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With the increasing utilization of Machine Learning (ML) software in critical domains such as employee hiring,
college admission, and credit evaluation, ensuring fairness in the decision-making processes of underlying
models has emerged as a paramount ethical concern. Nonetheless, existing methods for rectifying fairness
issues can hardly strike a consistent trade-off between performance and fairness across diverse tasks and
algorithms. Informed by the principles of counterfactual inference, this paper introduces MirrorFair, an
innovative adaptive ensemble approach designed to mitigate fairness concerns. MirrorFair initially constructs
a counterfactual dataset derived from the original data, training two distinct models—one on the original
dataset and the other on the counterfactual dataset. Subsequently, MirrorFair adaptively combines these model
predictions to generate fairer final decisions.

We conduct an extensive evaluation of MirrorFair and compare it with 15 existing methods across a diverse
range of decision-making scenarios. Our findings reveal that MirrorFair outperforms all the baselines in every
measurement (i.e., fairness improvement, performance preservation, and trade-off metrics). Specifically, in 93%
of cases, MirrorFair surpasses the fairness and performance trade-off baseline proposed by the benchmarking
tool Fairea, whereas the state-of-the-art method achieves this in only 88% of cases. Furthermore, MirrorFair
consistently demonstrates its superiority across various tasks and algorithms, ranking first in balancing model
performance and fairness in 83% of scenarios. To foster replicability and future research, we have made our
code, data, and results openly accessible to the research community.

CCS Concepts: • Software and its engineering→ Software creation and management; • Computing
methodologies→ Machine learning.
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1 INTRODUCTION
Discrimination in machine learning software has been widely documented in various domains, such
as finance [1, 17], healthcare [3, 16], and criminal justice [4, 19]. For instance, some auto-recruitment
tools have been found to discriminate against women and minorities [16, 23], perpetuating existing
biases and inequalities. This highlights the urgent need for fairness research. As software serves
as the carrier of AI models and plays a significant role in the development of AI [7], addressing
fairness bugs in ML software has become a pressing issue that requires attention from both Software
Engineering and Machine Learning communities [19, 21, 25, 60, 61].

Previous research [34, 49, 60, 61] has shown that data bias can contribute significantly to fairness
bugs in machine learning software. If the training data contains historical or other types of bias,
the ML models may learn or even exacerbate such bias, resulting in unintended consequences such
as discrimination against certain groups [49]. To address this issue, various fairness bug-fixing
methods have been proposed by the ML and SE communities, including sample reweighting [35],
feature value modification [14], label value modification [14], removing biased data points [17],
and synthesizing minority group data points [16]. These methods attempt to modify the training
data by re-balancing the distribution of sensitive attributes and labels to mitigate model bias.
However, determining which data points to remove, synthesize, or mutate to improve fairness
remains challenging. Furthermore, there is a typical trade-off between model performance and
fairness[34], and many existing bias mitigation methods frequently lead to a considerable decline
in performance. Additionally, a comprehensive empirical investigation [22] revealed that the
effectiveness of existing methods varies considerably across different decision-making scenarios,
influenced by tasks, datasets, models, and sensitive attributes.
To alleviate the limitations of existing bias-mitigating methods, we propose MirrorFair, a

novel adaptive ensemble approach inspired by counterfactual inference [45, 46] and counterfactual
fairness [39] to rectify fairness issues. In particular, MirrorFair constructs a mirror dataset by
mutating sensitive attributes. It then trains two models from the original and mirror training sets,
respectively, and makes a decision by adaptively ensembling the predictions from the twomodels (as
shown in Figure 1). As an ensemble method, MirrorFair is novel in both what to ensemble and how
to ensemble compared to the existing method MAAT [19]. Specifically, MirrorFair ensembles the
original and Mirror models via counterfactual inference and adopts an adaptive ensemble strategy.
On the contrary, MAAT ensembles models that are optimized for different objectives: fairness and
ML performance, and simply ensembles by getting the average of two models’ predictions.

To evaluate MirrorFair, we conduct a large-scale experiment using four different machine learn-
ing algorithms, including three classical algorithms and a deep neural network, on five benchmark
datasets and 11 tasks. We report the effectiveness and applicability of MirrorFair across various
scenarios, compare MirrorFair with 15 state-of-the-art baseline methods from ML and SE communi-
ties using 15 fairness-performance metric combinations (five performance metrics × three fairness
metrics), and study the influence of ensemble strategies.
The results show that MirrorFair surpasses the Fairea Baseline in 93%/92% of scenarios with

single/multiple sensitive attributes, while the state-of-the-art achieves only 88%/87%. Moreover,
MirrorFair demonstrates broader superiority across various tasks and algorithms. In 83% of scenarios,
it ranks first in model performance-fairness trade-off, while the state-of-the-art method achieves
this in only 8% of cases in our study. To summarize, this paper makes the following contributions:
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• We propose MirrorFair, a novel fairness improvement approach inspired by counterfactual
fairness. MirrorFair demonstrates superior performance in mitigating bias related to single
or multiple attributes across a wide range of tasks and algorithms.
• We empirically investigate the diverse impacts of flipping sensitive attribute values for all data
instances across various decision-making scenarios. Additionally, we introduce an adaptive
ensemble strategy to optimize the effectiveness of the ensemble method.
• We present a comprehensive evaluation of MirrorFair, comparing it with 14 state-of-the-art
methods. Furthermore, we have made our code and experimental results publicly available,
which facilitates the replication of our approach and the assessment of new bias-mitigation
methods by fellow researchers [6].

In the remainder of this paper, we provide an overview of the background and related work in
Section 2, followed by a description of the proposed MirrorFair approach in Section 3. Section 4
and Section 5 present the experimental evaluation and results, including the experimental design
and a comparison with state-of-the-art bias-mitigating methods. We then discuss the findings and
implications of the study in Section 6. Finally, we conclude the paper in Section 7.

2 BACKGROUND AND RELATEDWORK
In this section, we introduce the background and previous research in this field.

2.1 Background
Fairness has emerged as a pressing concern in the Software Engineering (SE) domain, particularly
as an increasing number of software applications incorporate machine learning models to enhance
or fortify their functionality [17]. However, a significant body of research [60, 61] highlights that
the datasets employed for training ML software often contain users’ sensitive attributes. Sensitive
attributes, synonymous with “sensitive features” and “protected attributes” in this paper, refer to
individual characteristics such as gender, race, or age that may give rise to discrimination, unequal
treatment, or limited opportunities [16, 19]. In machine learning classification tasks, models use
provided features to make predictions or decisions [41]. However, when sensitive attributes are
correlated with these predictions, these models can exhibit bias, leading to issues of group fairness
where minority groups (e.g., based on gender, race, or nationality) are treated disparately [61].
Consequently, developing fair ML software represents not only a crucial ethical responsibility for
engineers but also a vital prerequisite for achieving trustworthy ML software [22]. In this paper,
we align with previous work [21] and focus on repairing group fairness issues.

2.2 Related Work
The growing use of machine learning software in domains such as education, healthcare, and
finance has elevated fairness concerns in both computer science and social science [19, 49, 61]. In
the software engineering community, there have been dedicated workshops or tracks at recent top
conferences such as ICSE, ASE, and FSE to explore software fairness. Moreover, leading technology
companies have established independent teams to seek solutions for providing fair and equitable
AI services [9, 10, 40].

Source of bias: An imbalanced distribution of features and labels in training data can be a
significant source of bias in machine learning [16, 21, 61]. Studies have shown that when certain
groups are underrepresented in the training data, the resulting model may discriminate against
those groups and produce unfair predictions [16]. Additionally, even if a sensitive attribute is
removed from the training data, some non-sensitive attributes can act as proxies for sensitive
attributes, leading to indirectly biased predictions [24, 30].
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Fairness testing: Given that data and model bias are common in machine learning, there is a
need for fairness testing to identify and address these issues [61]. Chen et al. [21] discuss the concept
of fairness testing and clarify fairness bugs, which can lead to discriminatory outcomes. Zliobaite
et al. [63] provide a comprehensive taxonomy and comparison of discrimination measurement and
offer practical guidance on measuring indirect bias, which is particularly relevant for addressing
discrimination caused by seemingly neutral rules or standards.

Fairness bug fixing: Recently, various fairness bug-fixing (also called bias-mitigation) methods
have been proposed by different research communities. Zhang et al. [60] conduct an empirical study
on five public benchmark datasets and four fairness metrics to examine the impact of feature sets
and data sizes on model fairness. The study suggests that expanding the feature set can significantly
improve fairness while increasing the amount of data has limited effect on mitigating model bias.
Pessach and Zhang et al. [21, 49, 61] conducted comprehensive investigations of the working
mechanisms of existing methods, which can be categorized into pre-processing, in-processing, and
post-processing methods. Pre-processing methods focus on mitigating data bias for a fairer model,
in-processing methods improve fairness during the training process, and post-processing methods
correct the biased prediction by modifying the prediction result directly.

