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Abstract. Testing connected cyber-physical systems (CPS) is a com-
plex task. Connected CPS feature complex stochastic dynamic behaviour
in interaction with the physical and human environment as well as com-
munication over networks. Devising an oracle for testing connected CPS
is a challenge; the oracle should be able to quantitatively reason about
the stochastic nature of the interactions between the CPS and its en-
vironment. The quantitative reasoning should be sensitive to significant
deviations in the dynamics and neglect minor deviations, e.g., due to
measurement errors. To address this challenge, we provide the mathe-
matical framework for conformance testing of connected CPS. We define
a quantitative measure of closeness for two distributions of trajectories
(i-e., output distributions from two distinct stochastic systems that are
provided with the same input stimuli) that allows for capturing signif-
icant temporal and spatial deviations and neglecting subtle ones. This
measure forms the basis for our notion of stochastic conformance, which
determines when two stochastic systems conform to each other. We im-
plement our proposed notion of stochastic conformance and compare our
notion against a state-of-the-art baseline by applying both approaches
to a case study involving a platoon of connected vehicles. Our notion de-
tects a variety of different types of faults whilst allowing subtle deviations
resulting from naturally occurring perturbations inherent to CPS.
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1 Introduction

Connected Cyber-Physical Systems (CPS) represent an integration of computa-
tion, networking, and physical processes, where embedded computers and net-
works monitor and control physical processes [9]. As these systems are highly
prevalent in critical domains such as healthcare, automotive, and aerospace, en-
suring their correctness and reliability is paramount [24]. However, verifying CPS
is challenging and many techniques have been developed to ensure their correct-
ness [38J6]. One such approach is conformance testing, which verifies whether a
system complies with its specification by comparing their outputs through a well-
defined mathematical relation (i.e., a conformance notion) [27]. Conformance
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testing is highly relevant to CPS, as comparing the system against its specifica-
tion supports automated test oracles. Nonetheless, applying conformance testing
to CPS presents several challenges.

One of the key challenges in conformance testing for CPS is to define a quanti-
tative measure that detects significant deviations, yet disregards subtle perturba-
tions in the system behaviour caused by naturally occurring physical phenomena
and measurement errors. For instance, sensor noise, mechanical backlash, and
communication delays can affect the behaviour of such systems in a negligible
way. If not accounted for, this can lead to false negatives, i.e., failing a test case,
even when the system is within the expected boundaries [2]. Thus, conformance
testing techniques should provide adjustable temporal and spatial bounds (to be
defined by domain experts) to allow for detecting significant deviations between
a system’s output and its specification while neglecting the minor ones. The sec-
ond key challenge arises from the stochastic nature of connected CPS and their
environments, necessitating conformance testing that accounts for the proba-
bilistic distributions of outcomes. The need for such a notion has been identified
in the literature: it has been demonstrated that test results for CPS are often
stochastic, leading to variability in outputs when the same test is re-executed
multiple times [I8].

In the literature, existing conformance notions can accommodate for (i) tem-
poral error margins and (ii) spatial error margins [I], or (iii) stochasticity [32],
exclusively. However, to our knowledge, there is no conformance testing approach
that covers these three aspects simultaneously. The aim of this work is to pro-
pose a conformance notion that responds to the identified need and addresses
all three aspects. To this end, we define a quantitative measure that compares
output distributions and checks whether their distance is within user-defined
margins. This lets us uncover deviating stochastic behaviour that indicates a
failure whilst allowing for subtle, naturally occurring temporal and spatial de-
viations. We implement our conformance testing notion and compare it against
the state-of-the-art it using a case study of a connected platoon. Our results
show that our conformance notion can detect a higher number of inserted faults
and common faulty signal patterns (identified by a taxonomy on signal-based
properties of CPS [14]), given the same test suite, compared to the alternative.

In summary, the main contributions of this work are as follows. We first
introduce a novel conformance notion that allows for (i) reasoning about the
stochastic nature of connected CPS (by considering distributions of outputs) and
for (ii) quantitative temporal and spatial error margins in the outputs (which
are needed to fail major deviations while reducing the number of false nega-
tives). Then, we implement our conformance notion into a publicly-available
tool. Lastly, we present the results of an empirical evaluation that compares our
notion against a baseline [32]; we make the assets and data resulting from the
study publicly available at https://zenodo.org/records/14906880.

We assess the performance of our conformance testing approach using the
true positive (a correct fail verdict) and false positive (an incorrect fail verdict)
metrics. We devise the following research questions based on these two metrics.
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— RQ1. Is our conformance testing approach effective in detecting substantial
discrepancies between the outputs of two CPS and, hence, yielding true
positive verdicts?

— RQ2. Is our conformance testing approach adaptable to allow negligible
discrepancies between the outputs of two CPS and, hence, avoiding false
positive verdicts?

