Complete FSM Testing Using Strong Separability

Robert M. Hierons?! [0000-0002—4771—~1446] 5,4
Mohammad Reza Mousavi2[0000—0002—4869—6794]

1 School of Computer Science

University of Sheffield, UK, r.hierons@sheffield.ac.uk
2 Department of Informatics

King’s College London, UK, mohammad .mousavi@kcl.ac.uk

Abstract. Apartness is a concept developed in constructive mathemat-
ics, which has resurfaced in the areas of model learning and model-
based testing. We identify some fundamental shortcomings of apartness
in quantitative models, such as in hybrid and stochastic systems. We
propose a closely-related alternative, called strong separability and show
that using it to replace apartness addresses the identified shortcomings.
We adapt a well-known complete model-based testing method, the Har-
monized State Identifiers (HSI) method, to adopt strong separability. We
prove that the adapted HST method is complete. As far as we are aware,
this is the first work to show how complete test suites can be gener-
ated for quantitative models such as those found in the development of
cyber-physical systems.

Keywords: Finite state machine testing - cyber-physical systems - apart-
ness - strong separability

1 Introduction

1.1 Background

Testing is an important yet costly part of system quality assurance. There has
been significant interest in systematic, automated test generation techniques.
Model-based testing (MBT) is an important class of such techniques in which
test generation is based on a formal model (or specification) that defines the set
of behaviours of a correct system under test (SUT). Typically, a behaviour is a
sequence of inputs and outputs and testing is black-box: we cannot observe the
state of the SUT. There are many MBT techniques, with corresponding tools
and evidence of effectiveness when applied to industrial systems (see examples
of applications [10, 15,17, 22, 24,28, 34]; and also survey papers for an overview
[18, 20,25, 30]).

To formally reason about MBT effectiveness, one assumes a common seman-
tic domain between the specification and the SUT [16]. Most MBT work has
concerned state-based semantic domains: labelled transition systems (LTSs) [2§]
or finite state machines (FSMs) [21]. However, the developer might use a dif-
ferent formalism, with a test tool mapping a model to an FSM or LTS and an
adapter handling differences in abstraction between a model and the SUT.

2 Robert M. Hierons and Mohammad Reza Mousavi

The behaviour of an FSM is defined by transitions between states, with a
transition having a corresponding input and output. FSM-based test generation
techniques typically aim to find two types of faults: output faults (a transition
produces the wrong output); and state-transfer faults (a transition takes the
SUT to the wrong state). State-transfer faults can lead to the SUT having more
states than the specification FSM.

There are many FSM-based test generation techniques that aim to find state-
transfer faults in addition to output faults [8]; these techniques utilise input
sequences that separate states® of the specification M in order to identify (or
check) states. Most FSM-based test techniques concern specification FSMs that
are minimal, deterministic, and completely-specified (cf. Section 2) and we also
consider such FSMs (we discuss further extensions in the Conclusions). Of partic-
ular interest are test generation techniques that produce m-complete test suites:
test suites that are guaranteed to determine correctness as long as the SUT be-
haves like an (unknown) FSM that has at most m states. Classical examples of
such m-complete methods include the W-method [10, 34], Wp-method [15], and
HSI method [22].

1.2 Problem Definition

This paper aims to expand the applicability of complete FSM-based test tech-
niques to a range of modern systems for which test generation is particularly
challenging. We are interested in generating m-complete tests for systems in
which outputs are drawn from a continuous domain and observations are noisy.
This is characteristic of cyber-physical systems [19] and the conformance prob-
lem for such systems has been extensively researched [6,1,12]. For example, in
testing automotive [29] and healthcare [26] systems, it is necessary to cater for
error margins and noise. For example, (7, €)-conformance [1] incorporates er-
ror margins in time and space. However, it has not previously been possible
to develop (m-)complete testing theories for such notions of conformance. Our
solution can further serve as a building block for active FSM learning of cyber-
physical systems using, e.g., variants of the celebrated L* [2] algorithm, making
it possible to model-check complex implementations through their learned FSM
models. We will elaborate on this in the discussion of future work.

1.3 Contributions

To achieve this, we need to reconsider what we mean by correctness (confor-
mance) in scenarios such as those sketched above. It no longer makes sense to
require that, for each input sequence z, the SUT and specification produce the
same output sequence. Instead, we require that the output sequence produced by
the SUT (i.e., observed in testing) is similar to that produced by the specification

3 An input sequence Z separates two states s; and s of M if the input of Z leads to
different output sequences when applied in s; and sa.

Complete FSM Testing Using Strong Separability 3

[6,1,12], e.g., using a distance metric. This leads to a different conformance re-
lation and so the proofs of completeness, for current FSM-based test techniques,
do not apply. In this paper we also show that the W, Wp, and HSI methods need
not be complete in this context.

We took as a starting point recent work by Vaandrager [31] that shows that it
is possible to reason about the completeness of several FSM-based test techniques
in terms of apartness. Apartness is a form of inequality used in constructive
mathematics. Vaandrager [31] showed how the notion of apartness can be used
in the generation of an m-complete test set. We found, however, that the notion
of apartness is too strong for the scenario of interest in this paper (see Section 3).

In this paper, we weaken apartness in a way that allows us to reason about
FSM-based testing when conformance is based on a metric p and threshold ¢. We
start by specifying a corresponding notion of conformance, which is reminiscent
of the notions of robustness [14, 9], metric bisimulation [7, 6, 11| and conformance
testing [1,12,4, 5]. We then define strong separability, which is strictly weaker
than apartness and stronger than separability. We consider the case where the
states of the specification FSM M are pairwise strongly separable. We give a
sufficient condition for a test suite to be m-complete, defined in terms of strong
separability. We adapt the HSI-method to the scenarios we consider and show
that this returns m-complete test suites. This completeness result extends to the
W-method and the Wp-method. Note that these are exactly the FSM-based test
generation techniques considered by Vaandrager [31].

To summarise, the paper makes the following main contributions.

— We show that there are scenarios (classes of system, with a corresponding
definition of conformance) in which the notion of apartness is too strong.

— We define strong separability and demonstrate that this is applicable in the
identified scenarios.

— We give a sufficient condition for a test suite to be m-complete and show that
test suites produced by the well-known Harmonized State Identifiers (HSI)
method (and similar ones such as the Wp and W-methods) satisfy this con-
dition if the states of the specification FSM are pairwise strongly separable
and, for state identification, we use sequences that strongly separate states.

— We illustrate all concepts through our running example and use this to show
that the W, Wp and HSI methods are not complete if we do not adapt them
(i.e., if we use separability rather than strong separability).

1.4 Running Example

To illustrate the concepts and their potential applicability, we use the following
hybrid systems model. The same example can be extended to cover stochastic
aspects, but for the sake of readability we use a minimal running example.