In the SE community, Fairway [17] mitigates bias by removing biased data points through a pre-
training-testing operation. Fair-SMOTE [16] counteracts the removal of data points by synthesizing
new data points using SMOTE [18], a data augmentation technique. Chen et al. [19] introduced
MAAT, a method that ensembles models optimized for fairness and ML performance by getting
the average of the two models’ predictions as the final prediction. Gohar et al. [29] investigated
the use of voting and bagging in ensemble learning to promote fairer predictions. Peng et al. [48]
proposed FairMask, which trains extrapolation models to predict a sensitive attribute value vector
and replace the original sensitive attribute values to enhance fairness. As deep neural networks
(DNNs) are increasingly deployed in the software industry, many DNNs repairing techniques are
proposed to fix the fairness bugs in DNNs [11, 28, 40, 42, 44, 55]. Among these, CARE [55] emerges
as a notable causality-based approach that adjusts the weights of neurons to fix fairness issues
within neural networks. Moreover, given the variety of available bias-mitigation methods, Zhang
et al. [62] devised a technique to assist researchers and developers in selecting the most suitable
bias-mitigation strategy for their specific DNNs projects.

As fairness is just one of the critical properties of machine learning software, an ideal machine
learningmodel should also be accurate, efficient, and privacy-friendly. Therefore, improving fairness
should be balanced with other properties simultaneously. However, measuring the trade-off between
fairness and other properties, such as performance, can be challenging [61]. To address this, Hort
et al. propose the Fairea Baseline [33], which categorizes the effectiveness of trade-offs into five
levels with fairness and performance changes after applying bias-mitigating methods. Chen et al.
[22] utilize Fairea Baseline to conduct a large-scale empirical study on 17 existing bias-mitigating
methods in eight benchmark classification tasks with multiple performance and fairness metrics.
The results show that no existing method dominates others in all the scenarios (e.g., different tasks
or machine learning algorithms). Therefore, researchers and practitioners need to carefully select
the most suitable method based on their expertise and specific decision-making scenarios.

3 METHODOLOGY
In this section, we describe MirrorFair in detail.

3.1 Overview of MirrorFair
Drawing inspiration from both counterfactual inference and counterfactual fairness, we propose
MirrorFair. MirrorFair adaptively counteracts the unfairness and generates fairer predictions by
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Fig. 1. Workflow of MirrorFair.

ensembling the original biased model and a mirror model trained from a pseudo mirror dataset.
Figure 1 presents the workflow of MirrorFair. It begins with constructing a pseudo mirror dataset
from the original training dataset and then training a mirror model from the mirror dataset. The
mirror dataset is constructed by mutating (i.e., flipping) the protected attributes. We call the
predictions from the original model original predictions and the predictions from the mirror model
counterfactual predictions. MirrorFair then adaptively ensembles these two types of predictions and
outputs the ensembled decisions.

3.2 Counterfactual Inference
Counterfactuals [45] are hypothetical scenarios proposed for events or situations that have already
occurred. For example, “Bell had not invented the telephone” is a counterfactual assumption for a
past event. Although not based on reality, contemplating these scenarios can help people better
understand historical or real-world events.

Counterfactual inference [45, 46] is a reasoning method that involves inferring possibilities based
on hypothetical scenarios. It often entails proposing a counterfactual scenario, such as “What
would have happened if Bell had not invented the telephone?” and then exploring the potential
outcomes and consequences by inferring from this scenario. Next, we introduce the steps of
counterfactual inference. Given a known evidence𝑊 and causal model𝑀 (𝑈 ,𝑉 , 𝐹 ), where𝑈 is a set
of latent background variables, 𝑉 is a set of observable variables, 𝐹 is a set of functions {𝑓1, . . . , 𝑓𝑛},
counterfactual inference is the computation of probabilities 𝑃 (𝑌𝑍←𝑧 (𝑈 ) |𝑊 = 𝑤), where𝑊 , 𝑍
and 𝑌 are subsets of 𝑉 . Inference proceeds in three steps: (1) Abduction: for a given prior on 𝑈 ,
compute the posterior distribution of 𝑈 given the evidence𝑊 = 𝑤 ; (2) Action: Substitute the
equations for 𝑍 with the interventional values 𝑧, resulting in the modified set of equations 𝐹𝑧 ; (3)
Prediction: compute the implied distribution on the remaining elements of 𝑉 using 𝐹𝑧 and the
posterior 𝑃 (𝑈 |𝑊 = 𝑤).
Counterfactual inference is commonly used to address causal inference problems, such as esti-

mating the causal effect of an event, in fields such as statistics and machine learning to estimate the
effect of a potential action [39]. Counterfactual fairness is a practice of counterfactual inference,
which requires that the change in the sensitive attribute value should not change the original
decision in a decision-making task [39]. Inspired by counterfactual inference and counterfactual
fairness, we make a counterfactual hypothesis to mitigate bias by changing the contribution of
sensitive attributes to model prediction. Instead of conducting all three steps of counterfactual
inference, we only construct the counterfactuals, which we implement an experiment upon to
explore the bias effect of sensitive attributes and improve the fairness of machine learning software.
We describe notions of MirrorFair and how to construct counterfactuals in the following sections.
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3.3 Mirroring Processing
The construction of counterfactuals involves modifying the value of the sensitive attribute while
maintaining the values of other features. When dealing with multi-valued sensitive attributes such
as those found in the “race” category, which includes values like “White”, “Asian”, and “Eskimo”,
determining which value to target for modification poses a challenge. To support fairness research,
IBM introduced AIF360 [8], offering comprehensive APIs for accessing processed benchmark
datasets and computing fairness metrics. AIF360 simplifies sensitive attributes into binary form;
for instance, the “race” attribute in the Adult dataset is transformed to “White” and “non-White”.
Although this simplification might obscure distinctions between sub-groups, it considerably eases
the complexity of modeling fairness issues and facilitates the construction of counterfactuals. Thus,
in line with previous work [19, 22, 48], we use AIF360 to simplify multi-valued sensitive attributes
into binary form for our approach implementation. This allows us to create counterfactuals — a
virtual training dataset where the sensitive attribute is inverted from the original dataset, but all
other feature values remain unchanged. The counterfactual is constructed by flipping the sensitive
attribute values (e.g., changing “White” to “non-White”) while keeping the values of other features
constant. An illustration of mirroring an instance for the Adult-Race task is provided below.

𝑥 (𝑊ℎ𝑖𝑡𝑒, 𝑓1, 𝑓2, 𝑓3, ...) −→ 𝑥 ′ (𝑛𝑜𝑛-𝑊ℎ𝑖𝑡𝑒, 𝑓1, 𝑓2, 𝑓3, ...)

Where 𝑥 denotes an original data instance; 𝑥 ′ denotes such instance after mirroring processing;
𝑊ℎ𝑖𝑡𝑒 and 𝑛𝑜𝑛-𝑊ℎ𝑖𝑡𝑒 denote two values of race attribute; 𝑓1, 𝑓2, 𝑓3 denote values of the rest features.
We refer to the operation of flipping the sensitive attribute to construct a new virtual training dataset
as themirroring processing, which resembles Plane Mirror Imaging (PMI) [27] that produces
an upright, same-sized, and laterally inverted virtual image of an object. The new counterfactual
training dataset is called the mirror dataset, the model trained on the mirror dataset is called
the mirror model, and the predictions from mirror mode are called mirror prediction as well as
counterfactual prediction.

3.4 Adaptive Ensemble Strategy
Prior work demonstrates data bias makes a significant contribution to the model discrimination
[16, 17]. Zhang et al. propose the Causal Explanation Formula [59] and point out that the data
bias consists of the counterfactual direct bias effect (Ctf-DE), counterfactual indirect bias effect
(Ctf-IE) and counterfactual spurious bias effect (Ctf-SE) caused by sensitive attributes, mediators of
sensitive attributes and the confounders respectively. The total variation, counterfactual direct bias
effect, counterfactual indirect bias effect, and counterfactual spurious bias effect obey the following
relationship:

𝑇𝑉𝑥0,𝑥1 (𝑦) = 𝐷𝐸𝑥0,𝑥1 (𝑦 |𝑥0) − 𝐼𝐸𝑥0,𝑥1 (𝑦 |𝑥0) − 𝑆𝐸𝑥0,𝑥1 (𝑦 |𝑥0) (1)

where 𝑇𝑉𝑥0,𝑥1 (𝑦) denotes the total variation measuring the demographic parity, which is a popular
fairness metric adopted by many previous fairness research [19, 59]. 𝐷𝐸𝑥0,𝑥1 (𝑦 |𝑥0) denotes the
causal effect difference between the sensitive attribute values 𝑥0 and 𝑥1; similarly,𝐼𝐸𝑥0,𝑥1 (𝑦 |𝑥0)
and 𝑆𝐸𝑥0,𝑥1 (𝑦 |𝑥0) denote the causal effect difference between the different mediator values and
confounders values.

Chen et al. [21] demonstrate the effectiveness of enhancing fairness via modifying the sensitive
attribute value distribution. The causal explanation formula enhances the reasonability and explain-
ability of such techniques, and the formula further points out the efficacy of improving fairness
by modifying sensitive attributes can be affected by the mediators and confounders while simply
changing sensitive attributes can hardly keep high efficacy across all decision-making scenarios
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(decision tasks × classifiers). In Section 5, we present the empirical investigation finding that “flip-
ping” (mirroring processing) sensitive attribute values make different impacts on model prediction
across various decision-making scenarios. To handle this situation, we propose a taxonomy to
categorize different decision-making scenarios and design adaptive ensemble strategies to meet the
requirement of enhancing fairness across different decision-making scenarios.