The notion of false positives and negatives is related to the parameters of
the conformance notion. That is, any deviating behaviour within the allowed
margins should not result in a fail verdict. The opposite must also be true: any
deviating behaviour beyond the allowed margins should result in a fail verdict.

2 Related Work

Classical methods for automatic verification of CPS, such as reachability anal-
ysis [8] and, more generally, model checking [I6] have been extensively studied
and applied [22[T5033I3I10]; such methods typically rely on exhaustively ex-
ploring the state-space of the system (or its model). However, these methods
are prone to the state-space explosion problem and cannot be used for large-
scale systems. Classical conformance testing approaches [3GIIIT9] address this
problem by non-exhaustively falsifying a specification through comparing the
specification against the system under test. This is typically done using dis-
tance metrics such as Euclidean [I] and Skorokhod [19] to compute the degree
of dissimilarity between the observed and expected output. However, they fail
to account for stochastic behaviour, limiting their applicability to real-world
CPS. To address the limitations of traditional verification approaches, stochas-
tic approaches have been proposed. They range from exhaustive model-checking
approaches [28] to non-exhaustive formal verification [I7J25] and conformance
testing [29)32] approaches. In the remainder of this section, we review the most
significant contributions in this area and compare them to ours.

Clarke et al. [I7] developed a strategy for statistical model checking of CPS
by combining the Monte Carlo method with temporal logic model checking.
They sample simulations of the system model and check their conformance with
respect to a temporal formula by applying a statistical estimation technique to
compute the probability that the formula is satisfied. Unlike our work, they fo-
cus on verifying compliance with respect to properties whereas our methodology
works by verifying that the distance between (expected and observed) output
distributions is smaller than a pre-defined value. More closely related to our
work, Qin et al. [32] propose a notion of conformance for stochastic system that
checks whether the probability of the distance between outputs is less than the
failure probability. Unlike their work, we consider not only spatial but also tem-
poral distance between outputs. This allows us to cater for delays that naturally
occur in CPS. Furthermore, our notion of distance considers point-by-point and
not the overall distance between the entire output signal; hence, we propose a
more thorough formalism that can catch short bursts of discrepancy that violate
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conformance. Similarly, Leemans et al. [29] use the Wasserstein distance to quan-
tify the distance between two stochastic Petri systems. Their notion of distance
is based on the “earth movers’ distance” and measures the effort to transform
the distributions of traces in one model into the distribution of traces in another.
Their approach substantially differs from ours, as it has only been considered for
discrete systems (using traces based on event logs). The effect of using different
distance measures (such as total variation distance [35] or Wasserstein [23]) on
the effectiveness of conformance testing can be further investigated.

3 Preliminaries

In this section, we provide the preliminary concepts used to define conformance.
We start with a running example of a CPS (Section , and, in Section
we provide the mathematical background to describe stochastic systems. Lastly,
in Section we recall a basic notion of conformance [2] (for non-stochastic
systems) that we extend to deal with the stochastic nature of CPS.

3.1 Running example

Consider a system where a convoy of cars autonomously follow a leading human-
driven car. The leading car sends its acceleration, velocity, and location via wire-
less communication channels to the followers. It is critical that the follower cars
are up-to-date with the information received from the connected cars; therefore,
following the literature, we employ the concept of data age as a safety metric
for the platoon [I3]. Due to network congestion, the transmission of a packet
has a probability distribution. In the remainder, we use this running example to
explain the basic concepts and further elaborate on it as our case study.

3.2 Probability theory
To formally model stochastic systems, we start by defining probability spaces.

Definition 1 (Probability Space). A probability space is a triple, denoted by
(2, F, P), comprising the sample space (2, a set F of events that is a o-algebra of
2, and a function P : F — [0, 1] that provides the probability measure for the set
of events. A o-algebra of a set X is defined as a non-empty collection of subsets
of X closed under complement, countable unions, and countable intersections.

A probability space is a triple that comprises the sample space {2 (i.e., the
set of all possible outcomes), a collection of events within the sample space F
that may or may not comprise every outcome in {2 (i.e., the o-algebra of §2),
and a probability measure P that assigns a probability to each event in F.

Ezample 1 (Probability Space). A probability space for our running example
comprises the set of all possible outcomes for data-age (2 = Rsg), a possible
collection of events is the sets of intervals of size 1 between natural numbers less
than 5 (F = {[1,2],[2,3],[3,4],[4,5]}), and the probability of the event where
the data-age X falls within [1,2] is P(1 < X <2) = 2.
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The concepts of probability space and random variables are closely related;
in this work, a random variable is a function that assigns a numerical value to
each elementary outcome. We formally define it below.

Definition 2 (Random Variable). Consider the probability space (§2,F, P)
where (2 is the sample space, F is a o-algebra of 2, and P : F — [0,1] is a
probability measure. A random variable X is a function X : 2 — R from the
sample space (2 into the set of numerical values R.

