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Abstract. XY -simulation is a generalization of bisimulation that is pa-
rameterized with two subsets of actions. XY -simulation is known in the
literature under different names such as modal refinement, partial bisim-
ulation, and alternating simulation. In this paper, we propose a pre-
congruence rule format for XY -simulation. The format allows for check-
ing compositionality of XY -simulation for an arbitrary language with
structural operational semantics, by performing very simple checks on
the syntactic shape of the rules. We apply our format to derive concrete
compositionality results for different notions of behavioral pre-order with
respect to different process calculi in the literature.

1 Introduction

XY -simulation is a generalization of bisimulation that is parameterized by two
subsets of actions: X and Y [1]. The idea is to weaken the transfer property
of a bisimulation relation in the following way: the actions in X are simulated
from left to right, while the actions in Y are simulated from right to left. XY -
simulation is well-known in the literature, albeit under different names, such as
modal refinement [16], partial bisimulation [6], and alternating simulation [4].

An essential property for any notion of behavioral pre-order and hence, also
for XY-simulation, is the so-called pre-congruence property. This property allows
for compositional verification and reasoning about processes under arbitrary
contexts. The pre-congruence property has been studied in the literature for
some instances of XY-simulation and for a fixed set of well-known operators from
the field of process algebras (see [6, 16] for instance). In this paper, we generalize
these results by providing generic sufficient conditions for compositionality of
XY-simulation with respect to any arbitrary set of operators with a Structural
Operational Semantics (SOS) [21]. We do so by restricting the syntactic shape
of the SOS rules to ensure pre-congruence. The result of this paper provides a
unified account of existing results and is instantiated to generate new results.
Furthermore, the proposed rule format can serve as a yardstick for language
designers to check the compositionality of their operators while defining their
semantics.

To develop our rule format, we employ the modal decomposition approach
proposed in [9, 13] in combination with an existing modal characterization of
XY -simulation, due to [11]. We devise a modal decomposition that specifies



when an open term satisfies a modal formula in terms of the modal formulae that
are to be satisfied by its variables. This modal decomposition is then directly
employed in generating a pre-congruence rule format for XY -simulation. The
obtained format is an elegant and simple one; the only specific checks required
are simple checks on the labels of the transition formulae, with respect to their
inclusion in X or Y . As we demonstrate by some examples in this paper, the
format is applicable to various notions of behavioral pre-order and to various
process calculi in the literature.

The rest of this paper is structured as follows. In Section 2, we recall the basic
definitions that will be used throughout the paper. Then, in Section 3, we first
formulate and prove the modal decomposition theorem and using that, derive
our pre-congruence rule format. In Section 4, we apply the obtained rule format
to various examples from the literature. In Section 5, we show that the syntactic
conditions on the rule format cannot be trivially relaxed. Finally, in Section 6,
we conclude the paper and present the direction of our ongoing research.

2 Preliminaries

In this section, we first quote the basic definition of labeled transition systems
and XY -simulation and some of their properties. Subsequently, we recall a for-
malization of SOS, and building upon this formalization, we define the basic rule
formats that will form the foundations of our results in this paper.

2.1 Transition Systems and XY -simulation

We start by recalling below the well-known notion of labeled transition systems.

Definition 1 (Labeled Transition Systems). A labeled transition system
(LTS) is a triple (P,A,→), where P is the set of processes, A is the set of
actions, and →⊆ P×A×P is the transition relation. We denote (p, a, q) ∈→ by
p
a−→ q.

The following definition formalizes the notion of XY -simulation, originally
due to [1].

Definition 2 (XY -simulation). Let X,Y ⊆ A. A binary relation R ⊆ P × P
is an XY -simulation relation iff the following transfer conditions are satisfied:

1. ∀p,a,q,p′ (p
a−→ p′ ∧ pRq ∧ a ∈ X) ⇒ ∃q′ q

a−→ q′ ∧ p′Rq′.
2. ∀p,a,q,q′ (q

a−→ q′ ∧ pRq ∧ a ∈ Y ) ⇒ ∃p′ p
a−→ p′ ∧ p′Rq′.

Two processes p, q ∈ P are XY -similar, denoted by p �X,Y q, iff there is an
XY -simulation relation R such that pRq.

It is worth noting that in [2], XY -simulation relations are called covariant-
contravariant simulation relations.

The following lemma lists some of the intuitive properties of XY -similarity.



Lemma 1. Consider an arbitrary LTS (P,A,→) and assume that X,Y,X ′, Y ′ ⊆
A; the following statements hold.

1. Relation �X,Y is a pre-order.
2. If X ⊆ X ′, then �X′,Y ⊆ �X,Y .
3. If Y ⊆ Y ′, then �X,Y ′ ⊆ �X,Y .
4. �Y,X=�−1

X,Y .