3.4.1 Taxonomy of Decision-making Scenarios. For clarity in this paper, we define the event of
employing an algorithm to accomplish a decision-making task as a “decision-making scenario” (e.g.,
using LR for the Compas-Sex task). Given a default model𝑀𝑑𝑒𝑓 trained from the original dataset, a
mirror model𝑀𝑚𝑖𝑟 trained from the mirror dataset, a testing dataset 𝐷𝑡𝑒𝑠𝑡 , and a decision-making
scenario, the difference of two models on the given testing instance can be calculated as:

𝐷𝐼𝐹𝑑𝐴=𝑎
= 𝑃𝑑𝑒𝑓 (𝑌 = 𝑦 |𝑑𝐴=𝑎) − 𝑃𝑚𝑖𝑟 (𝑌 = 𝑦 |𝑑𝐴=𝑎) (2)

where 𝑌 denotes the predictive output label (e.g., income), 𝑦 denotes a label value (e.g., high income
or low income); 𝐴 denotes the sensitive attribute (e.g., sex); 𝑎 denotes a sensitive attributes value
(e.g., female or male); 𝐷𝐼𝐹𝑑𝐴=𝑎

denotes the probability difference between the two models on the
same test instance and same predictive label; 𝑃𝑑𝑒𝑓 (𝑌 = 𝑦 |𝑑𝐴=𝑎) denotes the probability of default
model; 𝑃𝑚𝑖𝑟 (𝑌 = 𝑦 |𝑑𝐴=𝑎) denotes the probability of mirror model.

Based on the characteristics of 𝐷𝐼𝐹 near the decision boundary, we classify the decision-making
tasks into three categories: mirror-insensitive, mirror-regular, and mirror-irregular. To elucidate our
classification scheme, we employ the mathematical notion of a “neighborhood”. A neighborhood
of a point X is defined as the set N𝛿 (X), comprising all points 𝑦 for which 𝑑 (𝑥,𝑦) < 𝛿 , where
𝛿 denotes the radius of the neighborhood, i.e., N𝛿 (X) := {𝑦 ∈ 𝑋 : 𝑑 (𝑥,𝑦) < 𝛿} [52]. With the
concept of neighborhood, we categorize the three scenarios as follows:

𝑆𝑡𝑦𝑝𝑒 =


mirror-insensitive if ∀𝑑𝐴=𝑎 ∈ 𝐷𝑡𝑒𝑠𝑡 , |𝐷𝐼𝐹𝑑𝐴=𝑎

| ∈ N𝛿 (0)
mirror-regular if ∀𝑑𝐴=𝑎 ∈ 𝐷𝑡𝑒𝑠𝑡 , |𝐷𝐼𝐹𝑑𝐴=𝑎

| ∈ N𝛿 (𝑐), 𝑐 ≠ 0
mirror-irregular if ∃𝑑𝐴=𝑎 ∈ 𝐷𝑡𝑒𝑠𝑡 , |𝐷𝐼𝐹𝑑𝐴=𝑎

| ∉ N𝛿 (𝑐)
where 𝑆𝑡𝑦𝑝𝑒 denotes decision-making scenario type,𝐷𝑡𝑒𝑠𝑡 denotes the testing dataset,𝑑𝐴=𝑎 denotes a
testing instance,N(0) andN(𝑐) denote the neighborhood of 0 and 𝑐 , where 𝑐 represents a constant
value. In this paper, we set the radius 𝛿 to 0.05, a setting that distinctly differentiates the three types
of scenarios. In the following, we introduce each decision-making scenario type in detail. Actual
examples of each decision-making scenario and further analysis can be found in Section 5.4.1.
Mirror-insensitive scenario: This scenario happens when the default model makes almost

identical predictions with the mirror model. This means that the mirroring processing has a tiny
effect on the prediction of such scenarios. In other words, this type of decision-making is insensitive
to mirroring processing. Therefore, we regard such a scenario as a mirror-insensitive scenario.
Mirror-regular scenario: This scenario refers to the case where the default model makes

different predictions from the mirror model, but the absolute probability difference between the
two models is regular and close to a constant value. That is, mirroring processing has a significant
and regular effect on each prediction of such scenarios. Therefore, we regard such a scenario as a
mirror-regular scenario.

Mirror-irregular scenario: This scenario refers to the case that the default model has different
predictions from the mirror model, and the absolute probability difference between the two models
is irregular for different test instances. The mirroring processing has a significant, irregular, and
uncertain effect on the prediction of such scenarios. Therefore, we regard it as a mirror-irregular
scenario.
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3.4.2 Ensemble Strategies. To adaptively handle different decision-making scenarios, we propose
two strategies E-Mean and E-Max to ensemble the prediction of the default model and mirror
model to repair the fairness issue in machine learning software. Regarding mirror-regular scenarios,
in which mirroring processing makes a significant and regular contribution to model predictions,
we ensemble the two predictions via weighted averaging. The final output probability vector with
the E-Mean strategy can be calculated by:

𝑃𝑓 𝑖𝑛𝑎𝑙 =

[
𝑃𝑑𝑒𝑓 (𝑌 = 0) + 𝑃𝑚𝑖𝑟 (𝑌 = 0)

2
,
𝑃𝑑𝑒𝑓 (𝑌 = 1) + 𝑃𝑚𝑖𝑟 (𝑌 = 1)

2

]
(3)

where 𝑃𝑑𝑒𝑓 (𝑌 = 0) denotes the output probability of class “0” by default model; 𝑃𝑑𝑒𝑓 (𝑌 = 1) denotes
the output probability of class “1” by default model; 𝑃𝑚𝑖𝑟 (𝑌 = 0) denotes the output probability of
class “0” by mirror model; 𝑃𝑚𝑖𝑟 (𝑌 = 0) denotes the output probability of class “1” by mirror model.
In terms of other decision-making scenarios, we repair the fairness issue in machine learning

software by maximizing the favorable label probability of the unprivileged group near the decision
boundary (0.45 < 𝑃 (𝑌 = 1) < 0.55), because the previous work [36] points out most discrimination
happens near the decision boundary. Maximizing the favorable label probability for the unprivileged
instances within the boundary can calibrate some of the final predictions for unprivileged instances
that deserve a favorable label, thereby improving fairness [19, 36]. Regarding the mirror-insensitive
scenario, if the test instance belongs to an unprivileged group and the output class probability is
near the decision boundary, we post-process the output to be a favorable label while the prediction
out of the boundary still follows the E-Mean strategy. For the mirror-irregular scenario, if the test
instance belongs to an unprivileged group and the output class probability is also near the decision
boundary, the final output probability vector with the E-Max strategy can be calculated by:

𝑃𝑓 𝑖𝑛𝑎𝑙 =
[
𝑚𝑖𝑛(𝑃𝑑𝑒𝑓 (𝑌 = 0), 𝑃𝑚𝑖𝑟 (𝑌 = 0)),𝑚𝑎𝑥 (𝑃𝑑𝑒𝑓 (𝑌 = 1), 𝑃𝑚𝑖𝑟 (𝑌 = 1))

]
(4)

and the prediction out of the boundary still follows the weighted averaging ensemble strategy.

3.5 Protection of Multiple Sensitive Attributes
In machine learning prediction tasks, the feature set of the data can contain more than one sensitive
feature that needs to be protected. For instance, there are sex and race sensitive features in both
the Adult dataset and the Compas dataset. Covering multiple sensitive features protection is an
important evaluation dimension for assessing a bias-mitigating approach. As an ensemble approach,
MirrorFair combines the prediction of the default and mirror model to improve machine learning
fairness. MirrorFair is uniquely advantageous for protecting multiple sensitive attributes due to its
flexibility in combining strategies. In the case of protecting sex and race attributes in the Adult
Census Income task, there are two deployment strategies that can improve fairness:
• Strategy 1 (MirrorMulti-S1): Select both sex and race as mirror features simultaneously and
create a sex-race mirror training dataset by reversing both sex and race values in the original
training dataset. Then, combine the predictions of both models as if protecting a single
sensitive feature;
• Strategy 2 (MirrorMulti-S2): Select sex and race as the mirror features and produce separate
sex mirror and race mirror training datasets. Then, combine the predictions from the default
model, sex-mirror model, and race-mirror model to generate the final prediction. This strategy
provides more flexibility in controlling the weight of each sensitive feature in the final
prediction and allows for different weight settings for each feature to achieve a more fine-
grained fairness level.

In Section 4, we evaluate the effectiveness of MirrorFair in balancing model performance and
fairness in protecting single and multiple sensitive feature scenarios.
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4 EXPERIMENTAL DESIGN
Here, we introduce our research questions and the experimental design for evaluating MirrorFair.

