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Abstract. We report on a tool prototype for model-based testing of
cyber-physical systems. Our starting point is a hybrid-system model
specified in a domain-specific language called Acumen. Our prototype
tool is implemented in Matlab and covers three stages of model-based
testing, namely, test-case generation, test-case execution, and confor-
mance analysis. We have applied our implementation to a number of
typical examples of cyber-physical systems in order to analyze its appli-
cability. In this paper, we report on the result of applying the prototype
tool on a DC-DC boost converter.
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1 Introduction

Cyber-physical systems have been the focus of much research in the past few
years: their structure and behavior are complex in nature and they often involve
critical applications. Correctness of such systems is a major concern and, hence,
rigorous validation and verification techniques are to be developed to ensure
their correctness. Model-based testing [6] is a rigorous verification technique
that is used to established that the behavior of an implementation conforms to
the specified behavior of a model.

There are some proposals for extending the theory of model-based testing to
the domain of cyber-physical systems [13, 11, 8, 7, 3, 4]. In this paper, we report
on a prototype model-based testing tool for cyber-physical systems, based on
a variant of the theory presented in [3, 4]. We extend the theory of [3, 4] by
an offline test-case generation algorithm. Subsequently, in a prototype tool, we
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implement the three steps of our model-based testing trajectory, namely, test-
case generation, test-case execution, and conformance analysis.

Our prototype tool is implemented in Matlab and starts off with a hybrid-
system model in a domain-specific language called Acumen Modeling Language
[14]. Our choice of Acumen is motivated by the local knowledge and expertise
in this particular language. However, the principles described in this paper are
defined generically for hybrid-timed state sequences and hybrid automata and,
hence, are applicable to a wide set of languages. Based on a model in Acumen, we
generate offline test cases that are robust (up to a given threshold) with respect
to minor deviations between the model and its implementation. Subsequently, we
implement a test-case execution module that interfaces Matlab with the system
under test. In our case, we interfaced Matlab with the Acumen simulator which
simulates a model of the system under test.

In order to evaluate its applicability, we applied our tool to a few typical
examples of cyber-physical systems. In this paper, we focus on one such example,
namely the DC-DC boost converter to illustrate the functionality of the tool.

Organization. In Section 2, we review our variant of the conformance theory
based on the approach of [3, 4]. Then, we describe our test-case generation tech-
nique for this theory of conformance. In Section 3, we describe the general ar-
chitecture of the tooling. In Section 4, we report on the application of our tool
to the DC-DC boost converter case study. In Section 5, we conclude the paper
and present the directions of our future research and implementation activities.

This paper is based on previous work reported in [5].

2 Theory

In this section, we explain the underlying theory of our tool implementation
based on and extending the theory of [3, 4].

2.1 Semantic Domain

In order to have a model of hybrid-systems behavior, we need to model the
input and output trajectories of the system dynamics. In [3, 4], it is decided to
take a discretized sampling of these trajectories as the basic starting point for
conformance testing. The following notion of timed state sequences is defined to
this end.

Definition 1 (Hybrid-Timed State Sequence (TSS) [3]). Consider a sam-
ple size N ∈ N, a dense time domain T = R≥0, and a set of variables V . A
hybrid-timed state sequence (TSS) is defined as pair (x,t), where x ∈ Val(V )N ,
t ∈ TN , and Val(V ) : V → R. The i’th element of a TSS (x,t) is denoted by
(xi,ti), where xi ∈ Val(V ) and ti ∈ T. Also, we denote the set of all TSSs defined
over the set of variables V , considering a specific N ∈ N, by TSS(V,N).



A hybrid system according to [3], defined below, is a mapping from the initial
condition and timed sequences of input variables to timed sequences of output
variables.

Definition 2 (Hybrid System [3]). Hybrid system H with initial condition
H ⊂ 2Val(V ), sample size N and input and output variables, respectively, VI and
VO is modeled as a mapping: H : H × TSS(VI , N) 7→ TSS(VO, N). We write
yH(h0, (u, tu)) to denote the output TSS to which the pair (u, tu) is mapped by
H, considering h0 as the initial condition.

2.2 Conformance

The conformance notion [3, 4], presented below, compares the output reaction
of the model and the system under test to the same input stimuli. The system
under test is said to conform to the model, if the output behavior is “similar”,
i.e., they differ temporally or in signal values not more than the pre-defined τ
and ε threshold, respectively.

