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Abstract. Exhaustive and mechanized formal verification of wireless
networks is hampered by the huge number of possible topologies and the
large size of the actual networks. However, the generic communication
structure in such networks allows for reducing the root causes of faults
to faulty (sub-)topologies, called anti-patterns, of small size. We pro-
pose techniques to find such anti-patterns using a combination of model-
checking and automated debugging. We apply the proposed technique on
two well-known protocols for wireless sensor networks and show that the
techniques indeed find the root causes in terms of canonical topologies
featuring the fault.

1 Introduction

Wireless (sensor) networks are increasingly used in critical areas such as geo-
science [4] and medicine [22], where correct and seamless operation is imperative.
Automated formal methods, in general, and model-checking, in particular, have
been used to ensure the correctness of computer systems and communication
protocols, but their application to wireless (sensor) networks is barred by the
well-known state-space explosion problem. This problem is severely intensified
in this domain due to the huge number of possible topologies (initial states) for
model-checking as well as the huge number of possible actions (next-steps) to be
taken by the numerous sensor nodes present in the protocol.

In the field of model checking, some reduction techniques such as symmetry
and partial-order reduction have been proposed in order to combat the state
space explosion problem. Nevertheless, our experiments show that even a com-
bination of the traditional techniques falls short of providing a solution for the
state spaces resulting from sizable wireless networks.

However, the generic structure of communication primitives in wireless net-
work protocols may come to the rescue: nodes of such networks work indepen-
dently, run similar or identical protocols, which are designed regardless of the size
of the network, and the protocols comprise generic and simple communication
primitives. Due this generic structure, a potential problem in a large network



should be traceable to a generic root cause, which also shows itself in an “anti-
pattern” of small size, i.e., minimal faulty sub-topologies that demonstrate the
causes of possible failures. Subsequently, the problem of model-checking large
networks (with a huge number of possible topologies) is reduced to checking a
small set of anti-patterns in large networks. For this approach to be success-
ful, the anti-patterns should canonically capture the essence of possible flaws in
the design. Moreover, these anti-patterns can then also serve as guidelines for
the network designers to make sure that the network topology never forms such
anti-patterns in its future evolutions. In this paper, we propose an approach
based on a combination of model-checking and automated debugging to find
anti-patterns. Searching for anti-patterns is a formal test-based approach; it is
sound but not complete, because the topology space is too large to be explored
exhaustively. We examine the above-mentioned approach on a number of simple,
yet typical, protocols for wireless sensor networks: a probabilistic code dissemi-
nation protocol, called Trickle [21] and a medium access control protocol, called
LMAC [28].

The contributions of this paper can be summarized as follows:
– We provide two complementary algorithms for determining and understand-

ing anti-patterns.
– We show, by means of case studies, that the detected anti-patterns can

canonically describe faults / implicit assumptions in protocol descriptions.
The structure of the paper is as follows. In Section 2 we provide an overview of
the related work. Section 3 describes our approach and its two main algorithms.
In Section 4 we describe the case studies and use them to demonstrate our
approaches. We conclude with Section 5.

2 Related work

This paper focuses on understanding the root causes that let a protocol fail on
particular topologies. As such, our work is closely related to isolating faults in
software executions, of which the goal is to facilitate debugging by finding a min-
imal failing execution. Most prominently, delta debugging [29] uses a set of pass-
ing and failing conditions in order to efficiently uncover a small failing execution.
Complementary to our approach is the approach to explain counterexamples of
model-checking runs [6, 12]. Note that we cannot generally rely on having a com-
plete set of counterexamples; some model-checking tools, such as PRISM [13],
do not provide any counter-example. For some expressive modal and temporal
logics, it is arguably questionable what the counter-example should be [8]. Addi-
tionally, as illustrated by our case studies, some topology-dependent bugs cannot
be easily understood and generalized using counter-examples, yet are easily com-
prehensible and generalizable by identifying the topology anti-pattern. Similarly,
there has been previous work on leveraging logs of sensor networks executions in
order to find root-causes of errors [18, 23]. Different from these works, we work
on high-level specifications of protocols and are particularly interested in faults
due to specific topology patterns. Hence, in contrast to finding the exact location
in one node’s software, we analyze topological anti-patterns to understand the
root cause of a protocol failure.