4.1 ResearchQuestions
We evaluate MirrorFair by exploring the following research questions.
• RQ1: Efficacy of MirrorFair: To what extent can MirrorFair achieve mitigating model bias
without losing too much performance? We conduct a comprehensive comparison between
MirrorFair and existing bias-mitigating methods across different decision-making scenarios.
• RQ2: Applicability and versatility: To what extent can MirrorFair achieve the consistency
in maintaining the efficacy? We design two experimental settings to explore the applicability
and versatility of MirrorFair across different tasks and algorithms and compare MirrorFair
with state-of-the-art methods.
• RQ3: Effectiveness in mitigating multiple attributes biases: To what extent can Mir-
rorFair mitigate multiple sensitive attribute biases simultaneously? This research question
compares the effectiveness of MirrorFair with that of existing methods in multiple sensitive
attribute scenarios.
• RQ4: Impact of mirroring processing and effectiveness of adaptive strategies: What
impact does the mirroring processing have on model predictions, and how effectively can
adaptive ensemble strategies achieve? In this research question, we conduct an empirical
investigation across various decision tasks and machine learning algorithms to explore
the diverse effects of mirroring processing on model predictions. Subsequently, we present
the results of adaptive ensemble strategies alongside those of fixed ensemble strategies to
highlight the advantages of adaptive ensemble strategies.

4.2 Benchmark Datasets and Tasks
In order to ensure the reliability of the evaluation, we align our experimental setups with the
recent empirical investigation [22] and adopt the same benchmarking dataset and machine learning
algorithms to implement the experiments and comparison with existing bias mitigation approaches.
The five public benchmark datasets come from diverse domains, including the Adult Income dataset
[5] (a.k.a., Adult dataset), ProPublica Recidivism dataset [4] (a.k.a., Compas dataset), German Credit
dataset [1] (a.k.a., German dataset), Bank Marketing dataset [2] (a.k.a., Bank dataset), and Medical
Survey 2015 dataset [3] (a.k.a., Mep dataset). These datasets are commonly used in machine learning
fairness studies due to their relevance to individual benefits and opportunities such as college
admission and recruitment. Briefly, the Adult dataset contains information about individuals’
demographic, social, and economic factors to predict whether their income is above or below a
certain threshold. The Compas dataset contains information about individuals who were assessed
for their likelihood of committing future crimes. The German dataset contains information about
individuals’ creditworthiness to predict whether they are likely to default on a loan. The Bank
dataset contains information about individuals’ financial attributes to predict whether they will
subscribe to a term deposit. Finally, the Mep dataset contains information about individuals’ health
behaviors and outcomes.

Notably, literature [19, 22, 33] points out that 90% of the fairness research does not use more than
three datasets, to address this, we adopt eleven fairness testing tasks in five datasets to evaluate the
effectiveness of MirrorFair and existing methods comprehensively. Tasks 1-8 are single attribute
tasks, where we mitigate a single sensitive attribute bias such as race or gender. Tasks 9-11 are
multip-attribute tasks, where we mitigate multiple sensitive attribute biases simultaneously. Table 1
provides the details of each task and the corresponding dataset used. To comprehensively evaluate
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Table 1. Benchmark datasets and tasks.

Task Protected attribute(s) Dataset Size Favourable label Majority label

1. Adult-sex Sex Adult 45,222 1 (income > 50k) 0 (75.2%)
2. Adult-race Race Adult 45,222 1 (income > 50k) 0 (75.2%)
3. Compas-sex Sex Compas 6,167 0 (no recidivism) 0 (54.5%)
4. Compas-race Race Compas 6,167 0 (no recidivism) 0 (54.5%)
5. German-sex Sex German 1,000 1 (good credit) 1 (70.0%)
6. German-age Age German 1,000 1 (good credit) 1 (70.0%)
7. Bank-age Age Bank 30,488 1 (subscriber) 0 (87.3%)
8. Mep-race Race Mep 15,830 1 (utilizer) 0 (82.8%)
9. Adult-sex-race Sex, Race Adult 45,222 1 (income > 50k) 0 (75.2%)
10. Compas-sex-race Sex, Race Compas 6,167 0 (no recidivism) 0 (54.5%)
11. German-sex-age Sex, Age German 1,000 1 (good credit) 1 (70.0%)

the effectiveness of the proposed methods, we adopt four classifiers, including logistic regression
(LR) [38], random forest (RF) [12], support vector machine (SVM) [32], and deep learning classifiers
(DNN) [41].

4.3 Metrics and Measurements
We follow previous research [19, 20, 22] using the most popular five performance metrics and three
fairness to measure the effectiveness of MirrorFair and existing methods by the state-of-the-art
fairness and performance measurement tool Fairea. Next, We describe the performance metrics,
fairness metrics, and Fairea we leveraged in this paper.

4.3.1 Performance Metrics. Precision and recall are significant metrics to evaluate machine learning
classifiers’ performance. Precision reflects the ability of the classifier to predict sample classes
correctly; recall reflects the ability of the classifier to find out each class completely. They are
calculated as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑐 = 𝑃𝑟 [𝑌 = 𝑐 |𝑌 = 𝑐] = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (5)

𝑅𝑒𝑐𝑎𝑙𝑙@𝑐 = 𝑃𝑟 [𝑌 = 𝑐 |𝑌 = 𝑐] = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (6)

where 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑐 denotes the precision on class 𝑐; 𝑅𝑒𝑐𝑎𝑙𝑙@𝑐 denotes the recall on class 𝑐; True
Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) denote numbers of
favorable samples predicted as favorable, unfavorable samples predicted as unfavorable, unfavorable
samples predicted as favorable, and favorable samples predicted as unfavorable, respectively. As
both precision and recall reflect a single dimension of the model’s performance, F1-score and
accuracy are widely adopted to evaluate the overall performance. They are calculated as follows:

𝐹1@𝑐 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑐 × 𝑅𝑒𝑐𝑎𝑙𝑙@𝑐

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑐 + 𝑅𝑒𝑐𝑎𝑙𝑙@𝑐
(7)

𝐴𝑐𝑐 = 𝑃𝑟 [𝑌 = 𝑌 ] = 𝑇𝑃 +𝑇𝑁
𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁 (8)

where 𝐹1@𝑐 denotes the F1-score on class 𝑐 . Additionally, as a model can easily obtain high Acc in
extremely biased datasets by making all predictions as majority label, Rodriguez et al. [53] propose
the Matthews Correlation Coefficient (MCC) metric, which is calculated as follows:

𝑀𝐶𝐶 =
𝑇𝑃 ×𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁√︁

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁 ) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁 )
(9)

In terms of precision, recall, and F1-score, We follow previous research using Macro-Precison,
Macro-Recall, and Macro-F1-score to represent such metrics among all classes.
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4.3.2 Fairness Metrics. There are various fairness metrics, according to different definitions. We
follow previous research [20, 22] leveraging the Statistical Parity Difference (SPD), Average Odds
Difference (AOD), and Equal Opportunity Difference (EOD) to measure the fairness of the machine
learning models, which are mitigated bias by MirrorFair or existing methods.

SPD reflects the difference between privileged and unprivileged groups predicted as good labels
by the models, which is calculated as follows:

𝑆𝑃𝐷 = 𝑃𝑟 [𝑌 = 1|𝐴 = 0] − 𝑃𝑟 [𝑌 = 1|𝐴 = 1] (10)
AOD reflects the difference between the false positive rate and the true positive rate of the

privileged and unprivileged groups, it is calculated as follows:

𝐴𝑂𝐷 =
1
2
( |𝑃𝑟 [𝑌 = 1|𝐴 = 0, 𝑌 = 0] − 𝑃𝑟 [𝑌 = 1|𝐴 = 1, 𝑌 = 0] |

+|𝑃𝑟 [𝑌 = 1|𝐴 = 0, 𝑌 = 1] − 𝑃𝑟 [𝑌 = 1|𝐴 = 1, 𝑌 = 1] |)
(11)

EOD reflects the difference between the privileged group and the unprivileged group in terms of
good labels predicted by the models, it is calculated as follows:

𝐸𝑂𝐷 = 𝑃𝑟 [𝑌 = 1|𝐴 = 0, 𝑌 = 1] − 𝑃𝑟 [𝑌 = 1|𝐴 = 1, 𝑌 = 1] (12)

where 𝑌 denotes the prediction of models, 𝑌 denotes the model label, 𝐴 demotes attribute, and 𝑃𝑟
denotes the proportion respectively.

Fig. 2. The performance and fairness trade-off effectiveness regions categorized by the Fairea baseline.

4.3.3 Fairea Baseline. Due to the variety of performance and fairness metrics in machine learning
models, evaluating a bias-mitigating method based on a single metric can be one-sided. To address
this issue, Hort et al. propose Fairea, a comprehensive trade-off baseline that balances both model
performance and fairness. As shown in Figure 2, Fairea Baseline categorizes the performance-bias
Cartesian coordinate system into five regions, including “win-win” (increasing both fairness and
performance), “lose-lose” (decreasing both fairness and performance), and “inverted” (increasing
performance but decreasing fairness). Fairea Baseline further divides cases that increase fairness
but decrease performance into “good trade-off” and “bad trade-off.” As recent studies [19, 22] have
adopted Fairea to evaluate the effectiveness of bias-mitigating methods, we align with them and
use Fairea with the same 15 (each fairness metric combining any performance metrics can generate
a trade-off baseline, three fairness × five performance metrics = 15 baseline) trade-off baselines to
evaluate the effectiveness of MirrorFair and existing methods.
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Table 2. Existing methods and description.