Example 1. Consider a thermostat that senses the temperatures and uses it to
switch a heater on/off and control the room temperature. Figure 1 gives a dia-
grammatic representation of the behaviour. The system starts at time zero and

4 Robert M. Hierons and Mohammad Reza Mousavi

t=19 t =20
read /19 t<19 read /20

O switch/on W

t>20
switch/ off

Fig. 1. Continuous Thermostat System

the room temperature at 20°C (in the discrete state Off) and the temperature
decreases linearly with a first derivative -1. When the temperature reaches 19°C,
the display can be updated through a “read” action (which outputs 19) and the
heater is switched on through the “switch” action, which outputs “on”. The be-
haviour in the state labelled “On” is similar, with the main difference being that
the temperature increases linearly with the first derivative equal to 1.

Consider an implementation in which the initial condition and the guards
differ by 0.5°C. We will compare such an implementation (as well as another
faulty one) against the specification based on a notion of conformance in the re-
mainder of the paper. The idea is to use an approximate notion of conformance
that allows for an error margin and yet, produce test-cases that are complete,
i.e., test cases that will fail on any non-conforming implementation with at most
m states. Consider, for example, a notion of conformance that has a threshold
of 0.5°C for temperature differences (and no difference in the switching outputs)
and thus, it accepts the implementation that differs only 0.5°C in temperature
with the specification in Figure 1, while rejecting those with temperature differ-
ences that exceed the threshold or have incorrect switching behaviour. In this
paper we show how complete test suites can be produced for this specification.

1.5 Structure

The paper is structured as follows. Section 2 provides preliminary definitions
and Section 3 extends FSM concepts and definitions to the scenarios of inter-
est. Within this we define separability and apartness and show that there are
classes of system, including the Thermostat example, where separability is not
an apartness relation. This leads to us defining strong separability. Section 4
gives a sufficient condition for a test suite to be m-complete, with a consequence
being that the well-known W, Wp, and HSI methods return m-complete test
suites for the notion of conformance and class of system considered if we base
the choice of state identifiers on strong separability. We also show that separa-
bility is insufficient for these test generation techniques. Finally, in Section 5, we
draw conclusions and describe possible lines of future work.

Complete FSM Testing Using Strong Separability 5

2 Preliminaries

In this section, we define what we mean by a Finite State Machine and provide
classical definitions. In the next section, we adapt this to the context of interest
where, for example, outputs may be drawn from a metric space.

Definition 1. A Finite State Machine (FSM) M is defined by a tuple (S, so, X, Y,
0, A) in which: S is the finite set of states; so € S is the initial state; X is the
finite input alphabet; Y is the output alphabet; § : S x X — S is the transition
function; and A : S x X =Y is the output function.

The transition function and the output function are inductively lifted to
sequences of inputs, by defining 6(s;, &) = s;, (84, 2".Z) = 6(d(s4,2'),T) and
A(siye) =, A(s4, 2".T) = A(si,2").A(0(si,2"), T), where € is the empty sequence,
2’ € X,z € X*. These FSMs are deterministic: for each state and input there
is only one possible next state and output. In addition, they are completely-
specified: § and A are total functions. We restrict attention to deterministic and
completely-specified FSMs, leaving other classes of FSM to future work.

In order to reason about test effectiveness, it is normal to assume that the
SUT behaves like an unknown FSM [16]. We also assume that we have an upper
bound m on the number of states of the SUT.

Assumption 1 The specification is an FSM M = (S, so, X, Y, d, \) with n states
and the behaviour of the SUT can be represented by an FSM M; = (Q, qo, X, Y,
01, A1) with at most m states.

Note that we do not assume that the FSM M is known. In addition, Defini-
tion 1 relaxes the standard definition of an FSM, which requires that the output
alphabet Y is finite. This may not seem to be an important point since the set of
outputs that can be produced by M is finite. However, allowing Y to be infinite
has an impact on the set of potential SUTs being tested, which becomes infinite,
and hence, challenges the completeness of tests.

Ezample 2. Consider our thermostat in Example 1 (Figure 1); assume that we
would like to focus on the input/output behaviour and abstract from the internal
continuous dynamics of the states. This abstraction is key to all well-known
MBT techniques based on FSMs and LTSs. It is essential to note that in all
such techniques, the states are not observable in testing, and only input-output
behaviours are used to distinguish different behaviour.

The FSM arising from the specification in Figure 1 is depicted in Figure 2.
The FSM (as well as the three implementations depicted in the same figure),
have the set of input symbols {r, s}, representing reading the temperature and
switching the heater, respectively. The output set is RU{on,of f}, i.e., the (un-
countable) set of real numbers for temperature and the status values on and off .
In our example, the relaxation to allow for infinite outputs is essential here to
represent the infinite set of possible faulty implementations with deviating out-
puts, while a finite set of inputs would be sufficient to represent any discretisation
of the passing of time.

6 Robert M. Hierons and Mohammad Reza Mousavi

r/19 7“/20 r/19.5 r/Z(Jo r/19.5
7/19 5
s/on s/on s/on
s/oﬂ . G/oﬁ .
"/Oﬁ
Specification Implementationg Implementation;
r/19.5 r/190 r/19.5 7/21
s/on s/oﬁ W 9/0”
Implementations

Fig. 2. Discretised Thermostat System: A Specification and Three Implementations

We use F to denote the set of FSMs with input alphabet X and output
alphabet Y. Given integer m, we use F™ to denote the set of FSMs in F with
at most m states. The following shows that if Y is finite then so is F™; then it
is not difficult to show that there must be a finite m-complete test suite.

Proposition 1. Given FSM M = (S, s0,X,Y,06,\) with finite output alphabet
Y, and integer m, F™ is finite.

There is a correspondence between FSMs and states: if M is an FSM and s;
is a state of M then we can also see s; as being an FSM: the FSM formed by
making s; the initial state of M. We can thus use F to denote the set of possible
states of the unknown FSM M that represents the SUT.

Traditional FSM-based testing typically involves applying an input sequence
to the SUT and checking that the output sequence produced is that specified.
We formalise this in terms of separating states and FSMs; we use the term d-
separate in order to distinguish between the classical notion and that required
for the scenarios of interest (defined in Section 3).

Definition 2. Given FSM M and states s1,S2 € S, an input sequence T d-
separates s1 and sy if and only if A(s1,T) # A(s2,Z). If T d-separates s; and so
then we can write s1 Zz So and say that sy and so are d-separable. If T does not
d-separate s1 and so then we write s1 =z so. Similarly, given a set W of input
sequences, we write 1 Zw So if an input sequence in W d-separates sy and So;
otherwise s1 =w So.

It is straightforward to see that =; is an equivalence relation. In addition, it
can be applied when comparing two FSMs M and M since one can define an
FSM that is the disjoint union of M and M;. The following is the notion of con-
formance used in traditional FSM-based testing, which we call d-conformance.

Complete FSM Testing Using Strong Separability 7

Definition 3. Given FSMs M = (S, s0,X,Y,0,\) and M; = (Q, qo, X, Y, 61, A1),
M; d-conforms to M if and only if for all T € X* we have that M =z M.