Another related approach for debugging is diagnosis in general, and spectrum-
based diagnosis [1] in particular. In spectrum-based diagnosis passed or failed
executions are scrutinized and annotated with information about the execution
of each line (block or module) of code. Note that for diagnosis we do not dif-
ferentiate whether in a particular run a block caused the failure or not; we just
consider whether it is part of the whole execution. Obviously we need a differ-
ent formulation (than line of code) for debugging topologies. In particular, we
investigated using subgraph inclusions as “basic blocks” and count the specific
subgraphs included in a topology and count their occurrence in faulty and work-
ing examples. Thereby we can use the same ideas as in spectrum-based diagnosis
of software using different similarity coefficients such as the Jaccard coefficient.
Diagnosis has the advantage of only requiring a fixed set of executions, while
our methods necessitate additional model checking runs and are thus more time
intensive. However, as demonstrated by our experimental results, the results
of our algorithms are much clearer compared to the results obtained by using
spectrum-based diagnosis.

We use model-checking as a vehicle for our bug-hunting approach. Model
checking is an exhaustive and fully automatic state space exploration technique
that has been successfully applied to many academic and industrial systems [7].
However, a naive attempt for model checking wireless sensor networks is bound
to fail, due to the well-known state-space explosion problem. To overcome this
problem several techniques have been proposed to reduce the state space of such
networks, in particular: symmetry [9, 14] and partial order reduction [11, 25,
27], abstraction [2, 17, 19], and approximation [5, 20], as well as domain-specific
reduction techniques [16, 24]. Our earlier experiments showed that, even after ap-
plying reduction techniques, model-checking networks of actual size still remains
practically infeasible. Also reducing the number of topologies using measures of
symmetry did not lead to a workable subset for networks of considerable size.
Hence, we decided to change our strategy and first find anti-patterns of small
size, which characterize possible causes for failure, and then efficiently search
for these anti-patterns in networks of larger size. Our experimental results show
that this does lead to an effective and efficient debugging procedure. In view of
the probabilistic features of our case studies, in this paper, we focus on model
checking of probabilistic models and to this end, we use PRISM [13] as our
probabilistic model-checking tool.

An alternative approach that has been used in proving correctness of wire-
less (sensor) network protocols is computer-assisted theorem proving [15]. The
advantage of this approach is that it can provide a general proof of correctness
under given assumptions. The disadvantage is that the assumptions under which
the protocol works correctly is not usually precisely specified and sometimes even
not known to the designers. Moreover, theorem proving requires some affinity
with the proof tools and the underlying mathematical theories. The two ap-
proaches can, however, be combined by finding anti-patterns using our approach,
generalizing them and using them as assumptions (i.e., absence of generalized
anti-patterns) as proof obligations.



We use two case studies of topology-related faults in wireless sensor networks
that have been previously discussed. The Trickle protocol [21] has been shown
to be flawed in the presentation of Anquiro [24] with respect to its threshold
value for overhearing broadcast transmission. We had to make our own model
of Trickle in PRISM for our experiment, since the tool presented in [24] is not
available; however, our technique is applicable to any model-checking and au-
tomated verification, including that of [24]. The LMAC protocol [28] has been
first modeled and verified by Fehnker et al. [10] based on timed automata mod-
els using UPPAAL [3]. The authors considered a range of different topologies,
of size up to five nodes, and manually determined the cause of failure. As we
demonstrate in our case studies, our approach automatically arrives at the root
cause without necessitating manual generation of test cases nor analysis of 61
topologies.4

3 Identifying topology anti-patterns

The goal of this work is to detect anti-patterns: small faulty topologies that
characterize faults or implicit assumptions inherent to a particular protocol.
Once these anti-patterns are exhaustively enumerated, the problem of checking
correctness for larger designs is reduced to finding anti-patterns in them, which
is much more efficient than model checking the state space. Our approach is
inspired by the seminal work of Zeller et al. [29] on delta debugging. Similar to
delta debugging, we investigate two complementary approaches for identifying
topology anti-patterns: (i) minimization of topologies to find a set of minimal
topologies that fail and (ii) isolation of a single edge that changes a passing
topology to a failing topology.