Method Type Venue/Journal Description

Optimized Pre-processing (OP) [14] Pre-processing NeurIPS Modify data features and labels.
Learning Fair Representation (LFR) [57] Pre-processing ICML Obfuscating information about sensitive attributes
Reweighting (RW) [35] Pre-processing KAIS Set different weights for samples in different groups.
Disparate Impact Remover (DIR) [26] Pre-processing SIGKDD Modify data feature values.
Fairway [17] Pre-processing ESEC/FSE Remove ambiguous data points.
Fair-SMOTE [16] Pre-processing ESEC/FSE Remove ambiguous data points and synthesize new data points.
FairMask [48] Pre-processing TSE Replace the sensitive attribute vector of testing data.
MAAT [19] Pre-Post-processing ESEC/FSE Ensemble prediction of fairness model and performance model.
Prejudice Remover (PR) [37] In-processing ECML-PKDD Add a fair regularization term to the learning objective.
Adversarial Debiasing (AD) [58] In-processing AAAI Reduce the contribution of protected attributes to prediction.
Meta Fair Classifier (MFC) [15] In-processing FAT Optimize classifier with fairness metrics.
CARE [50, 55] Post-processing ICSE Using causality analysis to modify neurons weights.
Reject Option Classification (ROC) [36] Post-processing ICDM Modify prediction near the threshold.
Equalized Odds Post-processing (EOP) [31] Post-processing NeurIPS Modify predictions to make the Odds Difference equal.
Calibrated Equalized Odds Post-processing (CEO) [51] Post-processing NeurIPS Modify predictions with calibrated probability.

4.4 Baseline Methods
To ensure the reliability of our experiments, we have carefully selected a set of state-of-the-art
methods from different communities as benchmark methods to compare with MirrorFair. Our
selection includes ten bias mitigation methods integrated into the AIF 360 toolbox [8], as well as five
advanced methods [16, 17, 19, 48, 55] proposed in software engineering. This large-scale comparison
exceeds the scale of some previous empirical studies [22]. Table 2 provides the names, sources,
types, and brief descriptions of each selected baseline method. We compare different methods
by checking their frequency of improving fairness, maintaining performance, and surpassing the
Fairea trade-off baseline.

4.5 Experimental Design
In this section, we provide the experimental details for replicating our work. To mitigate personal
bias, we used AIF360 [8], Scikit-learn [13, 47], and TensorFlow Keras [56] for implementing existing
methods, machine learning algorithms, and evaluation metrics. AIF360 is a fairness research and
testing tool developed by IBM that includes current state-of-the-art bias-mitigating methods and
all fairness metrics we leveraged. We performed large-scale experiments across various scenarios,
each replicated 50 times and taking the average as the final result to minimize random errors. We
use different random seeds to split the dataset into 70% training data and 30% testing data each
time in the experiment without involving cross-validation. All of these experimental and model
parameter settings align with previous research [19, 22], ensuring the soundness of experiments
and fairness of the comparison among MirrorFair and existing methods. All experiments were
carried out on a Linux server running Ubuntu 20.04 focal with 256 GB RAM, 3.7 GHz Intel Xeon
Gold 6238, Python 3.8.16, and TensorFlow 2.11.1.

5 RESULTS
This section presents the experimental results to answer our four research questions.

5.1 RQ1: Efficacy of MirrorFair
This RQ aims to assess the efficacy of MirrorFair and the existing methods in mitigating a single
sensitive attribute bias. To achieve this, we design two evaluation settings to explore the impact of
MirrorFair on model performance and fairness, as well as the priority of MirrorFair against the 15
existing methods. The evaluation is based on the results of 50 repetitions of each bias-mitigating
method in different decision-making scenarios (tasks × classification algorithms).

5.1.1 Impact of MirrorFair on Model Performance and Fairness. Table 3 presents the detailed
performance metrics (accuracy, recall, precision, and f1-score) and fairness metrics (SPD, AOD,
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Table 3. (RQ1) Detailed performance and fairness metrics of the models before and after applying MirrorFair.
“Default” means not applying any bias-mitigating method, and “MirrorFair” means applying MirrorFair to
mitigate bias. “(+)” means higher value of the metrics is better and “(-)” means lower value of the metrics is
better. Each metric value is the average of 50 times repetitions.

Task Method
LR SVM

Accuracy Recall Precision F1-Score SPD AOD EOD Accuracy Recall Precision F1-Score SPD AOD EOD
(+) (+) (+) (+) (-) (-) (-) (+) (+) (+) (+) (-) (-) (-)

Adult-Sex
Default 0.85 0.76 0.80 0.78 0.19 0.10 0.12 0.85 0.76 0.81 0.78 0.18 0.08 0.09
MirrorFair 0.84 0.74 0.81 0.76 0.11 0.04 0.05 0.84 0.74 0.81 0.76 0.11 0.05 0.07

Adult-Race Default 0.85 0.76 0.80 0.78 0.10 0.06 0.09 0.85 0.76 0.81 0.78 0.10 0.05 0.07
MirrorFair 0.85 0.76 0.80 0.78 0.07 0.02 0.02 0.85 0.76 0.81 0.78 0.07 0.02 0.02

Compas-Sex Default 0.67 0.66 0.67 0.66 0.28 0.25 0.20 0.66 0.66 0.66 0.66 0.26 0.24 0.18
MirrorFair 0.67 0.65 0.67 0.65 0.12 0.10 0.06 0.66 0.65 0.67 0.64 0.11 0.08 0.04

Compas-Race Default 0.67 0.66 0.67 0.66 0.18 0.16 0.11 0.66 0.66 0.66 0.66 0.17 0.15 0.10
MirrorFair 0.66 0.65 0.67 0.65 0.06 0.05 0.02 0.66 0.64 0.67 0.64 0.05 0.04 0.02

German-Sex Default 0.75 0.67 0.70 0.68 0.11 0.10 0.07 0.75 0.67 0.70 0.68 0.11 0.10 0.07
MirrorFair 0.74 0.65 0.69 0.66 0.05 0.08 0.04 0.74 0.63 0.70 0.64 0.05 0.08 0.04

German-Age Default 0.75 0.67 0.70 0.68 0.21 0.17 0.16 0.75 0.67 0.70 0.68 0.20 0.17 0.16
MirrorFair 0.74 0.67 0.70 0.68 0.05 0.07 0.05 0.75 0.64 0.71 0.65 0.05 0.10 0.05

Bank-Age Default 0.90 0.68 0.79 0.72 0.09 0.08 0.13 0.90 0.67 0.79 0.71 0.07 0.05 0.08
MirrorFair 0.90 0.69 0.79 0.73 0.05 0.03 0.04 0.90 0.70 0.79 0.73 0.05 0.03 0.04

Mep-Race
Default 0.86 0.68 0.78 0.71 0.12 0.11 0.18 0.86 0.67 0.78 0.70 0.10 0.08 0.12
MirrorFair 0.86 0.67 0.78 0.71 0.08 0.05 0.07 0.86 0.67 0.78 0.70 0.07 0.03 0.05

Task Method
RF DNN

Accuracy Recall Precision F1-Score SPD AOD EOD Accuracy Recall Precision F1-Score SPD AOD EOD
(+) (+) (+) (+) (-) (-) (-) (+) (+) (+) (+) (-) (-) (-)

Adult-Sex
Default 0.84 0.77 0.79 0.78 0.19 0.08 0.08 0.85 0.77 0.80 0.78 0.18 0.08 0.08
MirrorFair 0.84 0.77 0.79 0.78 0.16 0.04 0.02 0.85 0.75 0.81 0.77 0.13 0.04 0.04

Adult-Race Default 0.84 0.77 0.79 0.78 0.10 0.05 0.04 0.85 0.77 0.80 0.78 0.09 0.04 0.05
MirrorFair 0.85 0.77 0.80 0.79 0.06 0.03 0.04 0.85 0.77 0.80 0.78 0.07 0.02 0.02

Compas-Sex Default 0.65 0.64 0.64 0.64 0.17 0.14 0.12 0.65 0.65 0.65 0.65 0.19 0.16 0.13
MirrorFair 0.66 0.64 0.66 0.64 0.03 0.03 0.03 0.66 0.65 0.65 0.65 0.14 0.11 0.09

Compas-Race Default 0.65 0.64 0.64 0.64 0.14 0.12 0.09 0.65 0.65 0.65 0.65 0.16 0.14 0.10
MirrorFair 0.65 0.64 0.65 0.64 0.04 0.02 0.02 0.65 0.64 0.65 0.64 0.06 0.04 0.03

German-Sex Default 0.76 0.66 0.73 0.67 0.07 0.07 0.04 0.73 0.66 0.68 0.67 0.09 0.09 0.06
MirrorFair 0.76 0.64 0.73 0.66 0.04 0.05 0.03 0.74 0.65 0.70 0.66 0.07 0.07 0.05

German-Age Default 0.76 0.66 0.73 0.67 0.13 0.11 0.07 0.73 0.66 0.68 0.67 0.19 0.16 0.15
MirrorFair 0.76 0.65 0.73 0.66 0.05 0.07 0.04 0.74 0.65 0.69 0.66 0.08 0.08 0.06