3 Conformance and Strong Separation

In this section we explain how separability and conformance can be naturally
translated to the scenarios of interest. We then define strong separability.

3.1 Separability and Conformance

In the scenarios of interest an output might, for example, be the speed of a
vehicle as measured by a sensor, which is an estimate of the actual speed. An
output in Y could also be a probability distribution; in testing we apply a test
case multiple times, observe a set of values drawn from an unknown distribution,
and use statistical hypothesis testing techniques. In such situations, we need a
way of comparing observations made with the expected output and we formalise
this as a similarity relation ~ on outputs. As previously explained, similarity
will often be defined in terms of a metric x4 and a threshold ¢; outputs y and 3’
are similar if p(y,y’) <t (see Example 3 below). Note that ~ normally will not
be transitive and so need not be an equivalence relation. The following lifts ~
to output sequences.

Definition 4. Given similarity relation ~ on'Y, y,y €Y, and 4,5 € Y* we
have that:

—en~eg;
—yy~y'y if and only if y ~y' and g~ y';

We can define conformance in terms of ~ as follows.

Definition 5. Given FSMs M = (S, s0,X,Y,0,A) and My = (Q, g0, X,Y, 01, A1),
M conforms to M if and only if for all T € X* we have that A(so,T) ~ Ar(qo, T).

Ezxample 3. Consider the FSMs given in Figure 2. We instantiate the metric p
for real-valued outputs to be the absolute difference between them; the distance
between on and off (as well as the distance between real numbers on one hand,
and status values) is defined to be co. Define two outputs 0,0’ € R to be e
conforming, denoted by t ~ ¢, when |0 — 0’| < e. This leads to a natural notion
of conformance, inspired by the hybrid conformance literature [1], on FSMs.

According to this notion of conformance, Specification ~¢ 5 Implementation.
This conformance relation holds, because for all input sequences, the difference
between the respective outputs is bounded by 0.5.

Consider the specification Specification and implementation Implementation,
in Figure 2. In fact, Implementation, does not e-conform to Specification for any
value of e. This is witnessed by the output to input sequence s.s.s, where the
difference between the last output in the two systems is co.

8

Robert M. Hierons and Mohammad Reza Mousavi

Consider again the specification Specification and implementation Implementations

in Figure 2. It does not hold that Specification ~¢ 5 Implementation, either. This
is witnessed by the output to input sequence s.s.s.r (the difference between the
last output in the two systems is 1).

We now define the notion of separating two states for the scenario of interest.

Definition 6. Given FSM M and states s1,s9 € S, an input sequence T sepa-
rates s1 and sy if and only if A(s1,T) 7 X(s2,T). If T separates s; and sy then
we can write s1 %z s2. If T does not separate s1 and so then we write s; Xz So.
Similarly, given a set W of input sequences, we write s1 #%w s2 if there is a
input sequence in W that separates s1 and so and otherwise we write s; /&y Sa.

Where the input sequence of interest is clear, we often use % and ~, avoiding

reference to the input sequences used. Conformance and separability are related.

Proposition 2. Given FSMs M = (S, so, X,Y,6,\) and M7 = (Q, q0, X, Y, 1, A1),
My conforms to M if and only if no input sequence separates sg and qo.

When FSMs M and M; do not conform to each other, we denote this by

M % My; following Proposition 2, this can only happen if there exists z € X*
that separates the initial states of M and M, which we denote by M %; M.

Ezample 4. Consider again the FSMs given in Figure 2 and the notion of similar-
ity ~0.5; we have that the states Off in Specification and Off ; in Implementation,
are not separable by any input sequence and the two FSMs conform to each other
with respect to ~q 5.

However, Specification and Implementation, do not conform to each other.

The input sequence s.s.s.r separates the states Off and Off4, because the
former produces the output sequence on.off.on.20, while the later produces
on.off .on.21 and the two output sequences have a distance of 1. Note that
s.s.r.s does not separate these states even though s.s.r.s takes Specification and
Implementation, to states that do not correspond to one another; testing is
black-box and we cannot observe the internal state reached.

3.2 Apartness and Strong Separability

Previous work has used the notion of an apartness relation and shown how one
can use this to reason about test effectiveness when there is a finite set of outputs
and conformance is defined in terms of equality of outputs rather than similarity.

Definition 7. A binary relation # on a set Z is an apartness relation if and
only if it satisfies the following properties

— It is irreflezive: for all x € Z, x#x does not hold;
— It is symmetric: for all x,y € Z, if x#y then y#z; and
— It is co-transitive: for all x,y,z € Z, if x#y then either x#z or y#z.

Complete FSM Testing Using Strong Separability 9

Consider the classical notion of separability for FSMs defined in Section 2
(d-separability). It is clear that d-separability is both irreflexive and symmetric.
Now let us suppose that input sequence T d-separates states s; and sy of M and
so Z leads to different output sequences y; and > when applied in s; and ss.
Further, let us suppose that we input in some other state s; and this leads to
output sequence y. Since T d-separates s; and so we have that ¢; # 7. We there-
fore must have that either § # ¢; or § # g (or both) and so Z must d-separate s;
from at least one of s; and so. As a result, d-separability is co-transitive and so
is an apartness relation when testing a deterministic SUT against a completely-
specified deterministic FSM M, with identity rather than similarity. The results
of Vaandrager [31], regarding a test suite being m-complete, can therefore be
applied.

Now consider what we mean by separability when similarity is defined in
terms of a metric p and a threshold ¢. Then an input sequence separates states
s1 and s if the resultant observations o; and o are such that u(o1,02) > t.
In such scenarios, separability is not an apartness relation since it need not be
co-transitive, as shown by the following. Note that since we do not know the
FSM model M; of the SUT, in the definition of apartness (Definition 7), Z will
be the set of all states of all FSMs in F and not just the states of M.

Ezample 5. Consider the FSM thermostat models in Example 2 (Figure 2);
there, consider the states Off and On in the Specification FSM. They are sep-
arable using both inputs r and s. Let us consider what happens if we use r to
separate these states and we have some state s; of the SUT. Then s; can have
r/19.5, e.g., the state Off, in Implementation,, that cannot be separated using
only input r from either of the two states. This shows that separability is not
co-transitive and so is not an apartness relation.

Since we cannot use apartness, we explore how this can be weakened for the
scenarios of interest. We first discuss how d-separability is used in FSM-based
testing. In most FSM-based test techniques that aim to find state-transfer faults,
input sequences that d-separate states of a specification FSM M are used to check
the current state of the SUT. To see how this works, let us suppose that input
sequence T d-separates states s; and sy of M and that the (expected) output
sequences produced are y; and s respectively. Let us suppose that Z is applied
to the SUT when the SUT is in some state s;. There are three possibilities:

1. The SUT produces 2 in response to Z: T d-separates s; and s;.

2. The SUT produces ¥; in response to T: T d-separates s; and ss.

3. The SUT produces another output sequence g3 in response to T: T d-separates
s; and from both s; and ss.

FSM-based test techniques utilise such information provided by applying in-
put sequences that d-separate states of the specification. However, in Example 5
we saw that the above does not hold in the scenarios considered in this paper:
if two states of the specification are separated by an input sequence T then it is
possible that a state of the SUT is not separated from either of them by z.