Proof. 1. It is straightforward to verify that the identity relation is an XY -
simulation relation. To prove transitivity, let p �X,Y p′ and p′ �X,Y p′′ with
R and R′ their witnessing XY -simulation relations, respectively. It remains to
show that R ◦ R′ = {(p, p′′) | ∃p′ pRp′ ∧ p′R′p′′} is an XY -simulation relation.
We distinguish the following cases:

– Let p a−→ q, for some a ∈ X, and pR ◦ R′p′′. By the definition of relation
composition, there exists some p′ such that pRp′ and p′R′p′′. Since R and
R′ are XY -simulation relations, we have p′ a−→ q′, p′′ a−→ q′′, and qR ◦ R′q′′,
for some q′, q′′.

– Let p′′ a−→ q′′, for some a ∈ Y , and pR ◦R′p′′. Similar to the previous case.

The proof of Items 2., 3., and 4. are straightforward from Definition 2. ut

Definition 3 (Modal Characterization of XY -simulation). Let ΦX,Y be
the set of modal formulas generated by the following grammar:

ΦX,Y ::=
∧
i∈I

ϕi |
∨
i∈I

ϕi | 〈a〉ϕ | [b]ϕ (a ∈ X, b ∈ Y ).

The semantics of a formula ϕ ∈ ΦX,Y is inductively defined in the standard
way, i.e.,

p |=
∧
i∈I

ϕi ⇐⇒ ∀i∈I p |= ϕi p |=
∨
i∈I

ϕi ⇐⇒ ∃i∈I p |= ϕi

p |= 〈a〉ϕ ⇐⇒ ∃q p
a−→ q ∧ q |= ϕ p |= [a]ϕ ⇐⇒ ∀q p

a−→ q ⇒ q |= ϕ .

Note that > =
∧
∅ and ⊥ =

∨
∅. Furthermore, we let Φ = ΦA,A and ϕ1∨ϕ2 =∨

i∈{1,2} ϕi. For any two formulas ϕ,ϕ′ ∈ Φ, we define ϕ ⇒ ϕ′ = neg(ϕ) ∨ ϕ′,
where neg : Φ → Φ is a function that encodes negation in the logic, by pushing
negation through conjunction, disjunction, and the modalities in the standard
way.

Theorem 1. p �X,Y q ⇐⇒ ∀ϕ∈ΦX,Y
p |= ϕ⇒ q |= ϕ.

Proof. Standard (see [11]). ut



2.2 Transition System Specifications

In this section, we recall some basic concepts that are used in the meta-theory
of SOS. Regarding the notions treated in this section and the next one, we refer
to [3, 19] for more details, examples and results.

Definition 4 (Terms and Signatures). Let V be an infinite set of variables
with |V| ≥ |A|. A signature is a collection Σ of function symbols f 6∈ V equipped
with a function ar : Σ → N denoting their arity. The set T(Σ) of terms over
signature Σ is defined as follows:

– V ⊆ T(Σ),
– if f ∈ Σ and t1, · · · , tar(f) ∈ T(Σ) then f(t1, · · · , tar(f)) ∈ T(Σ).

A constant term c() is denoted by c. Let var(t) denote the set of variables
that occur in term t. Let T (Σ) = {t | var(t) = ∅} denote the set of closed terms.
A (closed) Σ-substitution σ is a total function from the set of variables V to
(closed) terms (T (Σ)) T(Σ).

Definition 5 (Transition System Specifications). Let Σ be a signature. A
positive Σ-literal is an expression of the form t

a−→ t′ with t, t′ ∈ T(Σ) and a ∈ A.
A negative Σ-literal is an expression of the form t

a−9 with t ∈ T(Σ) and a ∈ A.
A transition rule (or simply a rule) over Σ is an expression of the form H

α with
H a set of Σ-literals (whose elements are called the premises of the rule) and
α a Σ-literal (called the conclusion of the rule). Furthermore, the left- and the
right-hand side (if any) of the conclusion of a rule are called the source and the
target of the rule, respectively. A transition system specification (TSS) over Σ
is a collection of rules over Σ. A TSS is standard if all its rules have positive
conclusions and positive if moreover all premises of its rules are also positive.

For each literal α of the form t
a−→ t′ (t a−9 ), the action label of α, denoted by

action(α), is defined to be a. For each two terms t, t′, literals t a−→ t′ and t a−9
deny each other.

A TSS is meant to define an LTS; however, in the presence of negative lit-
erals, this is not straightforward. To start with, we first recall the definition of
irredundant proof, by Bloom et al. [9], which corresponds to the intuitive notion
of proof from a given set of hypotheses.

Definition 6 (Irredundant Proof). Let P be a TSS over a signature Σ. An
irredundant proof of a transition rule H

α from P is a well-founded, upwardly
branching tree with the nodes labeled by Σ-literals, and some of the leaves marked
as “hypotheses”, such that:

– the root is labeled by α.
– H is the set of labels of the hypotheses, and
– if β is the label of a node ? which is not a hypothesis and K is the set of

labels of the nodes directly above ?, then there is a transition rule K′

β′ in P

and substitution σ such that σ(K ′) = K and σ(β′) = β.



A proof of Kα from P is an irredundant proof of Hα from P with H ⊆ K.

Note that the term “irredundant” highlights that the set of literals marked as
hypotheses in the proof corresponds exactly to the set of premises of the proven
rule. In other words, irredundantly provable rules contain no junk literals (i.e.,
literals not used in the proof tree) among their premises.