In probability theory, the probability of a continuous random variable X
taking a specific value is always equal to zero; instead, its probability is measured
over a range of values (i.e., Pla < X < b]). For such variables, in order to
calculate probabilities, we use a probability density function (pdf), denoted by
f(t). Essentially, the area beneath the two points (a, b) in the plot of such a
function constitutes the probability density within the range Pla < X < b]. We
recall the formal definition of probability density functions below.

Definition 3 (Probability Density Function). Consider the probability space
(2, F,P), and a random variable X : 2 — R. A probability density function of
X, denoted by f(t), is a function that obeys the following properties:

- P(X €a,b) = [, f(t)dt;
— f(t) > 0 for all possible values of t;

= J13 rnde = 1;

We denote by Dens(V') the set of the density functions over the set of random
variables V. The first property specifies that the probability of an event X to be
within the range [a, ] is equal to the integral of f(t) (the pdf of X) from a to b;
this corresponds to the area beneath the plotted line formed by f(¢) within [a, b].
The second and third properties specify that a pdf is never negative and that the
total area beneath the plot is always equals to 1, respectively. The last property
essentially states that the probability of an event to be between [—oo, +00] is 1.

Ezample 2 (Probability density function). Consider our running example; the
pdf for the data-age (D) is the normal distributions function, defined by:

folt) = ——=eHF,
oV 2w
where o and u are the location and scale parameters and, for this example, are set
to 0.25 and 1, respectively. The plot of this function is shown in Figure[I] where
we highlight in grey the area that corresponds to P(0.8 < D < 1.2) = 0.64.

In order to determine conformance between two systems, one first needs a way
to quantify the degree of similarity between them. For stochastic systems, we can
make use of statistical distance metrics such as the total variation distance [35],
the Wasserstein metric [23], and the Hellinger distance [I2]. Throughout the
remainder of this paper, we employ the last definition (defined below) as our
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Fig. 1: Running example PDF. Fig. 2: Example of an acceleration trajectory.

distance metric as it is akin to the Euclidean distance for stochastic system
and, hence, more intuitive to understand. In the experiment section (Section @,
however, we also compare the results of using the other two metrics and we show
that, in fact, Hellinger distance does perform better than the alternatives.

Definition 4 (Hellinger distance). Given two probability density functions
f(z) and g(x), the Hellinger distance d(f,g) is given by the formula:

dif9) =5 [ (VD - Vo) de

Essentially, the Hellinger distance can be seen as the ¢ norm between two
distributions (more specifically, between the square root of the distributions).

3.3 Conformance

In what follows, we recall a basic theory to define stochastic systems and use the
notions of pdf (Definition |3)) and a measure of distance (Definition [4]) to develop
our stochastic conformance notion. We start with the notion of valuation, which
provides the values for set of variables and serves as the basis for our definitions.

Definition 5 (Valuation). Given a set of variables V.= {X1,..., X}, we
denote by Val(V) = V. — R the set of all total functions from V to the real
domain R.

In cyber-physical systems, variables have continuous valuation over time.
This can be represented using trajectories, which are collections of variable val-
uations within a time interval.

Definition 6 (Trajectory). Given a set of variables V, the set of trajectories
over V, denoted by Trajs(V) = {x1,...,xm}, is the set of all mappings T —
Val(V), where T is the time domain, assumed to be a convex subset of R>g.

Ezample 38 (Acceleration trajectory). Consider our running example and that, in
this example, the acceleration can be depicted by a trajectory that increases for
the first 1.5 seconds, stays constant for 3 seconds and then decreases for another
1.5 seconds. This trajectory is depicted in Figure [2]
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The trajectory of a variable maps the moments in time to values. Given
two trajectories, their similarity can be evaluated using a parametric notion
that caters for spatial and temporal discrepancies. This allows for conformance
verdicts in scenarios where slight deviations are acceptable.

Definition 7 ((7,¢)-closeness [1]). Consider the mazimum temporal and spa-
tial distances T,e € R | T,€ > 0, and the time domain T; then, two trajectories
Y1 and yo are said to be (T,¢)-close, denoted by y1 ~(re) Yo, if

1. for allt € dom(y;) witht < T, there exists s € dom(ys) such that [t —s| < T
and [[y1(t) — y2(s)l| < €, and

2. for allt € dom(yy) with t < T, there exists s € dom(yy) such that |t —s| < T
and [ly2(t) — y1(s)[| < e.