10 Robert M. Hierons and Mohammad Reza Mousavi

We now strengthen the notion of separability, to what we call strong sepa-
rability, in a manner that ensures that strong separability satisfies the property
(of d-separability in traditional FSM-based testing scenarios) described above.

Definition 8. Given FSM M and states s1,s2 € S, input sequence T is a wit-
ness that states sy and s2, $1 # S2, are strongly separable, denoted s1#¥ sa, if
and only if for all s3 € F we have that either s; %z s3 or sg %z s3. We also say
that s1 and so are strongly separable and denote this s1#"“ss.

If similarity is defined by a metric p and threshold ¢ then strong separability
essentially requires us to double the threshold. The following is the situation for
input sequences of length one and follows immediately from metrics satisfying
the triangle inequality; it is straightforward to generalise the result to input
sequences of arbitrary length.

Proposition 3. If similarity is defined in terms of a metric p and thresh-
old t then an input x strongly separates states sy and sy of M if and only if
(A(s1,2), A(s2,x)) > 2t.

Ezample 6. Consider the FSM thermostat models in Example 2 (Figure 2). Re-
call that states Off and On in the Specification FSM are separable using both
inputs r and s. However, we have seen that they are not strongly separable us-
ing input . Namely, there can be a state that has r/19.5, e.g., the state Off, in
Implementation, that cannot be separated using only input r from either of the
two states. In such cases, one can fix this issue, i.e., obtain strong separability,
by either choosing different input sequences (in this case s) or decreasing the
threshold of similarity, e.g., to 0.1, so that all possible states in F are separa-
ble (by r) from at least one of these two states. In practice, the use of a lower
threshold might require changes to the equipment used to observe the SUT in
testing or to additional test runs with the same input sequence (so that more
precise estimates are produced).

The following states and proves basic properties of strong separability.

Proposition 4. Given FSM M and input sequence T, the relation #% is sym-
metric and irreflexive.

Using the following, we can compare strong separability and separability.

Proposition 5. Given FSM M, input sequence T and states s; and so of M
such that s1#% sa, we have that T separates sy and sa.

The following is immediate from the definition of strong separability and
corresponds to the property (described above) of d-separability in traditional
FSM-based testing.

Proposition 6. Given states s1 and sa of M with s1#%sq, if s3 € F then at
least one of the following must hold.

1. T separates s3 from si;
2. T separates sz from ss.

Complete FSM Testing Using Strong Separability 11

4 Test Generation

In this section, we explore the problem of test generation when, for every pair
of states of specification M, we have a specific input sequence that provides a
witness that these states are strongly separable.

Assumption 2 For every pair s1,ss of distinct states of M, there is an input
sequence T that is a witness that s1 and sy are strongly separable. We will use
w(s1, $2) to represent such a witness and require that w(sy, s2) = w(sa,s1).

Recall that M; conforms to M if and only if for all £ € X* we have that
A(s0,Z) ~ Ar(qo,) (Definition 5). In testing, we will apply input sequences (test
sequences) to the SUT and, for each such test sequence Z, check whether the
response of the SUT to Z is related to the specified response to T under ~;
namely, whether Ar(qo, Z) ~ A(s0,Z). If A(s0,Z) % Ar(qo,Z) then the SUT fails
Z and otherwise it passes . A test suite will thus be a set of input sequences. We
are interested in generating test suites with guaranteed fault detection ability.

Definition 9. Given an FSM M, a set T of input sequences is m-complete if
for all My € F™ we have that M conforms to M if and only if My does not fail
any test sequence in T

We will retain the notion of a state cover used in classical FSM-based test
generation techniques: a minimal prefix-closed set of input sequences that, be-
tween them, reach all states of M.

Definition 10. Given a finite state machine M, a set V of input sequences is
a state cover for M if V is prefix closed and for all s; € S there is exactly one
input sequence v; € V' such that §(sg,v;) = ;.

Ezample 7. Consider the Specification FSM in Example 2 (Figure 2); a state
cover set V for Specification is {e, s}.

In the following, for a state s; of M we use W(s;) to denote the set of input
sequences used to show that s; is strongly separable from other states of M.

Definition 11. Given state s1 of M, we let W(s1) denote the state identifica-
tion set

Wi(s1) = {w(s1,s2)|s2 € S\ {s1}}

Note that only a single witness is used for a pair of states and typically one
will use a relatively short such witness. Later (Proposition 11) we provide a
polynomial upper bound on the lengths of shortest such witnesses.

Ezample 8. Consider FSM Specification in Example 2 (Figure 2). Both r and
s pairwise separate the states of Specification but we have seen that only s
strongly separates these states: Off #Y On and —Off# On. Since Off#Y On,
we can choose {s} to be the state identification set for Off (and also for On).

12 Robert M. Hierons and Mohammad Reza Mousavi

Recall that we do not know the FSM M; that models the SUT but we will
want to reason about the states of M that are met during testing. Given state
s; of M and input sequence Z, we use Bz(s;) to denote the ball (set) of states
of My that are not separated from s; by Z.

Definition 12. Given state s; of M, input sequence T, and FSM My with state
set Q, Bz(si) = {q € Qlsi =z q}.

Example 9. Consider the Specification and Implementation, FSMs in Example
2 (Figure 2), comprising the set of states { Off, On, Off ;, Ong}. We have that
Q = {Onyg, Off o} Given identification set {s}, we have that Bs(Off) = {Off o}
and Bs(On) = {Ong}. Clearly we have that B,(On) and B,(Off) are disjoint.

The following is a consequence of strong separability and tells us that if we
take two states s; and sp of M that are strongly separated by Z then Bz(s1)
and Bz(sq) are pairwise disjoint.

Proposition 7. Given states s1 and so of M with s1#%¥sa, if T strongly sepa-
rates s1 and s, s € Bz(s1) and s € Bz(s2) then s§ # sb.

Observe that Bz(s;) is defined in terms of separability and not strong sepa-
rability. However, Proposition 7 concerns input sequences that strongly separate
states. The following shows what can happen if we were to instead use input
sequences that separate, but do not strongly separate, the states of the specifi-
cation.

Example 10. Consider again the Specification and Implementation, FSMs in
Example 2 (Figure 2), comprising the set of states {Off, On, Off ;, Ong}, with
Q@ = {Ony, Off}. Now consider the input r, which separates the states of the
specification, and the sets B; = {q € Q|g ~» Off} and B2 = {q € Q|q ~, On}.
Here By = {Off ,} and By = {Onyg, Off 4}, so By and By are not disjoint.