Next, we use the notion of irredundant proof to define the LTS associated
with a TSS. This is achieved through the following notion of well-supported
proof [23].

Definition 7. Let P be a standard TSS over a signature Σ. A well-supported
proof of a closed literal α from P is a well-founded, upwardly branching tree with
the nodes labeled by closed Σ-literals, such that the root is labeled by α and if β
is the label of a node ? and K is the set of labels of the nodes directly above ?,
then

– either there is a rule K′

β′ from P and closed substitution σ such that σ(K ′) =

K ∧ σ(β′) = β,
– or β is negative and for every set N of closed negative literals such that N

γ
is irredundantly provable from P for γ a closed literal denying β, a literal in
K denies one in N .

A well-supported proof of α from P (if it exists) is denoted by P `ws α.

In order to unequivocally define an LTS, a TSS has to be complete, as defined
below.

Definition 8 (Complete TSSs). A standard TSS is complete if and only if
for any closed literal t a−9 , either P `ws t

a−→ t′ for some closed term t′, or
P `ws t

a−9 .

It is often possible to establish completeness by using a syntactic measure on
rules, called stratification [10]. All practical examples of TSSs are standard and
complete and hence, almost all SOS meta-theorems are formed around complete
TSSs. In this paper, we also follow this tradition and formulate our results for
complete TSSs.

2.3 Rule Formats

The goal of a rule format is to establish a semantic property via syntactic con-
straints on rules. One of the most important semantic properties addressed by
rule formats is compositionality or (pre-)congruence, defined below.

Definition 9 (Pre-congruence). Let P be a TSS over signature Σ. A pre-
order v⊆ T (Σ)×T (Σ) on closed terms is a pre-congruence if and only if for all
operators f ∈ Σ and closed terms t1, t′1, · · · , tar(f), t

′
ar(f) ∈ T (Σ), we have that

ti v t′i (for i ∈ [1, ar(f)]) implies f(t1, · · · , tar(f)) v f(t′1, · · · , t′ar(f)).



A rule format that establishes pre-congruence for simulation (and congruence
for bisimulation) is the following ntyft/ntyxt format [14].

Definition 10 (ntyft/ntyxt format). An ntytt rule is a transition rule in
which the right-hand sides of positive premises are variables that are all distinct
and do not occur in the source of the conclusion. An ntytt rule is an ntyxt rule
if the source of its conclusion is a variable and an ntyft rule if the source of
its conclusion contains exactly one function symbol applied to distinct variables.
An ntytt rule (resp. an ntyft rule) is an nxytt rule (resp. an nxyft rule) if the
left-hand sides of its premises are variables. A TSS is in the ntyft/ntyxt format
if it contains only ntyft and ntyxt rules.

The ready simulation format, defined below, guarantees pre-congruence for
ready simulation. Moreover, it is the basis of the modal decomposition technique
presented in [9, 13] and hence, also serves as the basis of our approach.

Definition 11 (Ready simulation format). A transition rule has no looka-
head if the variables occurring in the right-hand sides of its positive premises
do not occur in the left-hand sides of its premises. A TSS is in the ready sim-
ulation format if it is in the ntyft/ntyxt format and its transition rules have no
lookahead.

SOS rules are meant to define a flow of variable valuations from the source
of the conclusion to the premises and eventually to the target of the conclusion.
However, some rules may feature free variables whose valuations do not depend
on the source of the conclusion. Rules without free variables and lookahead are
called decent [9].

Definition 12 (Decent rule). A variable occurring in a transition rule is free
iff it does not occur in the source of the conclusion nor in the right-hand sides of
the positive premises of the rule. A transition rule is decent if it has no lookahead
and does not contain free variables.

Rules with free variables can always be replaced with infinitely many decent
rules, by replacing the free variables with all their possible closed valuations.
The following lemma captures this intuition. According to the following lemma,
focusing on decent rules in the proofs does not impose any extra theoretical
constraint.

Lemma 2 ([9]). Let P be a standard TSS in the ready simulation format. Then
there is a TSS P+ in the decent ntyft format such that any closed literal α is
provable from P+ if and only if P `ws α.

Definition 13. A P -ruloid is a decent nxytt rule that is irredundantly provable
from P+. Lastly, the set of all P -ruloids of a given TSS P is denoted by P̄ .

For the results to come, we need the following lemma. Intuitively, it states
that for any TSS P in the ready simulation format, there is a well-supported
proof of a positive closed literal α if and only if there is an irredundant proof of
a P -ruloid such that the closed literal α is a closed substitution instance of the
ruloid.



Lemma 3 ([9]). Let P be a TSS in the ready simulation format. For any term
t ∈ T(Σ), closed term t′, and a closed substitution σ, we have P `ws σ(t)

a−→ t′

iff there are a P -ruloid H

t
a−→u

and a closed substitution σ′ such that P `ws σ
′(α)

(for every α ∈ H), σ′(t) = σ(t), and σ′(u) = t′.