The premise of our approaches is that we check, for a given topology, whether
the protocol model P violates the required properties φ given a certain topology
g, i. e., (P||g) 6|= φ; in the present paper, we achieve this by means of model
checking. Our starting point is always a failing topology (or a set thereof) and
we search for the root cause of failures in these topologies. As we only decrease
topology sizes (and therefore state space) in our algorithms, the runs of the
model checker should always return a pass or fail answer. In case the run does not
terminate with a definite answer, we assume a passing run, since we cannot prove
the presence of a fault. Note that we assume that wireless network protocols are
designed for any type of network, i. e., protocol properties should hold invariant
of the topology. Hence, it follows that if: (P||g) 6|= φ =⇒ ∀g′ ⊂ g : (P||g′) 6|= φ.

3.1 Minimization

For minimization, we start with a set of topologies G, where a topology g ∈
G is a graph, i. e., g = (V,E). We focus on the set of failed runs F , i. e.,
F = {g ∈ G | (P||g) 6|= φ}. Given F , we try to find a set of smallest topologies S
in order to determine anti-patterns.

4 Note that Fehnker et al. included duplicate topologies in their work. The actual
number of unique topologies of size 5 is 58.



Minimization algorithm Algorithm 1 summarizes our approach. Based on
the set of failing topologies F and using the procedure reduce, we minimize
each failing topology w. r. t. its number of (i) nodes and (ii) edges by calling the
procedure minimize. Note that this order is implied by the fact that reduction
in the number of nodes (removing all of its connected edges) is more granular
than removing a single edge.

Procedure minimize reduces the number of nodes or edges respectively. The
procedure minimize searches for subgraphs of smaller size and adapts the bound
on the topology size until decreasing the bound results in no failing topolo-
gies. We use the same procedure both for nodes and edges (parameterized by
[nodes/edges]), as they work identically, except for the generation of subgraphs
using the function sub. sub removes nodes or edges, respectively, depending
on its parameter. sub(g,n) returns all (connected) complete edge-induced sub-
graphs of graph g of order n (nodes), or size n respectively (edges). A complete
edge-induced subgraph of graph g = (V,E) is a graph g′ = (V ′, E′), V ′ ⊂ V and
E′ = {(v1, v2)|(v1, v2) ∈ E∧v1, v2 ∈ V ′}. Note that we can trivially speed up the
algorithm by memoizing calls to minimize with previously checked topologies.

The output of reduce is the set of smallest topologies S.5 As we see in the
case studies, this results in a small set of minimal topologies that may represent
the essence of the fault.

3.2 Isolation

Minimization results in a small set of graphs that (may) explain the underlying
fault of the protocol. Additional to minimization, we also perform fault isolation,
i.e., to identify the discriminating edge that lets a protocol fail. We start on the
one hand with a failing topology and on the other hand with a passing topology
and close in on the fault. Algorithm 2 presents the details of the approach: The
user provides one failing topology fin. We use as an initial passing topology a
graph with a single node that trivially satisfies requirements.6 The algorithm
relies on building the relative complement δ of the failing and the passing topol-
ogy, i. e., δ = Ef− \Ef+ , where f−, f+ are the currently smallest failing or largest
passing topology respectively. We sample from δ to shrink the failing and extend
the passing topologies, respectively, such that the new topology fnew is also a
connected graph. Please note that in this way the passing topology is always a
subgraph of the failing topology. If the newly created topology passes we assign
it to the currently largest passing topology f+, else it is the currently smallest
failing topology f−. Thereby, we iteratively increase/decrease the topologies un-
til they differ by a single edge. This single edge is instructive on why the protocol
fails.