The test generation approach will be based on placing a lower bound on the
number of states M; must have if the SUT is faulty and it passes all the test cases
in a given test suite. The approach will use Proposition 7, which tells us that if
input sequences Z; and Zo reach states s; and sg of M respectively, w strongly
separates s1 and so (ie s1#Y%s2), and the SUT conforms to the specification on
both Z;.w and Zs.w then Z; and Ts must reach different states of Mj.

We now consider what we know about the states of the SUT reached by the
state cover V if M; conforms to M on the set of input sequences formed by
following each sequence in V' by the corresponding state identification set.

Proposition 8. Let V be a state cover for FSM M whose states are pairwise
strongly separable. Further, let us suppose that for every v € V. we have that the
states s; = 0(s0,v) and q; = 01(qo,v) satisfy s; ~w(s,) ¢i- Then V reaches n
separate states of M.

Complete FSM Testing Using Strong Separability 13

Ezample 11. Following up on Examples 7, 8, and 9, consider the state cover set
{e, s} and the state identification set {s} for which the states of the specification
are strongly separable. Now consider Implementation,; the state cover set of
the specification will take Implementation, to Off, and Ong, which are clearly
different states. The same holds for Implementation,, which has the same number
of states.

For Implementation,, since it has more states, we need more inputs to reach
the remaining states: using s, Specification and Implementation, will arrive in
state (On, Ongyp), further inputs are needed to bring the pair of Specification and
Implementation, into (On, Ong;) and then identify the output fault on input r.
This is formalised in the following test generation algorithm.

The test generation techniques that we build upon use input sequences of the
form v.Z.w such that v is a sequence in the state cover V, Z is any input sequence
of a given length ¢ (determined by the maximum number of extra states in the
SUT), and w is a state identifier for the state d(so,v.Z) of M. There are two
ways in which such an input sequence can lead to a failure being observed.

1. The SUT M7 does not conform to the specification M on the initial sequence
v.Z. If the SUT has output faults (one or more transitions produce the wrong
output) then these output faults will lead to such failures.

2. There are v, Z, and w such that the SUT M; conforms M on the initial
sequence v.T but does not conform to the specification on v.Z.w. Here, a
state identifier for d(so,v.Z) separates the state of the SUT M reached by
v.Z from the state of the specification M reached by v.Z (the test finds a
state transfer fault).

The following introduces corresponding notation, for a fixed length ¢ of input
sequence T.

Definition 13. Let us suppose that all states of FSM M are strongly separable
and My is an FSM with the same input and output alphabets as M. Further, let
us suppose that V' is a state-cover for M and for all s; € S we have that W (s;)
is a state identification set for s;. Given integer £ > 0:

D(M, M;,V,0) ={(v,Z)lv e VA|Z| =0 ANM %,z My}
DW (M, M, V,W,£) = {(v,Z)|lv € VA|Z]| = LA TJw € W((s0,vT)).
M%Ui‘w MI}

We now provide two results that show what one can deduce from the value
of the smallest integer £ such that D(M, My, V,£) U DW (M, M, V,W,£) # (.
Given this ¢, we will place a lower bound on the number of different states of
M reached by V and sequences of the form v.Z, for v € V and input sequence
Z of length at most ¢ (Proposition 9). We then show that this implies an upper
bound on the value of ¢ that we need to use in testing (Proposition 10).

Lemma 1. Let us suppose that all states of FSM M are strongly separable, My
does not conform to M, and ¢ > 0 is the smallest value such that D(M, My, V, £)U

14 Robert M. Hierons and Mohammad Reza Mousavi

DW (M, M;,V,W,0) # 0. If (v,x) € D(M, M;,V,0) U DW (M, M;,V,W,{) and
ZT1 is a non-empty proper prefiz of T then the state of My reached by vx, is not
a state of My reached by an input sequence in V.

Lemma 2. Let us suppose that all pairs of states of FSM M are strongly sep-
arable, My does not conform to M, £ > 0, and £ is the smallest value such
that D(M, My, V,0) U DW (M, M7, V,W,¢) # 0. If (v,z) € D(M,M;,V,£) U
DW (M, M;,V,W) and &1, T2 are different non-empty proper prefizes of T then
vZ1 and vTo Teach different states of M.

Example 12. For non-conforming implementation Implementation,, we have that
it is sufficient to take Z to be s since after s € V and Z = s, a further input
s € W can reach a non-conformance verdict between the specification and the
implementation. This is because the faulty implementation does not have any
additional state with respect to the specification. In terms of Definition 13 this
is summarised as follows, where, and for brevity we refer to the specification as
M and to Implementation, as M:

D(MaMlv‘/?l) :(Z)
DW(MaMIa‘/aml) = {(87‘9)}

D(M, M;,V,1) is the empty set because the pair with the shortest sequence to
distinguish M and M is (s, s.s), of which the second component is beyond the
limit of I = 1. However, DW (M, M;,V,W,1) contains the pair (s,s), because
after s.s by performing a further s € W, we can distinguish the two systems.

For non-conforming implementation Implementation,, the situation is dif-
ferent because it contains more states than the specification. Namely, we need
three further inputs, in addition to the state cover, to identify the output fault
(on input r) at state Ong: after performing input s from the state cover, we
need the additional inputs s.s.r to first bring the implementation to Ong; (using
s.s) and then identify the faulty output by performing an additional input 7.
This is generalised in the following results, where we identify an upper bound
on the length of intermediate sequences, between the state cover and the state
identification.

In terms of Definition 13 this is summarised as follows, where, and for brevity
we refer to the specification as M and to Implementation, as M:

D(MaMlv‘/?l) :D(M7M17‘/72) :(A
D(M, M, V,3) ={(s, s.s.r)}

D(M, M;,V,1) and D(M, M;,V,2) are both the empty set because the pair
with the shortest sequence to distinguish M and My is (s, s.s.r), of which the
second component is beyond the limit of [= 2.

However DW (M, My, V, W, 3) is the empty set; had we had a transition fault,
instead of an output fault at the final state, then DW (M, M;, V, W, 3) would have
been non-empty.

Complete FSM Testing Using Strong Separability 15

We can use the above-given Lemmas to place a lower bound on the number
of states an SUT must have if the SUT is faulty and we know the smallest value
£ such that D(M, My, V,£) U DW (M, M, V,W,£) # (.

Proposition 9. Let us suppose that all pairs of states of FSM M are strongly
separable, My does not conform to M, and for all v € V and w € W(6(sp,v))
we have that M /2, My. If € is the smallest value such that D(M, M, V,£) U
DW (M, M;,V,W,£) # 0 and £ > 0 then M; has at least n + £ — 1 states.

Now consider the standard FSM-based testing context in which we assume
that the FSM M7 that models the SUT has at most n + k states and we wish to
generate sufficient tests to determine whether M; conforms to M. We can use
Proposition 9 to provide an upper bound on the value of £ that we require to
use when testing with sequences of the form v.z and v.Z.w, with |Z| < /.