3 Deriving a Pre-congruence Format

The basic machinery developed in [9] to derive a pre-congruence format works in
two steps. First, a modal formula ϕ ∈ Φ for an open term t is decomposed into a
choice of modal formulas ψ(x) for variables x such that σ(t) satisfies ϕ if and only
if for one of those ψ’s and all the variables x in t, σ(x) satisfies ψ(x) (Theorem 2).
This is achieved by considering the provable transition rules for term t (given
that such rules are in a given rule format.) Secondly a pre-congruence format
for a pre-order is devised such that if a modal formula belongs to characterizing
logic of the pre-order, then the resulting decomposed modal formulas also belong
to the same characterizing logic (Theorem 3).

3.1 Modal Decomposition

Definition 14. Let P be a standard TSS over Σ in the ready simulation format.
The decomposition function ·−1 : T(Σ)→ (Φ→ 2V→Φ) for a term is defined in
the following way:

1. ψ ∈ t−1(〈a〉ϕ) iff

ψ(x) =
∨

H

t
a−→u

∈P̄

∨
χ∈u−1(ϕ)

(
χ(x) ∧

∧
(x

c−9)∈H

[c]⊥ ∧
∧

(x
b−→y)∈H

〈b〉χ(y)
)
,

whenever x ∈ var(t). For x 6∈ var(t), we let ψ(x) = >.
2. ψ ∈ t−1([a]ϕ) iff ψ(x) (for x ∈ var(t)) is defined to be∧

H

t
a−→u

∈P̄

[( ∧
(x

c−9)∈H

[c]⊥ ∧
∧

(x
b−→y)∈H

〈b〉>
)
⇒

( ∨
χ∈u−1(ϕ)

χ(x) ∧
∧

(x
b−→y)∈H

[b]
∨

χ∈u−1(ϕ)

χ(y)
)]
.

As in the previous case, we let ψ(x) = > for x 6∈ var(t).
3. ψ ∈ t−1(

∧
i∈I ϕi) iff ψ(x) =

∧
i∈I ψi(x), where ψi ∈ t−1(ϕi) for i ∈ I.

4. ψ ∈ t−1(
∨
i∈I ϕi) iff ψ(x) =

∨
i∈I ψi(x), where ψi ∈ t−1(ϕi) for i ∈ I.

Note that item 2. has not been treated in the past decomposition approaches [9,
13]. It concerns the semantic clause of the box modality [a]ϕ, i.e., for any closed
terms t, t′, if there is a transition t a−→ t′, then t′ must satisfy ϕ.



Theorem 2. Let P be a complete TSS in the ready simulation format over the
signature Σ. Then, for any term t ∈ T(Σ), closed substitution σ, and a formula
ϕ ∈ Φ, we have σ(t) |= ϕ ⇐⇒ ∃ψ∈t−1(ϕ)∀x∈var(t) σ(x) |= ψ(x).

Proof. By structural induction on ϕ. In the remainder, we only consider the case
when ϕ = [a]ϕ′. The proof of the remaining cases is the same as the proof given
in [13, Theorem 2].

(⇐) Let σ(t)
a−→ t′ for some closed term t′. We need to show that t′ |= ϕ′.

We begin by using Lemma 3 to find a P -ruloid of the form:

{x bi−→ yi | i ∈ Ix ∧ x ∈ var(t)} ∪ {x cj−9 | j ∈ Jx ∧ x ∈ var(t)}
t
a−→ u

(1)

and a closed substitution σ′ such that σ(t) = σ′(t), P `ws σ
′(H), and σ′(u) = t′.

Since ∃ψ∈t−1(ϕ)∀x∈var(t) σ(x) |= ψ(x), by Definition 14, we have (for every x ∈
var(t)):

σ(x) |=
( ∧
j∈Jx

[cj ]⊥ ∧
∧
i∈Ix

〈bi〉>
)
⇒
( ∨
χ∈u−1(ϕ′)

χ(x) ∧
∧
i∈Ix

[bi]
∨

χ∈u−1(ϕ′)

χ(y)
)
.

(2)
We claim that ∀z∈var(u) σ

′(z) |=
∨
χ∈u−1(ϕ′) χ(z). Let z ∈ var(u). We distinguish

the following cases depending on the position of z in the decent P-ruloid:

– Let z = x for some x ∈ var(t). Using σ(x) = σ′(x) and P `ws σ
′(H) in (2)

we get σ′(x) |=
∨
χ∈u−1(ϕ′) χ(x).

– Let z = yi for some i ∈ Ix and x ∈ var(t). Then, using σ(x) = σ′(x)
and P `ws σ

′(H) in (2) we have σ′(x) |= [bi]
∨
χ∈u−1(ϕ′) χ(yi) and P `ws

σ′(x)
bi−→ σ′(yi). Therefore, from the semantics of box modality we obtain

σ′(yi) |=
∨
χ∈u−1(ϕ′) χ(yi).

This proves the claim. Fix χ̄(z) =
∨
χ∈u−1(ϕ′) χ(z) for every z ∈ var(u). Since

Definition 14 is closed under arbitrary disjunctions, we know that χ̄ ∈ u−1(ϕ′).
Moreover, we have σ′(z) |= χ̄(z) (for every z ∈ var(u)). Thus, by the induction
hypothesis we obtain σ′(u) |= ϕ′.