Definition 3 ((τ, ε)−Conformance). Consider a test duration T ∈ T and
τ, ε > 0; then TSS (y, t) (τ, ε)-conforms to TSS (y′, t′) (both with sample size
N and defined on the set V of variables), denoted by (y, t) ≈τ,ε,V (y′, t′), if and
only if

1. for all i ∈ [1, N ] such that ti ≤ T , there exists k ∈ [1, N ] such that tk ≤ T ,
|ti − tk| < τ and for each v ∈ V , ||yi(v)− y′k(v)|| < ε, and

2. for all i ∈ [1, N ] such that t′i ≤ T , there exists k ∈ [1, N ] such that tk ≤ T ,
|t′i − tk| < τ and for each v ∈ V , ||y′i(v)− yk(v)|| < ε.

A hybrid system H (τ, ε)-conforms to a hybrid system H′ (both with the same
sample size and sets of input and output variables), denoted by H ≈τ,ε H′, when
for each initial condition h0 and each TSS (u, tu) on the common input variables
VI , yH(h0, (u, tu)) ≈τ,ε,VO

yH′(h0, (u, tu)).

Choosing the right conformance value for τ and ε is application dependent
and is left to the user. However, in order to give some insight about the degree
of conformance between a specification and a system under test, one may fix a
value for τ and determine the minimal value of ε for which (τ, ε)-conformance
holds. The following definition formalizes this concept.

Definition 4 (Conformance degree). If H1 and H2 are two hybrid sys-
tems, given a predefined τ , the conformance degree of H1 to H2, denoted by
CDτ (H1,H2), is defined as CDτ (H1,H2) := inf {ε : H1 ≈τ,ε H2}.

Note that our notion of conformance (degree) simplifies that of [3, 4] in a cou-
ple of ways: firstly, in our notion the number of discrete jumps is immaterial for
our notion of conformance; secondly, we take the sample size of the specification
and the implementation to be the same; finally, we simplified the super-dense
time domain into a dense time domain. All of these are for the sake of simplicity
in presentation (while keeping the definitions still applicable to our practical
settings). Generalization to the original setting of [3, 4] is straightforward.



2.3 Test-Case Generation

In order to check conformance, we need to stimulate both the model and the
system under test and then compare their outputs. To this end, we need to make
sure that the inputs fed into the system are valid. Validity in our context has
two aspects: firstly our Acumen input models (as well as other typical models of
cyber-physical systems) feature state-dependent behavior. In other words, not all
combinations of input valuations are valid for system specification. (This aspect
is not addressed in the proposal of [3, 4] where models are assumed to be input-
enabled.) Moreover, since the notion of conformance allows for some deviation
between the model and the implementation, the inputs should not be too close
to the boundaries of specification states (closer than the specified thresholds τ
and ε in time and values, respectively); otherwise, the generated test cases may
cease to be applicable in the course of test-case execution.

In order to give a generic exposition of our approach, we formulate it using
the notion of hybrid automata, quoted below.

Definition 5 (Hybrid Automata [9]). A hybrid automaton is defined as a
tuple (Loc, V , (l0,v0), →, I, F ), where

– Loc is a finite set of locations;
– V = VI ] VO is the set of continuous variables;
– l0 denotes the initial location and v0 is an initial valuation of V;
– →⊆ Loc ×B(V )× Reset(V )× Loc is the set of jumps where:
• B(V ) ⊆ Val(V ) indicates the guards under which the switch may be

performed, and
• Reset(V ) ⊆ Val(V )2 is the set of all value assignments to all or a subset

of the variables V ;
– I : Loc → B(V ) determines the allowed valuation of variables in each loca-

tion (called the invariant of the location);

– F : Loc → B
(
V ∪ V̇

)
describes some constraints on variables and their

derivatives and specifies the allowed continuous behavior in each location.

In order to generate test cases for a hybrid automaton, we take two issues
into account: validity of inputs in each location and the distance of the values
from the location boundaries. These two aspects are summarized in the following
notion of “sound and robust” test case. This notion is inspired by the notion of
solution of hybrid automata [12].