The notion of (7,€)-closeness [2] is defined based on the continuous behaviour
associated with a continuous physical system, and, hence, this notion does not
require the output signals to behave in exact synchronisation. In practice, due to
physical phenomena such as measurement errors, transport delays, or mechanical
backlash, two implementations of the same system will often slightly deviate from
each other [2]. The closeness notion that we adopt in this work to determine
how close two trajectories are, in terms of valuation, is based on maximum error
margins 7 (to account for temporal deviations) and e (to account for spatial
deviations). Given the notion of trajectory, we define a deterministic cyber-
physical system as an input-output relation based on trajectories; the system is
deterministic if each input trajectory yields only one possible output trajectory.

Definition 8 (Deterministic Cyber-Physical System). A continuous cyber-
physical system S is described by the input output relation S : Trajs(I) —

Trajs(O) where I is the set of input variables and O is the set of output variables.

The system S is deterministic if, and only if, Vo € Trajs(I),Yy1,y2 € Trajs(O),

we have that S(x) =y1 A S(x) =y2 = y1 = yo.

Lastly, we define a parametric notion of conformance between CPS. Essen-
tially, for every input stimuli that is fed to both systems, the corresponding
output trajectories must not deviate beyond the 7 and € bounds.

Definition 9 ((7,€)-conformance [1]). Given two deterministic cyber-physical
systems Sy and Sz, a mazimum temporal distance T € R<g, and a maximum spa-
tial distance € € R, we say that S1 (7,€)-conforms to Sa, denoted by S1 ~; . Sa,
if, and only if, for any input trajectory x € dom(Sy) U dom(S3), we have that
S1(x) ~rc Sao(z).

4 Stochastic conformance

In this section, we first present the mathematical formalism to compare two
stochastic systems given parametric error margins. Then, we provide some intu-
ition about the differences between our notion and the state-of-the-art [32].
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4.1 Stochastic conformance

In stochastic systems, instead of specific values, trajectories map a moment in
time to a possible distribution of outcomes. In this work, given the continuous
nature of our systems, the distribution is represented by density functions.

Definition 10 (Stochastic trajectory). Given the probability space (2, F, P)
and a set of random variables V', an stochastic trajectory x : T — Dens(V') is

the set of all mappings of the time domain into a set of density functions over
V.

We denote by STrajs(V) the set of all possible stochastic trajectories over
the set of random variables V. Next, we define an stochastic cyber-physical sys-
tem as a system that, given an input trajectory, outputs a stochastic trajectory.

Definition 11 (Stochastic CPS).

Ezample 4 (Leader-Follower example). Consider that we use the acceleration
trajectory a depicted in Example [3] as the input trajectory for our running ex-
ample. The output for such a system is a stochastic trajectory that represents
the data-age (D) and comprises a density function f%(z) (i.e., a distribution of
values for D) for each t € dom(a).

We note that, even in a stochastic system, some variables may have a de-
terministic value (a value with probability 1). In this work, we use a Dirac
distribution in order to model such variables. Essentially, a Dirac distribution is
a function that is mapped to positive infinity for a specific value and is zero at
any other point. The integral of any interval containing that one point is equals
to one as its density function.

To define stochastic closeness, we lift the definition of (7,¢)-closeness (see
Section to work with stochastic trajectories. Essentially, two stochastic tra-
jectories y; and yo are close if, for every distribution y;(t) there exists a point
in time s € [t — 7,¢ + 7] that results in a distribution y»(s) and the Hellinger
distance between y; (t) and yo(s) is lower than a predetermined e.

Definition 12 (Stochastic Closeness). Given two stochastic trajectories y;
and yo2, a mazimum temporal distance T, the Hellinger distance function d(), and
a maximum distribution distance €, we say that yy is stochastically close to yo,
denoted by y1 =2 . Ya, iff:

— for allt € dom(y1), there exists s € dom(y2) such that
[t —s| <7 and d(y1(t), y2(s)) < €

— for allt € dom(yz), there exists s € dom(y1) such that
|t —s| <7 and d(y2(t), y1(s)) < €

Analogously, we lift the definition of (7,€)-conformance [I] to work with
stochastic systems. Two stochastic systems conform to each other when, for
all possible inputs, the resulting stochastic trajectories are stochastically close.
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Definition 13 (Stochastic Conformance). Given two stochastic systems Sy
and Sz, a mazimum temporal distance T, and a mazimum distribution distance
€, we say that Sy (T,e)-stochastically conforms to Sz, denoted by Sy =3 . Sa,
if, and only if, for any input trajectory x € dom(S1) U dom(S3), we have that
Sl(.'IJ) "N"f_,e SQ(.T})

4.2 Comparison with the state of the art

Qin et al. [32] defined a conformance notion for stochastic continuous systems
that computes the distribution between trajectory distances. Their models of
cyber-physical systems comprise stochastic input and output trajectories. Given
a system of probability space (2, F, P), inputs and outputs are defined as a
function Y : T'x 2 — R™, where the sample space is part of the domain but the
outcome are specific values. Hence, given an outcome w € {2, one can produce
a specific trajectory y = Y (e,w) (called a realisation of Y'). The possible values
for the outcome w leads to a distribution of realisations of Y.

