundant and deprecated sequences. To date, there is
a limited number of studies about the pros and cons of adaptive model learning
and how much extra effort it may pose if low-quality models are re-used.



To mitigate these problems, we introduced a novel adaptive algorithm that
explores observation tables on-the-fly to avoid irrelevant MQs, called ∂L∗M . Using
18 versions of the OpenSSL toolkit, we showed that state-of-the-art adaptive
algorithms mostly show a strong positive correlation between the number of MQs
and temporal distance between the reused and learnt versions.

Alternatively, our ∂L∗M algorithm presented a weak positive correlation be-
tween temporal distance and MQs. Thus, our algorithm turned out to be less
sensitive to software evolution and more efficient than current approaches for
adaptive learning. Also, ∂L∗M posed fewer MQs compared to three state-of-the-art
adaptive learning algorithms. In this study, we move towards solving this issue by
evaluating adaptive learning algorithms for evolving systems and how redundant
and deprecated sequences can undermine the benefits of these algorithms.

As future work, we plan to investigate the problem of learning behavioral
models of software product lines (SPL) [7]. Recently, we have investigated the
problem of combining models from product families into a single representation,
referred to as family model [7]. Family models differs from traditional notations
by including propositional logic formulae to express the combination of features
involved in the concerned states/transitions of the model [28]. In our investiga-
tions, we have found that although traditional model learning can be applied
to SPLs in an exhaustive way, it can be prohibitive due to redundant queries
performed over products sharing behavior and non-trivial due to differences in
the input domains of their products. Thus, we believe that ∂L∗M can be improved
for learning models of SPLs in a efficient and effective way. Another branch of fu-
ture research forms to extending adaptive learning to discrimination tree-based
algorithms, such as TTT [16]. These algorithms compose an interesting domain
due to their redundancy-free nature and improved space complexity.
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