Definition 6 (Solution). A solution to the hybrid automaton HA = (Loc, V ,
(l0, v0),→, I, F ) is a function s : [1, J ]→ T→ Loc × V al(V ) for some J , where
for each 1 ≤ j ≤ J : dom(s(j)) = [tj , tj+1] for some tj , tj+1 ∈ T, t1 = 0, and

– s(1)(0) = (l0, v0);
– for each 1 ≤ j ≤ J and t ∈ [tj , tj+1]: x satisfies I(l) and F (l), where

(l, x) = s(j)(t); and

– for each 1 ≤ j < J : there exists l
g,r−→ l′ such that x satisfies g and (x, x′)

satisfies r, where (l, x) = s(j)(tj+1) and (l′, x′) = s(j + 1)(tj+1).



Definition 7 (Sound and Robust Test Case). A sound and (τ, ε)-robust
test case of size N for a hybrid automaton is a TSS (y, t) with sample size N
on the set VI of variables if and only if there exists a solution s of the hybrid
automaton such that

1. for each i ≤ N , there exists a j ∈ dom(s), t ∈ dom(s(j)), yi = s(j)(t) ↓ VI
(soundness),

– t− τ ∈ dom(s(j)) and t+ τ ∈ dom(s(j)) (τ -robustness), and
– for each ε′ ≤ ε, there exists a t′ ∈ dom(s(j)) such that for each vari-

able v ∈ VO it holds that ||val(s(j)(t))(v) − val(s(j)(t′))(v)|| = ε′ (ε-
robustness).

When τ and ε are known from the context, we simply use the term “sound and
robust test case”.

3 Tool

In this section, the implementation of the conformance method in the tooling is
discussed. In Fig. 1, an architectural view of our tool is presented. The grey area
corresponds to the Graphical User Interface (GUI) which interacts with the tool
functionality. The tooling is created in the Matlab R2013b environment. This
environment was preferred to keep the implementation generic and also to be
able to use the Java compatibility of Matlab in order to interface with various
modeling and implementation frameworks.

Fig. 1: Tool architecture overview

The three main steps of the conformance method are test-case generation,
test-case execution, and conformance analysis and they can easily be recognized



in the architecture of the tool depicted in Fig. 1. The application of test-case gen-
eration and execution methods results in generating input-output data for both
the model and the implementation under test. Application of the conformance
analysis, subsequently, results in a conformance judgment possibly accompanied
with an additional witness for conformance violation, which is fed into the GUI
for visualization purposes.

As depicted in Fig. 1, there is a clear separation between the “Main script”
module and the GUI. This division provides us with two builds of the tool,
namely the Script Build and the GUI Build. The Script Build contains the
full functionality of the tooling which is implemented using Matlab scripting
methods (.m files), and is controllable from a command-line interface. The GUI
Build contains selected functionality of the tool and offers a GUI for intuitive
and easy use, especially for non-expert users. In Fig. 2, a preview of the GUI
Build is provided.3

Fig. 2: Tool GUI

In the remainder of this section, we focus on the three main phases of the
conformance method.

Test-case generation. In Fig. 1, before the test-case generation algorithm is exe-
cuted, the simulation parameters as specified in the Acumen file are loaded into

3 The prototype tool can obtained from http://ceres.hh.se/mediawiki/Tool_

Prototype_for_Conformance_Testing_of_CyPhy_Systems.



Matlab. This process is performed by an Acumen file parser which extracts the
specified simulation parameters and all model variables from the implementation
modeled in Acumen. Definition 7 is then implemented in order to generate sound
and robust test cases [5]. We made a slight simplification, by focusing on a subset
of hybrid systems in which, firstly, the guards are not time-dependent and sec-
ondly, the invariants are only specified as intervals of input variable valuations.
This simplified the implementation of the soundness and robustness checks.

Test-case execution. The test-case execution refers to the application of gen-
erated test cases on the implementation modeled in Acumen. In this step, a
combination of Java and Matlab code is used in order to execute test cases /
inputs on an Acumen (hybrid-system) model. This process involves communi-
cation between the Matlab tooling and the Acumen runtime environment. Note
that further use of Acumen refers to the Acumen runtime environment.

The (simulator) data that is transferred between Matlab and Acumen uses
the JSON-format for information exchange of the Acumen simulator state; see
Fig. 3. Since existing JSON parsers failed to unwrap the simulation data from
Acumen correctly, a custom Matlab JSON parser was designed and implemented
for this purpose. This custom Matlab JSON parser uses the preloaded model
variables of the Acumen file parser to extract all model variables of the imple-
mentation.