Now, consider two stochastic outputs Y7 and Y5 and two realisations y; and
y2. The authors define a distance metric between two trajectories as dp(y1, y2) ==

(o llya(t) = yg(t)det)%. A distribution on the possible trajectories for Y7 and
Y3 leads to a distribution on their distance, denoted by d(Y7,Y3). Thus, given a
maximum distance € and a failure rate 0, they define a conformance notions as
P(d(Yl,YQ) S 6) 2 1-6.

There are a few key differences between our and their strategies. Overall,
our work aims to compute the distance between probabilities distribution; Qin’s
work, instead, computes the probability of the distance between distributions of
trajectories. Additionally, in Qin’s work, the degree of closeness between two tra-
jectories is given by the integral of their distance and produces an overall value.
The (7,€)-closeness relation, instead, checks if conformance holds for every point
in the trajectories. We motivate our work by identifying two main distinctions.

Firstly, our conformance notion caters for temporal deviations. As an exam-
ple, consider two identical trajectories in the shape of a signal that has high
frequency and high amplitude. If we apply a tiny delay to one of them, this may
result in a significant difference between their overall distance, whereas point-
wise the distance may be negligible. Hence, allowing for temporal deviations may
result in conformance to hold, and, from the literature [19/I], it seems necessary
to accommodate such delays.

Secondly, our conformance notion captures short bursts of high deviation.
Consider two trajectories that are identical except during a short time interval
where they abruptly deviate from each other significantly. In our approach, this
abrupt deviation will be considered and this may result in a non-conforming
verdict. In Qin’s work however, due to the fact that the two trajectories are
mostly identical, this may not result in non conformance.

The literature [14] consider such bursts and spikes as significant fault cat-
egories that need to be detected by a notion of conformance. To confirm our
intuition, we have devised a controlled experiment (see Section [6)) where we
evaluate our implementation of both conformance notions.
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5 Mechanisation

Our approach is mechanised as illustrated in Algorithm[I} Given an input trajec-
tory x that is fed into two systems Sg and S; (e.g., the system specification and
its implementation), the algorithms estimates the distributions for the outputs
of Sg(x) and Sr(x).

Algorithm 1: Pseudo-code for conformance check algorithm.

input : Trajectory x, Time error margin 7, Value error margin e, ,
Specification Ss, Implementation Sr;
output: Boolean conforms;
1 Function Main() :

2 if StochasticCloseness(x,7,¢6,55,57) then
3 return StochasticCloseness(x,7,€,57,55);
4 end
5 return False;
6 end
7 Function StochasticCloseness(x,T,¢,51,52) @
8 for t + 0 to T" do
9 Boolean conforms = False;
10 Distribution D; = Sample (x,t,51);
11 for s < Min(0,t — 7) to Max(7T,t+ 7) do
12 Distribution D2 = Sample(z,s,S2);
13 Real distance = HellingerDistance(D1,D2);
14 if distance < € then
15 ‘ return conforms = True;
16 end
17 end
18 if !conforms then
19 ‘ return False;
20 end
21 end
22 return True;
23 end
24 Function Sample(z,t,S) :
25 Set [Real] outputs = {};
26 for i < 0 to 50 do
27 ‘ outputs.Add (Execute (S,z,t));
28 end
29 Distribution D = EstimateDistribution(outputs);
30 return D;
31 end

The algorithm works as follows. As per Definition the closeness notion
between two trajectories checks that every point in the first trajectory is close
enough to a neighbouring point in the second trajectory; additionally, the reverse
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must also hold. Hence, our algorithm performs the closeness check both ways
(lines 02 and 03). The closeness check iterates through every ¢t € T (line 08).
For every t, we sample the possible outcomes for S; (line 10). Essentially, the
sampling process executes S; using z as input several times (lines 25 - 27) and
estimates its distribution (line 28). Then, we compute the distributions for the
other system Ss(x) within the [t — 7,¢ + 7] time interval (lines 11 and 12) and
check if there is at least one point within the interval where the Hellinger distance
between Sq(z) and Sa(z) is smaller than e (lines 13 and 14). If no such point
exists, then the conformance does not hold (line 19).

As an example, Figure [3| shows the comparison between two output distri-
butions. Consider two implementations of the running example. Given the same
input to both systems, Figure [3a] shows the output distribution for a time ¢ in
the first implementation and, analogously, Figure [3b] shows the distribution for
the same time ¢ in the second implementation. Our algorithm checks whether
the distance (Figure between both distributions (and also, distributions in
the neighbourhood) is greater than €, and, if so, the systems are deemed non-
conformant with respect to each other.

Densty_ .
$ ¢ 8 8 8 8 8

o L o Dy
NERNEEE S

oot

(a) Implementation 1 (b) Implementation. 2 (c) Hellinger distance.