Proposition 10. Let us suppose that all pairs of states of FSM M are strongly
separable and M; does not conform to M. If My has at most k more states than
M then there exists some v € V, and T € X* such that |Z| < k+ 1 and one of
the following holds:

— My #yz M; or

— there is some w € W(d(so,vT)) such that Mt &,z M.

We now show what this implies regarding test completeness.

Theorem 1. Let us suppose that the states of FSM M are pairwise strongly sep-
arable, M has n states, and My has at most m = n+k states. If D(M, My, V,£)U
D(M, My, V. £) =0 for all £ < k + 1 then M; conforms to M.

This result shows how test generation can proceed: one simply uses the test
sequences implicit in the definitions of D(M, M;,V,¢) and DW (M, M;,V, W, ?).
Algorithm 1 gives the corresponding test generation algorithm. Note that for
a state s; of M, W(s;) is a Harmonized State Identifier for s; as used in the
HSI-method except that we require W(s;) to strongly separate s; from other
states of M; it is not sufficient for W (s;) to separate s; from other states of M.
As a result, Algorithm 1 is essentially the HSI-method, with the only difference
being how we define conformance and the W (s;). Since the test set produced
by the HSI-method is a subset of those produced by the W-method and the
Wp-method, the above demonstrates that these test generation techniques also
produce m-complete test sets when we have a notion of similarity of outputs
rather than equality and we use state identifiers that strongly separate states.

Ezample 13. Consider the Specification FSM in Figure 2. We established in Ex-
ample 7 that V = {¢, s} and in Example 8 that the state-identification set that
strongly separates the specification states is W = {s}. Hence, assuming that we
are only interested in implementations that have the same state count as the
specification, by applying Algorithm 1, we obtain:

T={vzwlve{estANTe{ersthwe{s}}

T = {c.c.8,6.1.8,6.8.8,8.18, 5.5.8 }

={s,r.8,8.8,8.1.8,5.8.5}

16 Robert M. Hierons and Mohammad Reza Mousavi

Algorithm 1 Test Generation Using Strong Separability
Input: FSM M = (S, s, X,Y,d,\) where S = {s1,...,8n.}, m>n
Derive state cover V'
Derive state identification sets W (s1),..., W (sn) based on strong separability
Derive T'={v.Zwlv € V,;Z € X*,0<|Z| <m—n+1,w € W(§(s0,v.T))}
Remove from T all prefixes
return T

If we wish to find faulty implementations such as Implementation, then we
need to use a larger value for k. If we use £ = 2 then we obtain the following.

T ={v.z.wlv € {e,s} NT € {e,r,s,77,18, ST, 88, T, TT'S, I'ST, I'SS, ST'T", ST'S,
ssr,sss} ANw € {s}}

Note that the key difference between these sets of generated inputs and
the traditional HSI method is that the adapted algorithm forces the state-
identification set to provide strong separability. Otherwise, the traditional HSI
method can use r to separate states and generate r.r, s.s.r and s.r.r as the longest
sequences (for k = 0) and these sequences will miss the fault in Implementation, .
This demonstrates that the HSI method, with state identifiers that do not
strongly separate the states of the specification, is not complete. Using this spec-
ification FSM, state cover, and state identifiers, the W-method and Wp-method
return the same test suite and so are also incomplete.

A final observation is that, as usual, if a test suite contains input sequences
Z1 and ZTo and Zs is a prefix of Z; then we can remove T from the test suite
without reducing effectiveness. In the first example above, this final optimisation
reduces the test suite to {r.s, s.r.s, s.s.s}.

It is now worth considering how large the test suite can be for an FSM
specification M with n states. Clearly V' contains n input sequences and these
have length at most n — 1: we can generate such input sequences through a
breadth-first search. Further, each W(s;) contains at most n — 1 sequences. The
following places an upper bound on the lengths of sequences in W (s;), assuming
we use shortest sequences that suffice.

Proposition 11. Let us suppose that M is an FSM with n states, which are
pairwise strongly separable. For every pair s1, so of distinct states of M, there is
an input sequence of length at most @ that strongly separates s1 and ss.

Thus, the sizes of the state cover and state identification sets are low-order
polynomial. Naturally, the size of the test suite grows exponentially as the upper
bound, k, on the number of extra states grows. However, this is also the case with
techniques such as the HSI-method when applied in the classical FSM context.
In practice, the value of k used might depend upon domain knowledge and a
cost /benefit analysis.

Complete FSM Testing Using Strong Separability 17

It is finally worth commenting on the computational complexity of deriving
the state cover and state identifiers. Clearly, a state cover can be derived in
low-order polynomial time since breadth-first search takes linear time. It is also
possible to derive the state identifiers in polynomial time. In particular, it is
possible to define a simple iterative algorithm based on the proof of Proposi-
tion 11, with this operating as follows. First, we determine which pairs of states
can be strongly separated by a single input and record these (we could say that
these are strongly 1-separable). We then determine which of the remaining pairs
{si,s;} of states are strongly separated by input sequences of length 2 (they are
strongly 2-separable). In order to check this, for each pair {s;, s;} of states (that
are not strongly 1-separable) we check whether there is an input x such that
states d(s;,x) and d(s;,x) are strongly 1-separable. This process continues: in
each iteration, for each pair {s;, s;} of states not already strongly separated, we
determine whether there is an input = such that states 6(s;,) and 0(s;, z) have
already been strongly separated in an earlier iteration. Clearly, each iteration
takes polynomial time and, from Proposition 11, we know that there are at most
w iterations. Bringing together the above information, we have that Algo-
rithm 1 has polynomial time complexity as long as we bound k. Note, however,
that the test suite can size grow exponentially with k& but this is true also of
classical FSM test generation techniques such as the W, Wp, and HSI-methods.

Finally, we identify a condition under which separability and strong separa-
bility coincide.

Definition 14 (Strongly different). Two outputs y1,y2 € Y are strongly
different if for all y3 € Y we have that either y1 # ys or ys % ys. Further, an
FSM M = (S, 50, X,Y,d,\) has strongly different outputs if for all s1,s5 € S
and x € X we have that either A(s1,x) = A(s2,2) or A(s1,x) and A(s2,x) are
strongly different.

Proposition 12. Given an FSM M = (S,s0,X,Y,d,), if M has strongly dif-
ferent outputs then an input sequence T strongly separates states s1 and so of M
if and only if T separates s1 and so.

Recall that Theorem 1 tells us that we can use the HSI-method (and so the
W and Wp-methods) to produce m-complete test suites as long as the state iden-
tification sequences strongly separate the states of the specification M. Propo-
sition 12 thus tells us that if M has strongly different outputs then we can use
the W-method, Wp-method and HSI-method in the usual way (and so any tools
that implement these). In some scenarios, we might be able to design the testing
approach (eg the number of times that test execution is repeated) in order to
reduce the threshold so that the specification has strongly different outputs.