Fig. 3: Socket connection

To initiate the communication between
the Matlab tooling and Acumen, a com-
mand line interface is used (from within Mat-
lab) to start up Acumen in the background.
Moreover, Acumen automatically loads a pre-
specified Acumen file, in this case the im-
plementation, and starts the simulation of
this model. Since this start-up sequence is
performed with Acumen in server mode, it
creates a socket connection to execute a co-
simulation. Hence, when the simulation of
the implementation is automatically started,
Acumen waits for a valid socket connection or client, in this case the Matlab
tooling. In Fig. 1, this start-up process of the socket connection between Matlab
and Acumen is shown as the first step of the test-case execution.

As soon as the Matlab tooling initiates the socket connection by running
its embedded Javaclient, the (initial) simulator state is send over to Matlab.
When Matlab returns the simulator state to Acumen, one simulation step of the
implementation (in Acumen) is performed. This process repeats itself for every
timestep of the full simulation duration as specified in the Acumen model file.

Conformance analysis. The conformance analysis is an implementation of Defi-
nition 3. In addition to providing a yes/no answer, the tool provides a visualiza-
tion of the counter-example in case the conformance relation does not hold. This



is achieved by plotting both the specification and the implementation trajecto-
ries and depicting the case of violation by a (τ, ε) box around the specification
point which does not find a counterpart in the implementation (or the other way
around). Additionally, our implementation automatically calculates the confor-
mance degree based on Definition 4.

4 Experiment: DC-DC boost converter

The developed tool has been experimented with on several classical hybrid-
system examples, such as the bouncing ball, the thermostat, and the DC-DC
boost converter. The DC-DC boost converter example is discussed below. The
DC-DC boost converter is a hybrid-system example (see [10]) that originates
from the field of electrical engineering and is used to “boost” an input DC volt-
age to an increased output value. In Fig. 4a, such a boost converter is shown
together with a schematic that shows the principle of operation. The boost of the
DC voltage is a consequence the combined physical properties of the inductor L
and capacitor C, which are controlled by the switch S and diode D. This process
transforms the input voltage E to an increased output voltage that is applied
to the resistive load R. Note that the control elements of the boost converter
transform the otherwise continuous system into a hybrid system. Finally, the
system is made input dependent by tuning the resistive load R which results in
internal stabilizing behavior of the boost converter.

(a) PCB [2] and schematic [1]
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(b) Hybrid automaton [1]

In Fig. 4b, the hybrid-automaton model of the DC-DC boost converter is
shown. The four discrete states of the system are solely dependent on the position



of the switch S and the mode of the diode D (conducting/blocking). In addition,
the physical properties of the system are modelled by the electric charge q of the
capacitor and the magnetic flux φ of the inductor. For further understanding of
the specified dynamics, state guards and reset maps see [10].

In Fig. 5, the output power of a specific boost converter is shown. The blue
and black lines indicate the response of the model (in Matlab) and implemen-
tation (Acumen) respectively, which are visibly diverging. Hence, conformance
analysis is needed in order to evaluate the conformance (degree) of the implemen-
tation with respect to the model. Non-conformance is detected and is indicated
in red. In the lower sub-plot, an automatic zoom of the non-conformance area is
performed in order to provide visual feedback of the τ -ε area around the corre-
sponding data point. The following values are used in the conformance analysis
of Fig. 5: τ = 0.00001, ε = 7.

Fig. 5: DC-DC boost converter conformance analysis



5 Conclusions and Future Work

In this paper, we reported on an implementation of a conformance testing theory
for cyber-physical systems, based on the conformance notion of [3, 4]. To this end,
we have developed the notion of sound and robust test cases. We have used this
notion to generate off-line test cases from a hybrid-system model in the domain
specific language Acumen [14]. We have implemented the test-case generation,
test-case execution, and conformance analysis in a Matlab-based prototype.

In order to manage the complexity of the implementation, we have made sev-
eral simplifying assumptions on the structure of the invariants and guards in the
specification. Relaxing these assumptions requires non-trivial numerical analy-
sis of the specification and is left for future work. Turning our off-line test-case
generation into an on-line test-case generation algorithm is another non-trivial
extension. This is particularly interesting when non-determinism is allowed in the
specification. Defining a notion of coverage along the lines of [7, 8] and adapting
our test-case generation algorithm in order to maximize specification coverage
is another avenue for our future research.
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