5 When building set S, we check that each element s ∈ S is unique modulo graph
isomorphism.

6 Depending on the protocol requirements, a larger passing topology with more nodes
may be used.



Algorithm 1 Network minimization based on binary search

1: procedure reduce(P, φ, F )
2: /* input
3: P, Protocol model
4: φ, Protocol properties
5: F = {f1, . . . , fm}, Set of faulty topologies with fi = (Vfi , Efi)
6: output
7: S = {s1, . . . , sn}, Set of smallest topologies */

8: H = S = ∅
9: // Minimize faulty topologies

10: for f ∈ F do
11: H = H ∪ minimize[nodes](P, φ, F, 1, |Vf |)
12: end for
13: for h ∈ H do
14: S = S ∪ minimize[edges](P, φ,H, 1, |Eh| − |Vh|+ 1)
15: end for

16: return S
17: end procedure

18: procedure minimize[nodes/edges](P, φ, T, low , high)
19: /* input
20: P, φ as before
21: T , Set of faulty topologies
22: low , high ∈ N, Upper and lower bound

23: Topology minimization using binary search */
24: if high > low then
25: middle = b(low + high)/2c
26: U = ∅
27: for all t ∈ T do
28: for all r ∈sub[nodes/edges](t,middle) do
29: if (P||r) 6|= φ then
30: U = U ∪ {r}
31: end if
32: end for
33: end for
34: if U 6= ∅ then
35: return minimize[nodes/edges](P, φ, U, low ,middle − 1 )
36: else
37: return minimize[nodes/edges](P, φ, T,middle + 1 , high)
38: end if
39: else
40: return T
41: end if
42: end procedure



Algorithm 2 Fault isolation using a delta debugging strategy

1: procedure isolate(P, φ, fin)
2: /* input
3: P, Protocol model
4: φ, Protocol properties
5: fin, Faulty topology
6: output
7: f−, Smallest failing topology
8: f+, Largest passing topology */

9: f− = fin, f+ = ({0}, ∅) // Note that f+ ⊆ f−
10: // Loop until one-edge difference between f−, f+
11: while size(f− − f+) > 1 do
12: δ = Ef− \ Ef+

13: fnew = f− − δ′, δ′ ⊆ δ, s.t. fnew is connected
14: if (P||fnew) 6|= φ then
15: f− = fnew

16: else
17: f+ = fnew

18: end if
19: end while
20: return f−, f+
21: end procedure

3.3 Discussion

The minimization and isolation algorithm are different than the original delta
debugging formulation as graphs as relational data have a different structure
than execution traces: The difference for the minimization algorithm is that
instead of partitioning as described in delta debugging, we check all subgraphs of
a given size (w. r. t. nodes and edges). Further research is needed to investigate
different partitioning/bisection strategies, in particular how to handle the cut
set of the partitioning, and compare them with the subgraph-based approach
proposed in this work. Similarly, since we need to build a complement graph for
the isolation algorithm, it does not matter whether we grow from the passing
graph or decrease the failing graph. As such in our formulation we only remove
from the failing graph yet still approach the isolating edge from both sides.

Please note that minimized topologies also include isolation information. In a
minimal topology removing any edge will remove the fault. Since the minimiza-
tion algorithm necessitates more model checking runs evaluations than isolation,
there is a tradeoff between execution time and quality of results. Finally, we need
to consider that both algorithms are heuristics. That means if we have multiple
faults in a protocol our algorithms potentially misses some of them. Since faults
are typically gradually fixed, this is not an issue. Additionally, we show in the
case studies in Sec. 4.5 that the algorithm can find the causes of multiple faults.



4 Case studies

To demonstrate our methodology, we considered two protocols for wireless sen-
sor networks, namely, Trickle [21] and LMAC [28]. In this section, we briefly
describe each of the case studies and present the anti-patterns detected using
our approach.

4.1 Experimental setup

We base our experiments on a set of randomly generated undirected graphs with
a dedicated sink node. We generate these graphs using the algorithm described
in Rodionov et al. [26]. Our protocols features a notion of sink (a node from
which the updates originate, see below). We run PRISM 4.0.1. All algorithms
and graph operations are performed using Python 2.7 and NetworkX 1.67. We
automatically generate PRISM models for a fixed topology of the network. Our
script takes a topology description as input, and generates the concrete PRISM
model.