Bank-Age Default 0.90 0.72 0.79 0.75 0.08 0.05 0.06 0.90 0.75 0.77 0.76 0.09 0.06 0.07
MirrorFair 0.90 0.73 0.79 0.75 0.06 0.04 0.05 0.90 0.77 0.78 0.77 0.09 0.05 0.06

Mep-Race
Default 0.86 0.67 0.76 0.70 0.09 0.07 0.09 0.85 0.67 0.74 0.69 0.11 0.09 0.13
MirrorFair 0.86 0.68 0.75 0.71 0.06 0.02 0.02 0.86 0.68 0.75 0.70 0.08 0.05 0.06
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Fig. 3. RQ1: Trade-off Effectiveness distributions in mitigating single sensitive attribute bias of different
bias-mitigating methods. Overall, MirrorFair achieves the best trade-off, with 93% of the mitigation cases
falling in the “good” or “win-win” trade-off regions.
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Fig. 4. RQ1: Trade-off Effectiveness distributions in mitigating single sensitive attribute bias of different
bias-mitigating methods for DNN only.

and EOD) values of default models and MirrorFair models in each decision-making scenario (task
× algorithms). We can see that in most cases, after applying MirrorFair, the overall prediction
performance is maintained, and the bias is evidently reduced. In some scenarios, such as Mep-
Race-DNN, MirrorFair improves all four performance metrics and reduces all three bias metrics.
The cases that enhance fairness but reduce performance are rare, and the most significant drop in
model performance occurs in the German-Sex-SVM scenario. When significantly enhancing model
fairness, MirrorFair increases model precision by one percent but simultaneously decreases model
recall and f1-score by three percent.

5.1.2 Superiority of MirrorFair against Existing Bias-mitigating Methods. We investigate the su-
periority of MirrorFair from three aspects: the superiority in fairness-performance trade-offs, the
superiority in overall fairness and performance improvement, and the superiority in significant
fairness improvement.
Superiority in fairness-performance trade-offs: Following the state-of-the-art method [19] and
recent empirical investigation [22], we use the Fairea benchmark to assess MirrorFair and other
existing methods. Fairea quantifies the effectiveness of trade-offs by calculating the proportion of
cases where both performance and fairness are increased or decreased among the experimental
cases [33]. Figure 3 shows the effectiveness distribution (“win-win”, “good”, “bad”, “inverted” and
“lose-lose”) of each bias mitigating method, which implies the proportion of cases with improved
fairness (“win-win” + “good” + “bad”), decreased performance (“lose-lose” + “good” + “bad”), and
surpassed the Fairea baseline (“win-win” + “good”). The comparison is based on 1,600 cases for
each bias-mitigating method.

Figure 3 demonstrates that MirrorFair achieves the highest “win-win” proportion, simultaneously
enhancing model performance and fairness in 41% of all the cases, while the state-of-the-art method
MAAT only realizes a 36% “win-win” proportion of cases. According to Fairea [19, 21, 33], MirrorFair
surpasses the Fairea trade-off baseline in 93% of cases, which is five percent points higher than the
state-of-the-art method MAAT and much far leads the other. Consequently, MirrorFair outperforms
all the existing methods that we studied in achieving good performance and fairness trade-off.
We also compare MirrorFair with the state-of-the-art DNN fairness repairing technique CARE

[50, 55], which is specially designed for repairing the fairness bugs in deep neural networks
(DNNs). Figure 4 displays the comparison results, together with other baseline methods. It turns
out MirrorFair still has the best effectiveness on DNNs only when taking CARE into consideration.
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Table 4. (RQ1) Impact of MirrorFair and state-of-the-art methods on model performance and bias. MirrorFair
achieves the highest bias reduction with the lowest performance compromise.

Method Accuracy Recall Precision F1-Score Overall Performance SPD AOD EOD Overall Bias

FairMask -0.23% -0.94% -1.10% -1.51% -1.48% -15.53% -19.18% -20.24% -18.32%
DIR -0.39% -0.75% -0.37% -0.94% -0.61% -18.94% -17.54% -18.95% -18.47%
RW -0.32% -0.78% -0.37% -0.71% -0.54% -49.24% -37.32% -26.25% -37.60%
MAAT 0.03% -1.33% 0.83% -1.01% -0.37% -37.02% -43.44% -42.51% -40.99%
EOP -2.39% -3.00% -3.55% -3.61% -3.14% -44.54% -47.42% -44.33% -45.43%
MirrorFair 0.03% -0.46% 0.47% -0.54% -0.12% -44.69% -51.93% -55.43% -50.68%

Table 5. (RQ1) Proportions of cases where each method significantly improves fairness compared with other
methods. Compared with the default model, MirrorFair significantly improves fairness in 99% of the cases,
and compared with MAAT, MirrorFair significantly improves fairness in 44% of the cases.

Method VS Default VS FairMask VS DIR VS EOP VS RW VS MAAT VS MirrorFair

Default 0% 9% 13% 4% 7% 0% 0%
FairMask 61% 0% 24% 20% 18% 7% 0%
DIR 71% 55% 0% 22% 27% 20% 10%
EOP 77% 65% 54% 0% 29% 44% 42%
RW 80% 54% 44% 21% 0% 40% 34%
MAAT 92% 65% 51% 31% 38% 0% 16%
MirrorFair 99% 92% 67% 34% 45% 44% 0%

Superiority in overall fairness and performance improvement: Table 4 presents the overall
impact of the five state-of-the-art methods that perform well in trade-off model fairness and
performance based on Fairea (according to Figure 3) to explore to what extent MirrorFair and
existing methods enhance model fairness as well as the side effect on model performance. In general,
MirrorFair reduces the most bias with minimal impact on performance.
In particular, regarding enhancing fairness, MirrorFair reduces the SPD bias by 44.69%, AOD

bias by 51.93%, EOD bias by 55.43%, and reduces overall bias by 50.68%. MAAT, the state-of-the-art
method in trade-off model performance and fairness, reduces the overall bias by 40.99%; EOP,
the state-of-the-art in mitigating bias, reduces the overall bias by 45.43%. As to the impact on
performance, MirrorFair and MAAT perform best in maintaining model prediction performance,
and they all slightly increase the accuracy and precision with slight decreases in recall and f1-score,
but MirrorFair outperforms MAAT with a 0.25% advantage in maintaining the overall performance.
Significance of difference in fairness between different methods: In the prior evaluation, we
demonstrated its effectiveness by comparing each method with default models. Here, we compare
different methods with each other via theMann-Whitney U-Test [19, 43], a non-parametric statistical
method, to explore the significant difference in fairness between different methods. Aligning with
previous work [19], we consider the change in fairness to be statistically significant only if the
resulting 𝑝-value from the test is less than 0.05, whilst we calculate the proportion of significantly
improving fairness cases. Table 5 presents 49 (seven baselines × seven methods) comparison results
of seven methods, including Default and top six methods in trade-off fairness and performance
based on the result in Figure 3. The value in the cross of the “VS Default” column and “MirrorFair”
row means that 99% of MirrorFair cases are significantly fairer than Default cases. The value in
the cross of the “VS MAAT” column and “MirrorFair” row means that 44% of MirrorFair cases are
significantly fairer than MAAT cases.
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Answer to RQ1:

MirrorFair surpasses the Fairea trade-off baseline by 93%, outperforming the state-of-the-art
method by 5 percent points. MirrorFair also shows the highest efficacy in both enhancing
fairness and maintaining performance. In particular, regarding the extent of mitigating bias,
MirrorFair reduces overall bias by 50% with the minimum effect on performance, while the
state-of-the-art methods only reduce it by 45% (EOP) and 41% (MAAT).

5.2 RQ2: Applicability and Versatility
We showcase the superior overall efficacy of MirrorFair in bias mitigation while preserving per-
formance, surpassing existing methods across 32 decision-making scenarios (comprising eight
decision-making tasks × four algorithms) to answer RQ2. The efficacy range, computed as the
disparity between the highest and lowest efficacy values, serves as a metric for assessing efficacy
stability. In this research question, we delve into the applicability and versatility of MirrorFair
in comparison to state-of-the-art methods across various tasks and algorithms, leveraging both
overall efficacy and efficacy range as key indicators.

Table 6 presents the proportion of cases where MirrorFair and other methods surpass the Fairea
baseline with different tasks and algorithms. Concerning algorithms, MirrorFair outperforms all
the existing methods in our study in terms of surpassing the Fairea trade-off baseline. Specifically,
MirrorFair achieves the highest efficacy in the LR algorithm (95.38%) and the lowest efficacy in the
RF algorithm (89.23%), whereas the state-of-the-art method MAAT achieves the highest efficacy in
the LR algorithm (93.35%) and the lowest efficacy in the DNN algorithm (82.97%).
Regarding decision-making tasks, MirrorFair achieves the best trade-off efficacy in six out of

the eight tasks. It is slightly surpassed by the DIR method in the Compas-Sex task (outperforming
MirrorFair by two percentage points) and byMAAT in theMep-Race task (outperformingMirrorFair
by one percentage point). However, MirrorFair achieves its lowest efficacy in the German-Sex task
(83.3%), which is significantly better than the state-of-the-art method MAAT, which achieves its
lowest efficacy in the German-Sex (71.70%) and German-Age (73.07%) tasks.