Fig. 3: Output distribution.

6 Empirical evaluation

In this section, we present the application of the strategy proposed in Section [5]
to a case study in which we detect inserted faults in a model of a convoy of
autonomous vehicles.

6.1 Research objectives

Our evaluation assesses the effectiveness of our proposed stochastic conformance
notion for testing CPS by comparing it to the state-of-the-art [32]. Using a
Simulink [20] model of a connected vehicle platoon, we manually introduce faults
and analyse test outputs from both correct and faulty models. Our baseline is
the approach by Qin et al. [32] (see Appendix for its description). To the
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best of our knowledge, this approach is the only stochastic conformance testing
approach relevant to trajectories. We aim to answer two key questions:

— RQ1. Is our conformance testing approach effective in detecting substantial
discrepancies between the outputs of two CPS and, hence, yielding true
positive verdicts?

— RQ2. Is our conformance testing approach adaptable to allow for negligible
discrepancies between the outputs of two CPS and, hence, avoiding false
positive verdicts?

The above research questions aim to assess if our conformance notion can ef-
ficiently identify common types of programming faults (via insertion of mutants)
and common types of failures observed in cyber-physical systems (via insertion
of anti-patterns), benchmarking against existing alternatives.

6.2 Case study: connected platoon

Vehicular platooning is an autonomous driving technology that uses wireless
communication to maintain a close but safe distance between vehicles in a con-
voy. We use an open-source model from a previous study [5] where a human-
driven lead vehicle sets the pace and autonomous followers adjust their speed
accordingly. Communication follows the ETSI EN 302 637-2 standard [21], which,
among others, describes the rules for the frequency of packet transmission. These
packets comprise Cooperative Awareness Messages (CAM), which contain infor-
mation about the vehicle, such as acceleration and position. We employ the
Intelligent Driver Model [34] as the controller for the vehicles.

The platoon model consists of five vehicles moving along a straight road,
with followers adapting to the lead vehicle’s acceleration via communication.
The main input of our system is the behaviour of the driver in the lead vehicle
(i.e., its acceleration), and the output is the acceleration of the follower vehicles.

6.3 Experiment Design

In this section, we explain the experiment design. Particularly, we describe the
methodology, and our metrics and hypotheses.

Methodology. An overview of our methodology is as follows. We first generate
faulty variants for a correct model of the platooning system. Then, we auto-
matically generate and execute test cases in our models. Lastly, we employ the
conformance notions (ours and a state-of-the-art from the literature [31]) on the
outputs obtained in the previous step to reach the test verdicts.

We work with two types of fault insertion: (i) code mutation and (ii) signal-
based patterns. In the first approach, we manually insert mutations to the correct
model in order to create faulty variants. The mutation operators used in this
experiment were inserted via a mutation tool for Simulink (FIM [IT]). We used
the Delay Operator (simulates the addition of delays), Noise Operator (adds
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noise to the signals), Package Drop (modifies the value of a variable), and also the
Logical and Arithmetic Operator Replacements (swaps an operator with another
of the same type). In total, we inserted 100 faults to the model. As the second
method for fault insertion, we insert three types of anti-patterns (i.e., common
and significant fault types identified by a taxonomy on signal-based properties
of CPSs [I4]) to a correct system output, depicted in Figure 4] We incorporate
the spike, oscillatory behaviour, and overshoot types of anti-pattern. We have
inserted 100 faults for each type by manually modifying the output of the system
to match a type of anti-pattern; we consider that the faulty output needs to be
identified by the conformance notions.

Fig. 4: Examples of signal-based patterns.
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To generate inputs for the simulations, we use one random-based generation
approach and two multi-objective search-based algorithms (standard simulated
annealing [26] and genetic algorithm [30]). The former generates valid but com-
pletely random test cases and this can be used as a baseline measurement. The
two other options are search-based heuristics which have been shown to gener-
ate tests that are more likely to exhibit failures [7U37/4]. Both search heuristics
adopted in this case study employ ‘fitness functions’ to optimise the search, and
we consider a notion of closeness, coverage, and diversity as the objectives; they
have been demonstrated to lead the SUT towards conformance violations [4].