(⇒) Let σ(t) |= [a]ϕ′. Suppose there are no P -ruloids of the form H

t
a−→u

. Then,
by Definition 14 we have ψ(x) =

∧
∅ = > for every x ∈ var(t). Since every closed

term satisfies >, we have σ(x) |= ψ(x) for every x ∈ var(t) as required.
Now suppose there is a P -ruloid of the form given in (1). It suffices to show

that the condition in (2) holds. Assume that σ(x) |=
∧
j∈Jx [cj ]⊥ ∧

∧
i∈Ix〈bi〉>.

Then, the completeness of P together with the semantics of box modality guar-
antee that P `ws σ(x)

cj−9 (for every j ∈ Jx). Furthermore, from the seman-
tics of diamond modality, for every i ∈ Ix, we find some closed term ti such
that P `ws σ(x)

bi−→ ti. Thus, we can define a closed substitution σ′ such
that σ(x) = σ′(x) (for x ∈ var(t)), σ′(yi) = ti (for i ∈ Ix). Note that σ′ is
well-defined because the P -ruloids have no lookahead and all yi’s are distinct



(i.e., ∀i,i′∈Ix i 6= i′ ⇒ yi 6= yi′). By Lemma 3, we obtain σ(t)
a−→ σ′(u). Thus,

σ′(u) |= ϕ′ because σ(t) |= [a]ϕ′. From the induction hypothesis we obtain

∃χ∈u−1(ϕ′)∀z∈var(u) σ
′(z) |= χ(z). (3)

From (3) we have, for every x ∈ var(t), σ(x) |=
∨
χ∈u−1(ϕ′) χ(x). Thus, it suffices

to show that, for every x ∈ var(t), we have σ(x) |=
∧
i∈Ix [bi]

∨
χ∈u−1(ϕ′) χ(yi).

Let σ(x)
bi−→ t′′ for some i ∈ Ix. Then, we define a closed substitution σ′′ such

that σ(t) = σ′′(t), σ′′(yi) = t′′, and σ′′(yi′) = σ′(yi′) (for i′ ∈ Ix such that i 6= i′).
By repeating the same arguments (from above) to derive P `ws σ(t)

a−→ σ′(u),
we can find P `ws σ(t)

a−→ σ′′(u). Thus, σ′′(u) |= ϕ′ because σ(t) |= [a]ϕ′.
We can again instantiate the induction hypothesis to find a χ′′ ∈ u−1(ϕ′) such
that ∀z∈var(u) σ

′′(z) |= χ′′(z). Therefore, σ′′(yi) |=
∨
χ∈u−1(ϕ′) χ(yi) and we can

conclude that σ(x) |= [bi]
∨
χ∈u−1(ϕ′) χ(yi).

We have shown for every P -ruloid H

t
a−→u

and for every x ∈ var(t), if σ(x) |=∧
(x

c−9)∈H [c]⊥ and σ(x) |=
∧

(x
b−→y)∈H

〈b〉> then σ(x) |=
∨
χ∈u−1(ϕ′) χ(x) and

σ(x) |=
∧
x

b−→y∈H
[b]
∨
χ∈u−1(ϕ′) χ(y). Therefore, the formula ψ(x) as defined in

Definition 14(2) is satisfied by σ(x). ut

3.2 XY -simulation Format

Definition 15. Given a set H of premises, we write H+ and H− to denote the
set of all positive and negative literals in H, respectively. A rule H

t
a−→u

is in the
XY -simulation format iff it is in the ready simulation format and the following
conditions hold:

1. If a ∈ X then
(a) ∀α (α ∈ H+ ⇒ action(α) ∈ X)
(b) ∀α (α ∈ H− ⇒ action(α) ∈ Y )

2. If a ∈ Y then
(a) ∀α (α ∈ H+ ⇒ action(α) ∈ Y )
(b) ∀α (α ∈ H− ⇒ action(α) ∈ X)

A TSS is in the XY -simulation format iff all its rules are in the XY -simulation
format.

Lemma 4. If a TSS is in the XY -simulation format, then all its P-ruloids are.

Due to space limitations, we do not present the complete poof of Lemma 4.
It goes by an induction on the depth of the irredundant proof for the P -ruloid
at hand.1

Theorem 3. Let P be a standard TSS in the XY -simulation format and Σ be its
signature. If t ∈ T(Σ), ϕ ∈ ΦX,Y , and ψ ∈ t−1(ϕ) then ∀x∈var(t) ψ(x) ∈ ΦX,Y .
1 In this version of the paper, the proof is provided in the appendix.