4.2 PRISM

We modeled both protocols using the probabilistic model checker PRISM [13].
The model checker automatically computes precise quantitative results based on
an exhaustive analysis of a formal model. We specified the protocols in PRISM’s
state-based input language as discrete-time Markov chains (DTMCs), since they
exhibit probabilistic behavior. In PRISM, a system consists of a set of commu-
nicating modules, each with its local variables of the integer type. The evolu-
tion of each module is described by a set of guarded commands of the form:
[a] c → p1:e1 + . . . + pn:en;. Such a transition consists of the predicate c

on the state variable, also called a guard, the action label a, and a probabilistic
update relation pi:ei. If c evaluates to true, then update ei is applied with the
probability pi. Modules can synchronize either on global shared variables or on
common actions labels. Note that PRISM implements CSP-style synchroniza-
tion over an action label a: it requires the participation of all modules with the
common action label a simultaneously.

Once the system is specified in terms of its modules, PRISM constructs a
stochastic transition system for the composition of specified modules. Analysis
is performed through model checking such systems against properties specified
in the probabilistic temporal logic PCTL (for the DTMC model).

4.3 Verifying Trickle

Description: Trickle is a probabilistic code dissemination (maintenance) pro-
tocol. The goal of the protocol is to update all nodes with new versions of a
deployed software. The software update is first published at a sink (also called
base or root) node and is propagated among the involved nodes using a “polite
gossiping” approach.

In a nutshell, the protocol works as follows:

7 http://networkx.lanl.gov/



– Each node that hears about a new update, pulls the update from the source
and schedules an announcement to inform the new update to its neighbors.

– If prior to the announcement, the node hears at least w neighbors announc-
ing the update, it cancels its own announcement. (We call w the broadcast
parameter.)

– If a node hears a neighbor announcing an older update (than its local ver-
sion), it schedules an announcement of its own (newer) update as above.

If the network is connected, all nodes executing the Trickle protocol should
eventually receive the published update.

Implementation: We are interested in Trickle’s control flow and thus mod-
eled a spread of ‘the most recent update’ throughout the network, executing
Trickle. Thus, it is sufficient to use a single bit to indicate whether a node re-
ceived the update (as 1), or an older version (as 0).

Each node i is modeled as a PRISM module, maintaining local variables
rcvij for all its neighbors j. These variables indicate whether the recent update
has been received by node i from its neighbor j. Only the sink, i. e., node 0 has
a constant rcv0 with the value 1, thereby initially publishing the update. The
nodes communicate via message channels, represented by the action labels msgi,
with node i ‘broadcasting over this channel’ to all its neighbors. The broadcast
medium is implemented as an additional module broadcaster, simulating nodes
that initiate a broadcast. The module chooses the broadcasting node uniformly
at random. The node modules only wait for announcements and receive the up-
date. Our model is parameterized on the broadcast parameter w, assumed to
have value w := 3 in the following. This parameter defines an upper threshold: if
a node has heard broadcasts from w neighbors, it stops broadcasting itself. The
broadcaster has two types of transitions, a labelled command and a non-labelled
one; the node modules have only labelled commands. Each synchronization (la-
belled) command in the model is guarded by the constant w. As soon as any
node exceeds w, only non-synchronizing (local) transitions are enabled for this
node at the broadcaster module.

In our experiments, we verify whether all nodes eventually receive the recent
datum with probability 1. This can be formulated for PRISM as:

filter(forall,P ≥ 1[F(”all”)]) (1)

where the state all is specified as the conjunction for n nodes:
∧n−1

i=0

∨
j(rcvij ! =

0). Simply put, all is the state where every node i has received the recent update
rcvij ! = 0 from a neighbor j (at least once).

Minimization results: For Trickle, we generate a set of 50 random topolo-
gies of order 8; in this set of topologies there are four faulty topologies. We
minimize these four topologies to a single anti-pattern that is shown in Fig. 1.
In this figure, and all other figures to come, we denote the sink node with a
black circle and the failing node with a gray circle. We can clearly see how the
broadcast parameter (set to 3), prevents the parent of the gray node to send
an update. This means that while the gray node is failing, the cause is actually
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Fig. 1. Result of minimizing Trickle.
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Fig. 2. Result of isolation for Trickle.

that in this topology, it has a single parent that is blocked by the broadcast
parameter.