The verdict of a test is given by a conformance notion. For this study, to
be considered an actual failure, the deviations need to be above error margins.
The values chosen here are based on a maximum spatial deviation of 0.5m/s?
for the acceleration trajectories and a maximum temporal deviation of 1s, which
are used in a study conducted by domain experts [5]. With respect to our con-
formance notion, we chose to replicate the specific values of maximum allowed
deviation and, hence, we have chosen 7 = 1s and ¢ = 0.5. Qin’s conformance
notion, however, requires two parameters: the overall difference between error
margins for the entire trajectory (A) and a failure rate (), which are set to 2.5
and 0.25, respectively. If distance between two trajectories is set to constant 0.5
for 10 seconds, this results in lambda value (i.e., the integral of the distance
between the two trajectories) of 5. Hence, we chose 2.5 as it is half of this value.
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Metrics and hypotheses. In this experiment, we make use of the number of
true positives (TP) and false positives (FP) verdicts. These metrics essentially
quantify the fault detection rate of each conformance notion. Detecting more
faults is generally the goal of any testing approach. We have defined one hy-
pothesis for each of our research questions. With respect to RQ1, which focusses
on fault detection capabilities of the conformance notion, we have devised the
hypotheses Hag : T Pyyr < TPy and Haq @ TP,,, > TP,;. Essentially, a test
suite will be generated and the same test suite will be fed to both the correct and
faulty models. The conformance notion that detects a higher number of mutants
correctly is deemed more effective in the True Positive rate. The null hypothesis
(Hao) states that the number of True Positives detected by our conformance
notion (T'P,,,) is lower or equal to the one obtained by the alternative notion
(T'P,;¢). This experiment aims to refute such a hypothesis. Thus, an alternative
hypothesis (H41) is also defined, which has a complementary role to the null
one, and can be accepted in case their counterpart is rejected. Analogously, we
have defined the hypotheses Hpg : F P,y > F P, and Hpy : FPy, < FPyy
to compare the number of false positives resulting from ours (FP,,,) and the
alternative (F'P,j;) conformance notion.

6.4 Results

We split the main results into two tables. Table [I| shows the false and true
positive rates (as well as other metrics) for the mutation operators and Table
focuses on the detection of anti-patterns. We show the results of applying our
three variants of our conformance notion: Hellinger distance, Wasserstein metric,
and Total Variation Distance (TVD) and the baseline to the three types of input
generation: Random, Simulated Annealing (SA), and Genetic Algorithms (GA).

The numbers shown in Table [1| represent the number of false positives (FP),
true positives (TP), false negatives (FN), and true negatives (TN). A false pos-
itive occurs when a test fails when it should not have. On the other hand, true
positives represent tests that have failed correctly. Analogously, true and false
negatives are tests that have correctly and incorrectly passed, respectively. The
numbers represent how many verdicts are in each category. Moreover, we also
display the values for Accuracy, Precision, Recall and F1 metrics.

The results indicate a small but significant difference for the true positive
rates for the detection of mutations in favour of our approach. The difference
increases with the complexity of the input generation approach. In terms of
distance metric, Hellinger and Total Variation distances seemed to yield similar
and better results compared to Wasserstein metric. By analysing the results
more closely (see Table 2| for results per operator), we note how our conformance
notion tends to detect the Noise more predominantly than the alternative. This
is because the Noise operator is more likely to lead to a short burst of deviation
between the results from the correct and faulty implementations. The operators
Package Drop and Logical Operator Replacement showed little difference between
the notions, however.
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Table 1: Detection of mutation operators.

(a) Random Input

FP TP FN TN | Acc. Prec. Rec. F1
Ours - Hellinger 0 71 19 10 | 0.81 1.00 0.79 0.88
Ours - Wasserstein 0 70 20 10 0.80 1.00 0.78 0.88
Ours - TVD 0 71 19 10 | 0.81 1.00 0.79 0.88
State-of-the-art 5 70 20 5 0.75 0.93 0.78 0.85
(b) Simulated Annealing
FP TP FN TN | Acc. Prec. Rec. F1
Ours - Hellinger 0 81 9 10 | 091 1.00 0.90 0.95
Ours - Wasserstein 0 79 11 10 0.88 1.00 0.87 0.93
Ours - TVD 0 82 8 10 | 0.92 1.00 0.91 0.95
State-of-the-art 6 7 23 4 0.74 0.93 0.77 0.84
(¢) Genetic Algorithms
FP TP FN TN | Acc. Prec. Rec. F1
Ours - Hellinger 0 85 5 10 | 0.95 1.00 0.94 0.97
Ours - Wasserstein 0 82 8 10 0.91 1.00 0.90 0.95
Ours - TVD 0 84 6 10 | 0.94 1.00 0.93 0.97
State-of-the-art 4 79 11 6 0.84 0.94 0.88 0.91
Table 2: TP per mutant operator. 12
Noise| PD|LOR[AOR |Delay )
Ours - RA| 16 08 | 17 16 14
Alt - RA 15 08 17 16 14
Ours-SA| 16 |13] 20 | 17 | 15 | 3%
Alt - SA 14 [12] 20 | 16 | 15 =
Ours - GA| 19 15| 20 17 14
Alt- GA | 15 |14 20 | 16 | 14 o m a

15

Time

Fig. 5: Trajectory with a delay.