Proof. We prove this theorem by structural induction on ϕ and consider the
cases when ϕ = 〈a〉ϕ′ and ϕ = [a]ϕ′. In the following, due to Lemma 4, we use
the fact that every derived P -ruloid is in the XY -simulation format, whenever
P is in the XY -simulation format.
(1) Let ϕ = 〈a〉ϕ′ for some a ∈ X. By Definition 14, we have

ψ(x) =
(
χ(x) ∧

∧
(x

c−9)∈H

[c]⊥ ∧
∧

(x
b−→y)∈H

〈b〉χ(y)
)
,

for some P -ruloid H

t
a−→u

and a decomposition function χ ∈ u−1(ϕ′). Hence, by
the induction hypothesis χ(z) ∈ ΦX,Y (for z ∈ var(u)). It suffices to show that
∀

(x
c−9)∈H c ∈ Y and ∀

x
b−→y∈H

b ∈ X.

– Let (x
c−9 ) ∈ H. Then, Definition 15(1b) ensures that c ∈ Y .

– Let x b−→ y ∈ H. Then, Definition 15(1a) ensures that b ∈ X.

(2) Let ϕ = [a]ϕ′ for some a ∈ Y . By Definition 14, we have (for x ∈ var(t)):

ψ(x) =
∧

H

t
a−→u

∈P̄

( ∨
(x

c−9)∈H

〈c〉> ∨
∨

(x
b−→y)∈H

[b]⊥ ∨

( ∨
χ∈u−1(ϕ′)

χ(x) ∧
∧

(x
b−→y)∈H

[b]
∨

χ∈u−1(ϕ′)

χ(y)
))
.

By the induction hypothesis we have, for every χ ∈ u−1(ϕ′), z ∈ var(u), that
χ(z) is a formula in ΦX,Y ; therefore

∨
χ∈u−1(ϕ′) χ(z) is a formula in ΦX,Y . Thus,

it suffices to show that ∀
x

b−→y∈H
b ∈ X ⇒ b ∈ Y and ∀

(x
c−9)∈H c ∈ Y ⇒ c ∈ X,

which follow directly from conditions (2a) and (2b) of Definition 15, respectively.
ut

Corollary 1 (Main Result). Let P be a complete TSS in the XY -simulation
format over the signature Σ. Then, for any term t ∈ T(Σ) and closed substitu-
tions σ, σ′ we have: ∀x∈var(t) σ(x) �X,Y σ′(x) =⇒ σ(t) �X,Y σ′(t).

Proof. It suffices to show that if σ(t) |= ϕ then σ′(t) |= ϕ, for all ϕ ∈ ΦX,Y .

σ(t) |= ϕ =⇒ ∃ψ∈t−1(ϕ)∩ΦX,Y
∀x∈var(t) σ(x) |= ψ(x) (Theorem 2 and 3)

=⇒ ∃ψ∈t−1(ϕ)∩ΦX,Y
∀x∈var(t) σ

′(x) |= ψ(x) (∵ ∀x∈var(t) σ(x) �X,Y σ′(x))

=⇒ σ′(t) |= ϕ (Theorem 2).

4 Applications

In this section, we review the different incarnations of XY -simulation relation
present in the literature and assert their pre-congruence property with respect
to some well-known operators from the field of process algebra. To start with,
through the following proposition, we establish a link between XY -similarity
and some other notions of behavioral pre-order and equivalence.



Proposition 1. Let (P,A,→) be an arbitrary LTS. Then, the following state-
ments hold:

1. Relation �A,A is the bisimilarity relation in the sense of [20].
2. Relation �A,∅ is the similarity relation in the sense of [18].
3. If X ⊆ A, then the relation �A,X is the partial bisimilarity relation in the

sense of [6].
4. If the set of actions are partitioned into two sets of may actions A♦ and

must actions A�, then the relation �A♦,A�
is the modal refinement relation

in the sense of [16].
5. If the set of actions are partitioned into two sets of input actions I and output

actions O, then the relation �O,I is the alternating similarity relation in the
sense of [4].

In the following subsection, we show how our rule format can be applied to
obtain compositionality results for various process calculi.

4.1 Partial Bisimulation

In [6], Baeten et al. used the partial bisimulation pre-order to define controlla-
bility of nondeterministic processes. (Controllability is a central notion in the
supervisory control theory.) To this end, they defined a basic sequential process
algebra BSP|(A↓, B) (for some fixed subset B ⊆ A and A↓ = A]{↓}2) and pro-
vided a ground-complete axiomatization of partial bisimulation pre-order. The
signature of process terms Σ in BSP|(A↓, B) is given below:

Σ = { (0, 0) , (1, 0) , (a., 1)a∈A , (+, 2) , (|, 2) } .

Constant 0, called inaction, denotes that no actions can be performed and can
only deadlock, whereas constant 1 denotes successful termination. The family of
unary operators a._ (for a ∈ A), called action prefix operator, expresses that
a process can initially perform a and then the argument process takes over. Bi-
nary operator _ + _, known as the alternative composition operator, specifies
the choice between two process terms. Lastly, the synchronization parallel com-
position is denoted by _|_ and specifies that the two arguments synchronize on
common actions. The formal semantics for each operator in Σ is given in Table 1
by means of a standard TSS that is in the ready simulation format.

By a quick inspection of the labels, we note that all rules in Table 1 are in the
A↓B-simulation format, the A↓∅-simulation format, and the A↓A↓-simulation
format. Therefore, we obtain the following (pre-)congruence results for free.