Isolation results: We select one faulty topology and perform isolation.
Fig. 2 presents the results where the dashed edge indicates the edge difference
between the passing and the failing topology. In this case the isolation algo-
rithm merely removes a single edge from the initial failing topology, yet grows
the passing topology to seven nodes. Although the resulting graphs feature two
additional nodes compared to the minimization result in Fig. 1, the underly-
ing fault is clearly visible in the differentiating edge 2. That is, adding a third
predecessor node to the (single) parent of the gray node results in a failure.

4.4 Verifying LMAC

Description: LMAC [28] is a medium access control protocol for wireless sensor
networks. LMAC is from the class of time-division multiple-access protocols: time
is segmented into (time) frames and frames are split into fixed-length time slots.
In each time slot a single node (in a given range) should have exclusive channel
access for transmission in order to avoid collisions.

The goal of the protocol is to assign time slots to nodes in a distributed
fashion. A node can then transmit its messages in the time slot it owns. For the
nodes that are within range of each other, only one node owns a given time slot,
so that only one node can transmit at a time. To limit the overall number of
time slots, LMAC allows for reuse of time slots by the nodes at a non-interfering
distance.

Nodes maintain a table of the time slot occupancy for its neighborhood. This
table is synchronized with other nodes by transmitting a short control message in
their time slots. In its time slot, a node broadcasts a bit array of slots chosen by
its (one-hop) neighbors and itself. When a node receives such a control message
from a neighbor, it stores the respective time slots of the two-hop neighborhood
in its table.

LMAC is initiated at a gateway node, which is the first to select a time slot
to control, and, thereafter, initiates the protocol by sending its slot occupancy
table. In the bootstrap state, i. e., after a node receives its first message, it listens
for an entire time frame to any messages from its neighbors. Based on the control
messages, nodes will determine the time slots that are currently occupied. Since



a node cannot control a time slot occupied by its one-hop and two-hop neighbors,
it randomly chooses one of the remaining time slots.

A node, that already owns a time slot, executes the protocol in three steps:

– It listens for messages during the time slots other than its own one. If the
node detects a collision, it stores the corresponding time slot in order to
notify its neighbors. This is necessary since a node cannot detect collisions it
may have caused by itself, since the radio of a sensor node cannot transmit
and listen at the same time.

– During its own time slot, the node transmits a control message, which in-
cludes the time slots it knows are occupied, and the time slots where it
detected collisions.

– If the node is notified about a collision that occurred in its time slot, it
chooses a number of time frames to wait, and proceeds to choose another
available time slot as described above.

Eventually all nodes should be able to transmit messages in their time slots,
without interfering with each others transmissions.

Implementation: We verify the time slot distribution procedure of LMAC.
Each node i is modeled as a PRISM module, which maintains several local
variables: the selected time slot own tsi, statei indicating the state node i is
in, and a time slot with detected collision col tsi. In addition, every node i
maintains an array slot tsij to record the occupancy of all time slots j.

According to the LMAC protocol and the model in [28], nodes are assumed
to be globally time synchronized. Thus, we model a global clock as a separate
module timer with the current time slot number timeslot and the current
time frame timeframe as variables. Three types of transitions of timer enable
time progress in the model: (i) the non-synchronizing transition is enabled if a
current time slot timeslot is not controlled by any node in the network, (ii)
nodes transmit and receive control messages using the labelled transition ts,
(iii) synchronization on the labelled transition decide allows nodes to select a
time slot to control. A node decides uniformly at random on a new time slot to
control (if more than one are unoccupied), and on the number of time frames to
back-off.

Our PRISM model is parameterized by t, the number of time slots in each
time frame. Note that there need to be sufficient time slots in a time frame for
a slot allocation to be feasible, e. g., at least n time slots for cliques of size n.

Similar to Fehnker et al. [28], we introduced two rules in our model that were
underspecified in the informal description of LMAC:

– a node may not select a new time slot, if it did not received a control message
from at least one of its neighbors;

– upon sending a control message to the neighbors, a node resets all array
entries tsij , except for its own controlled time slot. Thereby it propagates
only time slot information received in the recent time frame.