Table 6. (RQ2) Surpassing Fairea baseline proportion across different algorithms and tasks.

Method
Algoritm Task

LR RF SVM DNN Adult-Sex Adult-Race Compas-Sex Compas-Race German-Sex German-Age Bank-Age Mep-Race

FairMask 76.52% 65.08% 75.97% 43.27% 63.80% 66.73% 78.53% 42.93% 70.33% 66.97% 57.77% 74.60%
DIR 77.02% 70.10% 72.58% 69.70% 54.23% 89.10% 100.00% 97.20% 64.87% 76.23% 7.43% 89.73%
RW 89.52% 65.80% 83.22% 75.95% 51.40% 73.17% 96.20% 90.37% 72.30% 77.27% 78.17% 90.10%
EOP 84.15% 53.05% 83.45% 77.70% 79.13% 72.50% 95.20% 90.57% 68.47% 52.50% 61.90% 76.43%
MAAT 93.35% 85.53% 90.23% 82.97% 90.53% 93.40% 98.77% 97.00% 71.70% 73.07% 82.63% 97.07%
MirrorFair 95.38% 89.23% 95.10% 90.35% 96.60% 96.43% 98.13% 99.93% 83.03% 84.03% 85.90% 96.07%

Answer to RQ2:

MirrorFair demonstrates higher efficacy and a narrower efficacy range compared to the
state-of-the-art method, showcasing its superior applicability and versatility across different
algorithms and tasks.

5.3 RQ3: Effectiveness in Mitigating Multiple Attribute Biases
Datasets may contain multiple sensitive attributes that require protection. Among the 14 existing
methods we evaluated, only some are capable of handling multiple sensitive attribute protection,
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Fig. 5. RQ3: The efficacy level distribution
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Fig. 6. RQ4: The efficacy level distribution of different ensemble
strategies of MirrorFair and the existing methods.

as stated in their original papers. To answer this research question, we compared MirrorMulti-S1
and MirrorMulti-S2, the two variants of MirrorFair introduced in Section 3, with state-of-the-art
methods in balancing model performance and fairness when mitigating biases associated with
multiple sensitive attributes. We conducted these comparisons using the Adult and Compas datasets.

Figure 5 presents the trade-off distribution of mitigatingmultiple sensitive attributes.We observed
that MirrorMulti-S2 achieves 30.86% “win-win” cases and 61.13% “good” cases. MirrorMulti-S1
achieves 27.50% “win-win” cases and 62.60% “good” cases while the state-of-the-art method MAAT
achieves 27.06% “win-win” cases and 60.35% “good” cases. It means that both MirrorMulti-S1 and
MirrorMulti-S2 outperformed MAAT and Fair-SMOTE in both achieving “win-win” cases and
surpassing the Fairea baseline.

Answer to RQ3:

The two variants of MirrorFair ( MirrorMulti-S1 and MirrorMulti-S2) are both more ef-
fective in protecting multiple sensitive attributes than the existing methods. In particular,
MirrorMulti-S2 surpasses the Fairea baseline in 91.99% of cases, which is 4.58 percentage
points higher than the state-of-the-art method.

5.4 RQ4: Impact of Mirroring Processing and Effectiveness of Adaptive Strategies
In this research question, we investigate the impact of mirroring processing in Section 5.4.1 via
investigating the probability difference between default predictions and counterfactual predictions
(mirror predictions). Following this, we present the comparative results between different MirrorFair
ensemble strategies and existing methods in Section 5.4.2.

5.4.1 Impact of Mirroring Processing on Decision-making Scenarios. We conducted empirical in-
vestigations across eight decision-making tasks using four distinct ML algorithms. Due to space
constraints, we provide part of the 𝐷𝐼𝐹 value in Table 7, illustrating potential patterns in mirroring
processing effects. Comprehensive statistical results for all experiments are presented in Table 8.
In Table 7, cases in dark grey (i.e., “Compas-Race-LR” and “Compas-Race-SVM”) are mirror-

insensitive scenarios, as the 𝐷𝐼𝐹 values (probability differences between the default and the mirror
model) are close to zero, suggesting thatmirroring processing hasminimal impact on these particular
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Table 7. Probability difference between the default and mirror models (Random sampling 5 testing instances).
“Adult-Sex-LR” means mitigating “Sex” bias in “Adult” using “LR” algorithms; 𝑃𝑑𝑒𝑓 (1, 0) denotes the prediction
probability of output 𝑌 = 1 on the condition of sensitive attribute 𝐴 = 0 of the default model; 𝑃𝑚𝑖𝑟 (1, 0)
denotes the prediction probability of output 𝑌 = 1 on the condition of sensitive attribute 𝐴 = 0 of the mirror
model; 𝐷𝐼𝐹 denotes the probability difference between the default and mirror model.

Adult-Sex-LR Adult-Sex-SVM Adult-Sex-RF Adult-Sex-DNN
𝑷𝒅𝒆𝒇 (1, 0) 𝑷𝒎𝒊𝒓 (1, 0) DIF 𝑷𝒅𝒆𝒇 (1, 0) 𝑷𝒎𝒊𝒓 (1, 0) DIF 𝑷𝒅𝒆𝒇 (1, 0) 𝑷𝒎𝒊𝒓 (1, 0) DIF 𝑷𝒅𝒆𝒇 (1, 0) 𝑷𝒎𝒊𝒓 (1, 0) DIF

0.34 0.50 -0.17 0.36 0.50 -0.14 0.60 0.42 0.17 0.30 0.52 -0.22
0.44 0.62 -0.17 0.48 0.68 -0.20 0.16 0.72 -0.56 0.31 0.63 -0.31
0.36 0.53 -0.17 0.46 0.66 -0.20 0.52 0.43 0.09 0.46 0.58 -0.12
0.45 0.60 -0.16 0.48 0.68 -0.20 0.10 0.67 -0.57 0.41 0.75 -0.35
0.39 0.56 -0.17 0.43 0.61 -0.18 0.28 0.76 -0.49 0.47 0.79 -0.32

𝑷𝒅𝒆𝒇 (1, 1) 𝑷𝒎𝒊𝒓 (1, 1) DIF 𝑷𝒅𝒆𝒇 (1, 1) 𝑷𝒎𝒊𝒓 (1, 1) DIF 𝑷𝒅𝒆𝒇 (1, 1) 𝑷𝒎𝒊𝒓 (1, 1) DIF 𝑷𝒅𝒆𝒇 (1, 1) 𝑷𝒎𝒊𝒓 (1, 1) DIF

0.59 0.42 0.17 0.62 0.44 0.18 0.38 0.50 -0.12 0.52 0.43 0.09
0.64 0.47 0.17 0.56 0.35 0.21 0.55 0.46 0.10 0.54 0.20 0.35
0.55 0.38 0.17 0.52 0.30 0.22 0.53 0.38 0.15 0.72 0.35 0.37
0.55 0.38 0.17 0.52 0.30 0.22 0.47 0.53 -0.06 0.70 0.43 0.27
0.59 0.41 0.17 0.61 0.43 0.18 0.56 0.47 0.09 0.56 0.24 0.31

Compas-Race-LR Compas-Race-SVM Compas-Race-RF Compas-Race-DNN
𝑷𝒅𝒆𝒇 (1, 0) 𝑷𝒎𝒊𝒓 (1, 0) DIF 𝑷𝒅𝒆𝒇 (1, 0) 𝑷𝒎𝒊𝒓 (1, 0) DIF 𝑷𝒅𝒆𝒇 (1, 0) 𝑷𝒎𝒊𝒓 (1, 0) DIF 𝑷𝒅𝒆𝒇 (1, 0) 𝑷𝒎𝒊𝒓 (1, 0) DIF

0.50 0.50 0.00 0.55 0.54 0.01 0.29 0.52 -0.23 0.62 0.42 0.20
0.50 0.50 0.00 0.50 0.50 0.00 0.55 0.45 0.10 0.69 0.32 0.37
0.50 0.50 0.00 0.48 0.47 0.01 0.97 0.16 0.81 0.43 0.53 -0.10
0.50 0.50 0.00 0.47 0.45 0.01 0.42 0.65 -0.23 0.38 0.52 -0.14
0.50 0.50 0.00 0.49 0.48 0.01 0.27 0.87 -0.60 0.33 0.64 -0.32

𝑷𝒅𝒆𝒇 (1, 1) 𝑷𝒎𝒊𝒓 (1, 1) DIF 𝑷𝒅𝒆𝒇 (1, 1) 𝑷𝒎𝒊𝒓 (1, 1) DIF 𝑷𝒅𝒆𝒇 (1, 1) 𝑷𝒎𝒊𝒓 (1, 1) DIF 𝑷𝒅𝒆𝒇 (1, 1) 𝑷𝒎𝒊𝒓 (1, 1) DIF

0.45 0.45 0.00 0.47 0.47 0.01 0.50 0.98 -0.48 0.50 0.61 -0.11
0.51 0.51 0.00 0.51 0.52 0.00 0.45 0.99 -0.54 0.28 0.54 -0.26
0.49 0.49 0.00 0.49 0.49 0.00 0.48 0.61 -0.13 0.67 0.42 0.24
0.53 0.52 0.00 0.52 0.53 0.00 0.45 0.58 -0.13 0.37 0.61 -0.24
0.50 0.50 0.00 0.51 0.51 0.00 0.32 0.69 -0.37 0.46 0.66 -0.19

Table 8. Taxonomy results of decision-making scenarios using 𝛿 = 0.05. 𝐷𝐼𝐹 ∈ N𝛿 (𝑐) means that the
probability difference 𝐷𝐼𝐹 between two model predictions near the decision boundary, belonging to the
neighborhood of a constant 𝑐 . Where N denotes the neighborhood of constant 𝑐 , 𝛿 denotes the width of the
neighborhood. 𝐴𝑣𝑔.𝐷𝐼𝐹 denotes the average of 𝐷𝐼𝐹 .