As for the false positives (shown in Table[)), most of them occurred with the
Delay operator. The reasoning is that by allowing for temporal error margins,

our conformance notions tends to disregard negligible deviations resulting from

small Delay mutations (below the error margin). Such mutants are not killed and,
hence, we avoid false positives. As an example, Figure [§| shows the output of the

correct and of an implementation with a small Delay operator. Even though

both outputs are very similar, this slight delay in time has led to a drastic



16 H. Araujo et al.

distance using Qin’s notion due to a high degree of accumulated variation. Our
conformance notion, however, permits such divergences depending on the value
of 7, which gives flexibility to the verification process.

Analogously, our methods (especially Hellinger and TVD) consistently pro-
duce fewer false negatives than the state-of-the-art, across all types of input
generation. Hence, they are less likely to incorrectly pass faulty systems. The
difference is more pronounced as input generation gets more sophisticated (from
Random to SA to GA). For instance, with Simulated Annealing, the FN count
dropped from 23 (baseline) to as low as 8 (ours), showing a significant improve-
ment. Wasserstein performs slightly worse than Hellinger and TVD in terms of
false negatives, though still better than the baseline. Improved FN rates lead to
higher recall, which is reflected in the metrics: when using simulated annealing,
recall improves from 0.77 (baseline) to > 0.90 (ours - Hellinger and TVD).

Lastly, Table [3| shows the results for the detection rates of anti-patterns.
Similarly to noise mutation operator, the spike anti-pattern tends to result in
short bursts of discrepancy, which leads to our conformance notion detecting
more of them compared to the alternative. The oscillation anti-pattern has been
efficiently detected by both approaches and, as for overshoots, there is a small
but significant difference in favour of our strategy.

Table 3: Detection of anti-patterns.

(a) Spike

FP TP FN TN | Acc. Prec. Rec. F1
82 8 10 0.89 1.00 0.89 0.94
71 19 10 0.78 1.00 0.78 0.88
82 8 10 0.89 1.00 0.89 0.94
65 25 10 0.72 1.00 0.72 0.84

Ours - Hellinger
Ours - Wasserstein
Ours - TVD
State-of-the-art

o O OO

(b) Oscillation

FP TP FN TN | Acc. Prec. Rec. F1
88 2 10 0.95 1.00 0.95 0.97
86 4 10 0.93 1.00 0.93 0.96
87 2 10 0.94 1.00 0.94 0.97
88 2 10 0.95 1.00 0.95 0.97

Ours - Hellinger
Ours - Wasserstein
Ours - TVD
State-of-the-art

(c) Overshoot

FP TP FN TN | Acc. Prec. Rec. F1
Ours - Hellinger 0 60 29 10 0.67 1.00 0.67 0.80
Ours - Wasserstein 0 60 29 10 0.67 1.00 0.67 0.80
0
0

Ours - TVD 59 31 10 | 0.66 1.00 0.66 0.80
State-of-the-art 56 34 10 | 0.63 1.00 0.63 0.77
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6.5 Threats to validity

As threats to the validity of our experiment, we note that the choice of mutant
operators is made by domain experts, but a thorough and formal study of their
relation to real faults needs to be conducted. To mitigate this issue, we have also
introduced anti-patterns (spike, overshoot, and oscillation) common in CPS to
mimic failures. Furthermore, the error margin values in the oracle impact the re-
sults: small values would detect all mutants and large ones would detected none.
As a mitigation measure, the values we have chosen throughout the work (e.g.,
7, €, and ¢, as well as the mutation operators) are based on prior experiments
and domain knowledge. Moreover, we fit the distributions of the outputs in the
experiment to a normal distribution. This is an assumption based on data gath-
ered from the experiments; we have chosen a distribution fit that most closely
matches with the observed ones. Lastly, this experiment only considers one (al-
beit, complex) example of connected CPS. This makes it hard to generalise the
outcome of this experiment for a general class of cyber-physical systems. This is
mitigated by the large number of mutants that were inserted into this system.

7 Conclusions

We have developed a novel stochastic conformance notion to test connected
Cyber-Physical Systems (CPS) that takes error margins into account. Our ap-
proach is well-suited to test CPS, where the interaction between computational,
physical, and environmental components may lead to a probabilistic distribu-
tion of outcomes. Our notion is adaptable so that negligible perturbations (e.g.,
subtle measurement errors) are not mistakenly flagged as failures. Our approach
verifies CPS by checking whether the distance between two output distributions
(the observed and the expected one) falls within safety bounds. Our notion is
able to detect deviations in stochastic behaviour that manifest under faulty con-
ditions, while accommodating for natural temporal and spatial variations. In the
mechanisation of our approach, we implemented our conformance as a tool and
evaluated its effectiveness through a case study involving a connected platoon of
autonomous vehicles. We show that our approach can detect faulty behaviour,
such as oscillation and spikes (common types of anti-patterns in CPS) more
reliably than alternatives found in the literature.
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