5 Conclusions

This paper proposed the notion of strong separability, inspired by apartness in
constructive mathematics. This allows for separating states according to approx-
imate notions of conformance, that allow for a margin of error, in quantitative

18 Robert M. Hierons and Mohammad Reza Mousavi

finite-state machine models of systems. We showed the applicability of our notion
by adopting it in a well-known model-based testing technique, the HSI method.
We proved that using our notion, the HSI method is complete for approximate
notions of conformance. To illustrate our approach, we used a simple thermostat
example and three implementations. We also demonstrated that complete test
suites need not be produced if we use separability rather than strong separabil-
ity. We gave (low-order) complexity results for test generation and polynomial
upper bound on test size.

Recall that the proposed approach operates by reasoning about the number
of states of the SUT met during testing and does this by strongly separating
states. We have seen that this is consistent with the W-method, the Wp-method
and the HSI-method. These three approaches differ in the choice of state identifi-
cation sequences used but they keep this choice fixed throughout test generation.
Dorofeeva et al. [13] introduced the H-method, which allows different state iden-
tification sequences to be used for different input sequences. It may be possible
to extend the results given in this paper to the H-method by allowing the input
sequence w(sy, s2) used to strongly separate two states of M to vary.

There are several lines of possible future work corresponding to the follow-
ing limitations. First, we abandoned the use of the observation tree used by
Vaandrager [31] since a correct SUT might produce traces that are not traces of
the specification M it may be possible to reason about observation trees that
are ‘similar’ to those of M. Second, we considered deterministic, completely-
specified FSMs and the test generation algorithm assumes that the states of M
are pairwise strongly separable. Although these requirements are weaker than
those imposed by the work that uses apartness, there is the question of how they
might be further weakened. Finally, we will look into using strong separability
to develop novel automata learning algorithms by integrating algorithms that
use apartness [32,33] with those that consider quantitative extensions of state
machines [23, 3, 27]. Our threshold would allow for adjusting the level of abstrac-
tion we admit in learning and can provide an adjustable trade-off between the
accuracy and the size of the learned model.

Acknowledgements Robert M. Hierons and Mohammad Reza Mousavi have been
partially supported by the UKRI Trustworthy Autonomous Systems Node in Verifi-
ability, Grant Award Reference EP/V026801/2. Mohammad Reza Mousavi has been
partially supported by the EPSRC project on Verified Simulation for Large Quan-
tum Systems (VSL-Q), grant reference EP/Y005244/1 and the EPSRC project on
Robust and Reliable Quantum Computing (RoaRQ), Investigation 009 Model-based
monitoring and calibration of quantum computations (ModeMCQ), grant reference
EP/W032635/1 and ITEA /InnovateUK projects GENIUS and GreenCode.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

Complete FSM Testing Using Strong Separability 19

References

1.

10.

11.

Abbas, H., Mittelmann, H.D., Fainekos, G.: Formal property verifica-
tion in a conformance testing framework. In: Twelfth ACM/IEEE In-
ternational Conference on Formal Methods and Models for Codesign,
MEMOCODE 2014, Lausanne, Switzerland, October 19-21, 2014. pp.
155-164. IEEE (2014). https://doi.org/10.1109/MEMCOD.2014.6961854,
https://doi.org/10.1109/MEMCOD.2014.6961854

Angluin, D.: Learning regular sets from queries and counterexamples. Inf.
Comput. 75(2), 87-106 (1987). https://doi.org/10.1016,/0890-5401(87)90052-6,
https://doi.org/10.1016,/0890-5401(87)90052-6

Bacci, G., Ingolfsdottir, A., Larsen, K.G., Reynouard, R.: Active learn-
ing of markov decision processes using baum-welch algorithm. In: Wani,
M.A., Sethi, I.K., Shi, W., Qu, G., Raicu, D.S., Jin, R. (eds.) 20th
IEEE International Conference on Machine Learning and Applications,
ICMLA 2021, Pasadena, CA, USA, December 13-16, 2021. pp. 1203-
1208. IEEE (2021). https://doi.org/10.1109/ICMLA52953.2021.00195,
https://doi.org/10.1109/ICMLA52953.2021.00195

Biewer, S., D’Argenio, P.R., Hermanns, H.: Doping tests for cyber-physical
systems. ACM Trans. Model. Comput. Simul. 31(3), 16:1-16:27 (2021).
https://doi.org/10.1145 /3449354, https://doi.org/10.1145 /3449354

Biewer, S., Dimitrova, R., Fries, M., Gazda, M., Heinze, T., Hermanns,
H., Mousavi, M.R.: Conformance relations and hyperproperties for dop-
ing detection in time and space. Log. Methods Comput. Sci. 18(1) (2022).
https://doi.org/10.46298 /LMCS-18(1:14)2022, https://doi.org/10.46298 /Imcs-
18(1:14)2022

van Breugel, F., Hermida, C., Makkai, M., Worrell, J.: An accessible approach to
behavioural pseudometrics. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi,
C., Yung, M. (eds.) Automata, Languages and Programming, 32nd International
Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings. Lec-
ture Notes in Computer Science, vol. 3580, pp. 1018-1030. Springer (2005).
https://doi.org/10.1007/11523468\ 82, https://doi.org/10.1007/11523468 82
van Breugel, F., Worrell, J.: Towards quantitative verification of probabilistic
transition systems. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) Au-
tomata, Languages and Programming, 28th International Colloquium, ICALP
2001, Crete, Greece, July 8-12, 2001, Proceedings. Lecture Notes in Computer
Science, vol. 2076, pp. 421-432. Springer (2001). https://doi.org/10.1007 /3-540-
48224-5\ 35, https://doi.org/10.1007/3-540-48224-5 35

Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A.: Model-Based
Testing of Reactive Systems, Lecture Notes in Computer Science, vol. 3472.
Springer (2005)

Chaudhuri, S., Gulwani, S., Lublinerman, R.: Continu-
ity and robustness of programs. Commun. ACM 55(8),
107-115 (Aug 2012). https://doi.org/10.1145/2240236.2240262,

https://doi.org/10.1145/2240236.2240262

Chow, T.S.: Testing software design modelled by finite state machines. IEEE Trans-
actions on Software Engineering 4, 178-187 (1978)

Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for Ila-
belled markov processes. Information and Computation 179(2), 163-
193 (2002). https://doi.org/https://doi.org/10.1006/inco.2001.2962,
https://www.sciencedirect.com/science/article /pii/S0890540101929621

20

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Robert M. Hierons and Mohammad Reza Mousavi

Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance us-
ing the skorokhod metric. Formal Methods Syst. Des. 50(2-3), 168-206 (2017).
https://doi.org/10.1007/S10703-016-0261-8, https://doi.org/10.1007/s10703-016-
0261-8