Corollary 2. Partial bisimilarity pre-order �A↓,B⊆ T (Σ) × T (Σ) is a pre-
congruence relation for all closed terms in process algebra BSP|(A↓, B). More-
over, similarity pre-order �A↓,∅ and bisimilarity equivalence �A↓,A↓ are also
pre-congruence and congruence relations, respectively, for all constructs of pro-
cess algebra BSP|(A↓, B).
2 We employ ↓ (by a coding proposed by Baeten and Verhoef in [7]) as a special action
label modeling successful termination.



Table 1. Operational rules of BSP|(A↓, B), where a ∈ A, a↓ ∈ A ∪ {↓}.

1
↓−→ 1 (1) a.x

a−→ x (2)
x

a↓−→ x′

x+ y
a↓−→ x′

(3)

y
a↓−→ y′

x+ y
a↓−→ y′

(4)
x

a↓−→ x′ y
a↓−→ y′

x|y
a↓−→ x′|y′

(5)

4.2 Modal Refinement

Next, we consider the framework of modal specifications [15, 16]. Let Act be the
set of action labels ranged over by a,b, · · · . Construct the set of may and must
actions as: A♦ = Act×{♦} and A� = Act×{�}. We write a♦ and a� to denote
the elements (a,♦) ∈ A♦ and (a,�) ∈ A�, respectively. Let A = A♦ ∪ A� and
consider the following signature:

Σm = { (0, 0) , (a., 1)a∈A , (+, 2) , (|, 2) , (∨, 2) , (∧, 2) } .

The formal semantics of the operators in Σ ∩Σm remains the same in this
new setting, whereas the semantics of conjunction and disjunction is given by
the rules in Table 2.

Table 2. Operational rules for ∨ and ∧, taken from [15]

x
a♦−−→ x′

x ∨ y
a♦−−→ x′

(6)
y

a♦−−→ y′

x ∨ y
a♦−−→ y′

(7)
x

a�−−→ x′ y
a�−−→ y′

x ∨ y
a�−−→ x′ ∨ y′

(8)

x
a�−−→ x′

x ∧ y
a�−−→ x′

(9)
y

a�−−→ y′

x ∧ y
a�−−→ y′

(10)
x

a♦−−→ x′ y
a♦−−→ y′

x ∧ y
a♦−−→ x′ ∧ y′

(11)

Note that the process terms induced by our operational rules are not ad-
missible (consistent) in the sense of [16], i.e., the set of must transitions are not
necessary included in the set of may transitions. In essence, the transition system
induced by our algebra corresponds to the mixed transition system, where the
consistency assumption is dropped.

By inspection we note that all the rules in Table 1 and Table 2 are in A♦A�-
simulation format. Therefore, we obtain the following pre-congruence result for
free.

Corollary 3. The modal refinement pre-order �A♦,A�
⊆ T (Σm)× T (Σm) is a

pre-congruence relation. Moreover, the A♦A�-simulation format subsumes the
static constructor format given by Larsen and Thomsen [16, Section 4].



Next consider the following modified operational rules of conjunction ∧′ taken
from [17]. Note that, in [17], the conjunction is defined between any two arbitrary
interface automata [12] and we interpret the input actions as must actions and
the output actions as may actions.

x
a�−−→ x′ y

a�−9
x ∧′ y a�−−→ x′

(9′)
y

a�−−→ y′ x
a�−9

x ∧′ y a�−−→ y′
(10′)

x
a�−−→ x′ y

a�−−→ y′

x ∧′ y a�−−→ x′ ∧′ y′
(11′)

x
a♦−−→ x′ y

a♦−−→ y′

x ∧′ y a♦−−→ x′ ∧′ y′
(11′′)

Clearly, rules (9′) and (10′) are not in the A♦A�-simulation format because they
violate condition (2b) of Definition 15. Next, by a counterexample, we show
that the modal refinement pre-order is not a pre-congruence for the modified
conjunction operator ∧′.

Example 1. Consider the following process terms: t = a�.b�.0, t′ = a�.c�.0,
and t̄ = t+t′. Clearly, t̄ �A♦,A�

t and t̄ �A♦,A�
t′. However, t̄∧′ t̄ 6�A♦,A�

t∧′ t′.

5 Adequacy of XY -simulation Format

In this section, with the help of the following counterexamples, we motivate why
the conditions of XY -simulation format are essential for the pre-congruence
result. In particular, we show how dropping each of the conditions is sufficient
for breaking pre-congruence.

Example 2. Consider the synchronous parallel composition parameterized with
a partial function γ : A × A → A (called as communication function [5]) such
that rule 5 is substituted by the following rules:

x
a−→ x′ y

b−→ y′ γ(a, b) is defined

x|γy
γ(a,b)−−−−→ x′|γy′

(5′)
x
↓−→ x′ y

↓−→ y′

x|γy
↓−→ x′|γy′

(5′′).