In our experiments with LMAC, we verify whether any two nodes i and j
that are one or two-hop neighbors will eventually proceed to choose a new time
slot if they experienced a collision. This property is expressed as follows:
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Fig. 3. Result of minimizing LMAC.
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Fig. 4. Result of isolation for LMAC.

filter(forall,((own tsi = own tsj)&(statei = 2)&(statej = 2))

=>P ≥ 1[F ((statei = 0)|(statej = 0))]) (2)

where statei = 2 denotes that the node i is broadcasting in the current time
slot. statei = 0 means that the node i is recording occupancy of the time slots
from control messages of its neighbors in order to select a new time slot.

Minimization results: We run minimization on a (sub-)set of six node
networks; in particular we chose three topologies that can be scheduled using
merely four slots (t:= 4). The minimization algorithm returns two topologies –
a four node ring and a five node ring as shown in Fig. 3. This is the optimal
(minimal) result: Rings of more than four nodes cause the LMAC property to fail.
Note that for LMAC this is not because of some parameterization of the protocol
or a specific issue with the neighborhood but an emergent detrimental property
of the protocol. If two neighboring nodes that have no common neighbors end up
in a collision, this collision cannot be detected by other nodes and hence cannot
be resolved.

Isolation results: We perform isolation on one of the topologies that we
used for the minimization algorithm. 8 The result is depicted in Fig. 4. We can
see here that the closing of this ring of four causes the fault. Note that we see
here one additional detail – the ring of three in the lower left is not a problem;
yet a ring of four in the upper right is.

4.5 Handling multiple faults

As a final test in our case study we look at the Trickle protocol and additionally
inject an error for topologies that have a path from the sink in the graph of
at least 5 hops in order to represent a second fault that is depth or forwarding
related. Our minimization algorithm returns two topologies. One is related to
the trickle fault; it is exactly the same as the fault described in Sec. 4.3. The
other topology is a graph consisting of a chain of 6 nodes. As we can see the
results clearly indicate the two different types of faults that we inject. In contrast,
when we select a single topology and perform isolation we only investigate one
underlying cause. In this case, we consciously select a topology that is due to
both faults. As we can see in Fig. 5 isolation returns one of the two faults. In
this case we find (the simpler) depth-related inject that gets triggered by the
edge that increases the distance of the gray node to 5 hops.
8 The faulty topology corresponds to number 29 in [28].
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4.6 Comparison to diagnosis

In order to compare our results with diagnosis, we ran spectrum-based diagnosis
as described in Sec. 2 for the Trickle testcase using subgraphs of order 4 and 5.
We assume here a certain size of error which is reasonable, as we would start
debugging from small-size topologies. The highest ranked subgraph, which is
shown in the box in Fig. 6, is of order 5. Note that in this figure, we arrange the
graph to make the pattern contained in the box more visible. In particular, we
add a potential embedding into a larger graph outside the box just for clarifica-
tion; however, this embedding is not part of the diagnosis result. In the pattern,
the nodes on the top are not connected to a sink node. As we can see, such a
pattern does not necessarily demonstrate the core cause. Hence, these results
are not as helpful for debugging purposes as the patterns generated using the
anti-pattern approach, which clearly identifies the source of the problem.

5 Conclusions

In this paper, we presented an approach, inspired by delta debugging, to find the
root causes of failure in wireless network protocols. The causes are represented
in terms of minimal topologies, called anti-patterns. We also developed another
approach inspired by fault diagnosis and showed that the approach based on
delta debugging is more effective in demonstrating the root causes of failure.

Although anti-patterns explain the faults or implicit assumptions of a proto-
col, their presence in a larger network does not necessarily lead to a failure. We
plan to extend our notion of anti-pattern to capture the boundary conditions
on the nodes, which also capture when these faults do lead to a failure in larger
topologies. We think that the isolation technique does provide additional infor-
mation that can be used in characterizing the boundary conditions under which
the fault will necessarily into failure.
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