Decision Task
LR RF SVM DNN

𝐷𝐼𝐹 ∈ N𝛿 (𝑐) 𝑀𝑒𝑎𝑛𝐷𝐼𝐹 Type 𝐷𝐼𝐹 ∈ N𝛿 (𝑐) 𝑀𝑒𝑎𝑛𝐷𝐼𝐹 Type 𝐷𝐼𝐹 ∈ N𝛿 (𝑐) 𝑀𝑒𝑎𝑛𝐷𝐼𝐹 Type 𝐷𝐼𝐹 ∈ N𝛿 (𝑐) 𝑀𝑒𝑎𝑛𝐷𝐼𝐹 Type

Adult-Sex ✓ 0.17 Regular × - Irregular ✓ 0.18 Regular × - Irregular
Adult-Race ✓ 0.03 Regular × - Irregular ✓ 0.04 Regular × - Irregular
Compas-Sex ✓ 0.08 Regular × - Irregular ✓ 0.06 Regular × - Irregular
Compas-Race ✓ 0.00 Insensitive × - Irregular ✓ 0.01 Insensitive × - Irregular
German-Sex ✓ 0.02 Regular × - Irregular ✓ 0.02 Regular × - Irregular
German-Age ✓ 0.02 Regular × - Irregular ✓ 0.01 Insensitive × - Irregular
Bank-Age ✓ 0.08 Regular × - Irregular ✓ 0.13 Regular × - Irregular
Mep-Race ✓ 0.11 Regular × - Irregular ✓ 0.09 Regular × - Irregular

decision-making scenarios. Cases in light grey (i.e., “Adult-Sex-LR” and “Adult-Sex-SVM”) are
mirror-regular scenarios (as introduced in Section 3.4.1), as the 𝐷𝐼𝐹 values are close to a constant
value. For example, for “Adult-Sex-LR”, all the 𝐷𝐼𝐹 values for 𝐴 = 1 are around 0.17. Cases in white
are mirror-irregular scenarios, as we observe no pattern in the 𝐷𝐼𝐹 values.
A comprehensive breakdown of these taxonomy results for all the decision-making scenarios

under examination is presented in Table 8. We observe that our mirroring processing has an
irregular effect on Random Forest (RF) and DNN, which might be because Random Forest and
DNNs are more complex models capable of capturing non-linear relationships between features
and the target variable. The interactions between features of these models are flexible and diverse.
On the contrary, Logistic Regression (LR) and SVM are more straightforward in how they use
features to make predictions, typically relying on linear boundaries. Changes in sensitive features,
therefore, have more predictable effects due to the linear nature of these models.
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5.4.2 Effectiveness of Adaptive Strategies. Figure 6 showcases the effectiveness of various ensemble
strategies withinMirrorFair, alongside the performance of the state-of-the-art non-ensemblemethod
RW and the leading ensemble approach MAAT. Specifically, Mirror-Mean and Mirror-Max employ
only the E-Mean and E-Max strategies, respectively, as delineated in Section 3.4.2, to ensemble the
predictions from the mirror model and the default model. Conversely, Mirror-Adaptive dynamically
chooses the most suitable ensemble strategy—either E-Mean or E-Max—tailored to the specific
decision-making scenario at hand.
We observe that all ensemble strategies outperform the state-of-the-art non-ensemble method

RW in both achieving “win-win” scenarios and surpassing the Fairea baseline. Among the ensemble
methods, Mirror-Adaptive stands out with 41% “win-win” cases and a 93% proportion in surpassing
the Fairea baseline. MAAT surpasses the Fairea baseline in 88% of cases, outperforming Mirror-Max
(85%), and Mirror-Mean (82%). MAAT treats different decision-making scenarios equally, and thus
has lower efficacy than MirrorFair. In summary, the comparison results highlight the advantages of
MirrorFair in mitigating model bias.

Answer to RQ4:

Mirroring processing has varying impacts on different decision-making scenarios. Mirror-
Fair can discern these differences and categorize them into distinct types. The comparison
results, as shown in Figure 6, underscore the substantial advantages of adaptive ensemble
strategies over fixed ensemble strategies in mitigating bias across diverse scenarios.

6 DISCUSSION
Here, we highlight the novelty of MirrorFair and discuss the threats to validity and future work.

6.1 Novelty and Superiority of MirrorFair Over Existing Methods
The results demonstrate that MirrorFair outperforms the state-of-the-art methods in mitigating bias,
maintaining performance, and keeping consistency across various tasks and algorithms. Multiple
models can describe the data from different perspectives and levels, and ensemble methods allow
multiple models to complement each other and obtain better results [54]. As an ensemble approach,
MirrorFair can learn more information from the training dataset and directionally and purposefully
decrease the contribution of sensitive attributes on the model prediction to mitigate model bias
better. The ensemble design makes MirrorFair much further ahead of the non-ensemble methods.
As for ensemble techniques, there are two crucial aspects: what to ensemble and how to ensemble.
MirrorFair is novel in both aspects compared to the existing ensemble method MAAT. In particular,
regarding what to ensemble, MirrorFair ensembles the original model and the Mirror Model via
counterfactual inference, while MAAT ensembles models that are optimized for different objectives:
fairness and ML performance. As for how to ensemble, MirrorFair adopts an adaptive strategy
that chooses optimal ensemble strategies according to different tasks, while MAAT simply gets the
average of two models’ predictions as the final prediction.

6.2 Threats to Validity
6.2.1 Internal Threats. The selection of measurement and metrics could potentially introduce
threats to the validity of experimental results. To mitigate this concern, we have aligned our
approach with prior research [19] and the latest empirical investigation [22], employing the state-
of-the-art benchmarking tool Fairea [33] in conjunction with multiple performance and fairness
metrics to assess the effectiveness of MirrorFair.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 94. Publication date: July 2024.



94:20 Ying Xiao, Jie M. Zhang, Yepang Liu, Mohammad Reza Mousavi, Sicen Liu, and Dingyuan Xue

6.2.2 External Threats. The choice of benchmark datasets, algorithms, and existing methods has
implications for the external validity of this study. To address this issue, we have adhered to
established experimental settings from prior research and conducted our experiments using five
widely recognized benchmark datasets and four commonly employed machine learning algorithms,
including deep neural networks. This comprehensive approach allows us to make meaningful
comparisons with 14 existing methods[19, 22, 48] from both the SE and AI communities.

6.3 Limitations of MirrorFair and Future Improvements
6.3.1 Limitation of MirrorFair. Typical fairness metrics (e.g., SPD, AOD, EOD) support only binary
sensitive attributes in AIF360. Therefore, similar to existing methods [16, 17, 19, 48], MirrorFair
converts sensitive attributes into binary categories, such as classifying the race attribute in the
Adult dataset as “White” and “non-White”. This simplification enables researchers to concentrate on
addressing the most pronounced biases and reduces the complexity of modeling fairness issues. Nev-
ertheless, this practice oversimplifies human characteristics and may obscure the distinctions within
sub-groups of the binary categories (e.g., “Asian” and “Eskimo” within “non-White”), potentially
introducing new biases.

6.3.2 Future Improvements. In our future work, we will introduce novel fairness metrics that calcu-
late the overall standard deviation of fairness scores across groups, allowing for the measurement
of more fine-grained biases with non-binary sensitive attributes. Subsequently, we will leverage
these new metrics to perform a comprehensive empirical analysis of the effectiveness of existing
methods in mitigating fine-grained biases and to develop innovative bias-mitigation approaches
that do not rely on binary conversion of sensitive attributes. Additionally, we intend to expand the
capabilities of the MirrorFair approach to encompass regression and generation tasks.

7 CONCLUSIONS
This paper introducesMirrorFair, a novel adaptive ensemble approach for mitigating bias in machine
learning software through ensembling mirror predictions generated by counterfactual inference.
We have demonstrated that MirrorFair surpasses the state-of-the-art methods in both the ML and
SE communities by striking a balance between model performance and fairness across various
decision tasks and ML algorithms. Our results underscore the efficacy of leveraging causal analysis
and counterfactual inference to mitigate bias and enhance fairness in machine learning software.
In conclusion, the successful implementation of MirrorFair enriches the array of bias-mitigating
methods and underscores the potential of integrating counterfactual inference in future research.

8 DATA AVAILABILITY
To facilitate future work and replication of our approach, we make the replication package of
MirrorFair, including code, results, and supplementary materials available on the website [6].
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