Let A = {a, b} and the communication function γ be defined as: γ(b, b) = a and
undefined otherwise. Clearly, the inequation b.0 �{a},{b} a.0 holds; however,
b.0|γb.0 6�{a},{b} a.0|γa.0. We note that rule 5 of |γ violates Definition 15(1a).
Similarly, by defining a communication function γ′ as γ(a, a) = b and undefined
otherwise, we can see that b.0|γ′b.0 6�{a},{b} a.0|γ′a.0. Furthermore, we now note
that rule 5 of |γ′ violates Definition 15(2a).

Example 3. This example concerns negative premises. Consider the unary op-
erator θ (called the priority operator) from TCP [5], which also comes with a
partial ordering < on the set of actions A. Intuitively, the priority operator can
execute an a-transition if the operand can execute an a-transition and no action
with priority over a can be executed.



x
a−→ x′ x

b−9 for all b with a < b

θ(x)
a−→ θ(x′)

(12)

Clearly, the above rule is in the ready simulation format. Let A = {a, b} with
a < b and consider the process terms a.0, a.0 + b.0. It holds that a.0 �A,∅
a.0 + b.0; however, θ(a.0) 6�A,∅ θ(a.0 + b.0). We note that rule 12 of θ violates
Definition 15(1b). Furthermore, since �∅,X=�−1

X,∅, the above counterexample
also highlights the violation of Definition 15(2b).

6 Conclusions

In this paper, we proposed a pre-congruence rule format for XY -simulation. The
rule format guarantees that once the SOS rules of a given language satisfy certain
syntactic conditions, then XY -simulation is pre-congruence for the constructs of
the language. We showed that the format is applicable to obtain compositionality
results for different behavioral pre-orders and for different process calculi. We
also showed that dropping each of the syntactic conditions imposed by the rule
format can jeopardize compositionality.

We intend to exploit the results of this paper in order to obtain a rule format
for input-output conformance (ioco) testing [22], which is a behavioral pre-order
widely used as a basis for model-based testing. This will generalize the earlier
compositionality results reported in [8], which only address a particular synchro-
nization operator and the hiding (abstraction) operator.
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A Proof of Lemma 4

Proof. Assume that a TSS is in theXY -simulation format and consider a P ∈ P̄ ;
we prove by induction on the depth of the irredundant proof for P . The base
case, where the irredundant proof has depth zero, can be split into two cases:

– Either P is of the form
t

a−→t′
; then, the lemma follows immediately, since

H is the empty set and hence, it satisfies the conditions of Definition 15
vacuously.

– Or P is of the form x
a−→y

x
a−→y

; then, a and action(α) in Definition 15 coincide
and since the only premise is a positive literal, the lemma holds.

For the induction step, consider the case where P has an irredundant proof
of depth n+1, and assume that for all P ′ with shallower irredundant proofs, the

lemma holds. Assume that P is of the form {x
bi−→yi|i∈Ix∧x∈var(t)}∪{x

cj−9|j∈Jx∧x∈var(t)}
t

a−→u
.

Without loss of generality, we assume that a ∈ X and it remains to show that
for each i ∈ Ix, bi ∈ X and for each j ∈ Jx, cj ∈ Y .

Since the proof tree has a depth of at least 2, the root of proof tree is labelled
t
a−→ u and the non-empty set of nodes above the root are labeled with formulae

in a set H such that H

t
a−→u

is an instance of a deduction rule H′

t′
a−→u′

in the TSS
with substitution σ applied to it, i.e., σ(t′) = t, σ(u′) = u, and σ(H ′) = H.
Consider an arbitrary literal α among the premises of P ; we distinguish the
following two cases based on whether α is positive or negative:

– Positive: Consider an arbitrary i ∈ Ix and α = x
b−→i yi among the premises

of P ; we distinguish the following cases based on the position of the node
labeled α in the proof tree for P (note that because of the form of α, no
node appears above the node(s) which is (are) labeled with α):
• Either α appears as the label of a node just above the root (i.e., in a

node of depth 2); in this case, α = σ(α′), for some α′ ∈ H ′ which if of
form x′

bi−→ y′i for some variables x′i ∈ var(t′) and y′i. It follows from the
fact that H′

t′
a−→u′

is in the TSS and that the TSS is in the XY -simulation
format that bi ∈ X, which was to be shown.

• Or α only appears as the label of a node with depth 3 or more. Consider
a premise β ∈ H such that α appears as a label of a node above β. Note
that β has to be a positive literal (since negative literals are necessarily
among the hypotheses); moreover, since the deduction rule used to in-
stantiate the first step of the proof is in the XY -simulation format, we
have that action(β) ∈ X. The sub-tree rooted in β provides an irredun-
dant proof for H′′

β , where H ′′ is the set of all labels of the nodes in the
sub-tree that do not have any other node above them. Hence, we have
that α ∈ H ′′ and by the induction hypothesis, given action(β) ∈ X, we
have that bi ∈ X, which was to be shown.



– Negative: Consider an arbitrary j ∈ Jx and α = x 6 c−→j among the premises
of P ; similar to the previous case, we consider a node labeled α in the proof
tree and distinguish two cases based on the position of the node; from an
identical reasoning as to the above given two items it follows that cj ∈ Y .