Dorofeeva, R., El-Fakih, K., Yevtushenko, N.: An improved conformance testing
method. In: 25th IFIP WG 6.1 International Conference on Formal Techniques for
Networked and Distributed Systems (FORTE 2005). Lecture Notes in Computer
Science, vol. 3731, pp. 204-218. Springer (2005)

Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic
specifications for continuous-time signals. Theor. Comput. Sci.
410(42), 4262-4291 (2009). https://doi.org/10.1016/J.TCS.2009.06.021,
https://doi.org/10.1016 /j.tcs.2009.06.021

Fujiwara, S., v. Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test
selection based on finite state models. IEEE Transactions on Software Engineering
17(6), 591-603 (1991)

Gaudel, M.C.: Testing can be formal too. In: 6th International Joint Conference
CAAP/FASE Theory and Practice of Software Development (TAPSOFT’95). Lec-
ture Notes in Computer Science, vol. 915, pp. 82-96. Springer (1995)

Hennie, F.C.: Fault-detecting experiments for sequential circuits. In: Proceedings
of Fifth Annual Symposium on Switching Circuit Theory and Logical Design. pp.
95-110. Princeton, New Jersey (November 1964)

Hierons, R.M., Bogdanov, K., Bowen, J.P., Cleaveland, R., Derrick, J., Dick, J.,
Gheorghe, M., Harman, M., Kapoor, K., Krause, P., Liittgen, G., Simons, A.J.H.,
Vilkomir, S.A., Woodward, M.R., Zedan, H.: Using formal specifications to support
testing. ACM Computing Surveys 41(2), 9:1-9:76 (2009)

Khakpour, N., Mousavi, M.R.: Notions of conformance testing for cyber-
physical systems: Overview and roadmap (invited paper). In: Aceto,
L., de Frutos-Escrig, D. (eds.) 26th International Conference on Con-
currency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015.
LIPIcs, wvol. 42, pp. 18-40. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik (2015). https://doi.org/10.4230/LIPICS.CONCUR.2015.18,
https://doi.org/10.4230,/LIPIcs. CONCUR.2015.18

Lee, D., Yannakakis, M.: Testing finite-state machines: State identification and
verification. IEEE Transactions on Computers 43(3), 306-320 (1994)

Lee, D., Yannakakis, M.: Principles and methods of testing finite-state machines -
a survey. Proceedings of the IEEE 84(8), 1089-1123 (1996)

Luo, G., Petrenko, A., v. Bochmann, G.: Selecting test sequences for partially-
specified nondeterministic finite state machines. In: The 7th IFIP Workshop on
Protocol Test Systems. pp. 95-110. Chapman and Hall, Tokyo, Japan (November
8-10 1994)

Medhat, R., Ramesh, S., Bonakdarpour, B., Fischmeister, S.: A frame-
work for mining hybrid automata from input/output traces. In: Gi-
rault, A., Guan, N. (eds.) 2015 International Conference on Embed-
ded Software, EMSOFT 2015, Amsterdam, Netherlands, October 4-9, 2015.
pp. 177-186. IEEE (2015). https://doi.org/10.1109/EMSOFT.2015.7318273,
https://doi.org/10.1109/EMSOFT.2015.7318273

Miller, T., Strooper, P.A.: A case study in model-based testing of specifications
and implementations. Software Testing, Verification and Reliability 22(1), 33-63
(2012)

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Complete FSM Testing Using Strong Separability 21

Mohd-Shafie, M.L., Kadir, W.M.N.W., Lichter, H., Khatibsyarbini, M., Isa,
M.A.: Model-based test case generation and prioritization: a systematic
literature review. Software and Systems Modeling 21(2), 717-753 (2022).
https://doi.org/10.1007 /s10270-021-00924-8, https://doi.org/10.1007/s10270-021-
00924-8

Sankaranarayanan, S., Kumar, S.A.; Cameron, F., Bequette, B.W., Fainekos, G.,
Maahs, D.M.: Model-based falsification of an artificial pancreas control system.
SIGBED Rev. 14(2), 24-33 (2017). https://doi.org/10.1145/3076125.3076128,
https://doi.org/10.1145/3076125.3076128

Tappler, M., Aichernig, B.K., Bacci, G., Eichlseder, M., Larsen, K.G.: L*—
based learning of markov decision processes (extended version). Formal Aspects
Comput. 33(4-5), 575-615 (2021). https://doi.org/10.1007/S00165-021-00536-5,
https://doi.org/10.1007/s00165-021-00536-5

Tretmans, J.: Model based testing with labelled transition systems. In: Formal
Methods and Testing. Lecture Notes in Computer Science, vol. 4949, pp. 1-38.
Springer (2008)

Tuncali, C.E., Pavlic, T.P., Fainekos, G.: Utilizing s-taliro as an au-
tomatic test generation framework for autonomous vehicles. In: 19th
IEEE International = Conference on Intelligent Transportation Sys-
tems, ITSC 2016, Rio de Janeiro, Brazil, November 1-4, 2016. pp.
1470-1475. IEEE (2016). https://doi.org/10.1109/1TSC.2016.7795751,
https://doi.org/10.1109/I1T'SC.2016.7795751

Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing ap-
proaches. Software Testing, Verification and Reliability 22(5), 297-312 (2012)
Vaandrager, F.W.: A new perspective on conformance testing based on apart-
ness. In: Capretta, V., Krebbers, R., Wiedijk, F. (eds.) Logics and Type Sys-
tems in Theory and Practice - Essays Dedicated to Herman Geuvers on The
Occasion of His 60th Birthday. Lecture Notes in Computer Science, vol. 14560,
pp. 225-240. Springer (2024). https://doi.org/10.1007/978-3-031-61716-4\ 15,
https://doi.org/10.1007/978-3-031-61716-4 15

Vaandrager, F.W., Garhewal, B., Rot, J., Wimann, T.: A new approach for
active automata learning based on apartness. In: Fisman, D., Rosu, G. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems - 28th In-
ternational Conference, TACAS 2022, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings, Part I. Lecture Notes in Computer Science, vol.
13243, pp. 223-243. Springer (2022). https://doi.org/10.1007/978-3-030-99524-
9\ 12, https://doi.org/10.1007/978-3-030-99524-9 12

Vaandrager, F.W., Sanders, M.: L# for dfas. In: Jansen, N., Junges,
S., Kaminski, B.L., Matheja, C., Noll, T., Quatmann, T., Stoelinga, M.,
Volk, M. (eds.) Principles of Verification: Cycling the Probabilistic Land-
scape - Essays Dedicated to Joost-Pieter Katoen on the Occasion of His
60th Birthday, Part III. Lecture Notes in Computer Science, vol. 15262,
pp. 155-172. Springer (2024). https://doi.org/10.1007/978-3-031-75778-5\ 8,
https://doi.org/10.1007/978-3-031-75778-5 8

Vasilevskii, M.P.: Failure diagnosis of automata. Cybernetics 4, 653-665 (1973)

