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Abstract. With the widespread use of autonomous systems, liability of-
ten shifts towards the manufacturers and part suppliers, especially when
various system components, sourced from different suppliers, contribute
to a failure. This necessitates a framework for automatic liability appor-
tionment which can be embedded in manufacturer-supplier contracts and
minimise legal disputes. To this end, we propose a formal framework based
on the notion of actual causality in structural causal models and the ro-
bustness semantics of logical specifications. We prove several desirable
properties of this framework. Moreover, we formalise the notion of causal
non-interaction, give sufficient conditions for it to hold, and demonstrate
its utility in deriving upper bounds for liability analysis. Furthermore, we
relate our definition to the existing notion of harm, empirically evaluate
our framework to demonstrate its efficacy, and release a software package
implementing our approach. We extend our framework to handle interval
specifications.
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1 Introduction 1

The widespread adoption of autonomous systems, including autonomous vehicles
(AVs) and service robots, significantly reshapes the insurance landscape [2]. Tradi-
tionally, liability rested primarily with system users and owners; in the case of reck-
less driving, the driver is typically held legally liable and is covered by personal auto
insurance that provides protection against such risks [1]. In contrast, autonomous
systems aim to function safely and reliably on their own, increasingly shifting liabil-
ity toward manufacturers and their suppliers of mechanical, electronic, and soft-
ware components. Manufacturers, even after indemnifying suppliers externally,
still need effective means to recoup costs associated with system faults.

To fairly and automatically apportion liability within complex multi-supplier
ecosystems, we propose a framework based on structural causal models (SCMs)
[26] and robustness semantics of logical specifications [13]. Our method systemat-
ically apportions liability among components, allowing integration into contracts
between manufacturers and suppliers so that they incorporate both component

1 We gratefully acknowledge and appreciate Prof. Özlem Gürses, Dickson Poon School
of Law, King’s College London for their valuable insights.
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Fig. 1: Simplified AEB system in Examples 1 and 6. System (left), graph without
intervention (middle), and with intervention (right). An intervention forces
the value of a component to a fixed value, overriding its normal functional
dependencies.

specifications as well as the rules for liability apportionment in cases of failure. In-
corporating formal causality into contractual terms minimises legal disputes and
enhances the insurability of advanced autonomous technologies [22].

A key challenge is ensuring the framework remains meaningful and tractable
in complex systems with interacting faults. This issue is prominently manifest
in existing approaches such as Shapley values [12]. To address this, we introduce
the concept of causal non-interaction, provide conditions for its application, and
demonstrate its utility for bounding liability calculations.

We also show that our framework relates to existing literature, specifically
aligning with harm quantification by Beckers, Chockler, and Halpern (BCH) [6].
We empirically evaluate our model to underscore its practical applicability in
facilitating precise and fair liability apportionment. We offer a Python toolbox
implementing our liability measure (DOI: https://doi.org/10.5281/zenodo.
18175468).

We illustrate our approach using an Automatic Emergency Braking (AEB)
system example:

Example 1. Consider an AEB system comprising a speedometer, radar, and an
Electronic Control Unit (ECU) calculating the braking force (Fig. 1 (left)). In the
event of a failure–such as those documented in high-profile autonomous vehicle
(AV) crashes2, our framework identifies which component failures cause malfunc-
tions, quantifies respective liabilities, and enables embedding these apportion-
ments into manufacturer-supplier contracts.

While motivated by AV liability, our framework addresses the broader prob-
lem of attributing responsibilities in any component-based system. Our frame-
work focuses on apportioning liability among system components conditional on a
system-level failure having occurred. External or unavoidable causes, such as ex-
treme environmental conditions or third-party actions, can be naturally modeled
in our framework as exogenous variables in the causal model. If such factors alone
suffice to cause the failure, no internal component forms a cause and the resulting
liabilities are zero

2 e.g., https://www.ntsb.gov/investigations/Pages/HWY18MH010.aspx

https://doi.org/10.5281/zenodo.18175468
https://doi.org/10.5281/zenodo.18175468
https://www.ntsb.gov/investigations/Pages/HWY18MH010.aspx
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The paper proceeds as follows: Section 2 reviews the related literature; Section
3 reviews the preliminaries, i.e., component model, failure quantification, struc-
tural causal models, and actual causality; Section 4 defines liability formally and
explores its properties and the notion of causal non-interaction; Section 5 extends
our framework to handle interval specifications; Section 6 establishes the formal
relation of our work to the BCH notion of harm; Section 7 presents the empirical
studies; and Section 8 concludes.

2 Related Work
2.1 Actual causality
Liability inherently involves causal reasoning [21]. There are two types of causal
relations: type causality, relating general phenomena (e.g., smoking and lung can-
cer), and actual causality, concerning specific events (e.g., a particular radar defect
causing a crash) [15,33]. Actual causality is pertinent for liability apportionment.

The simplest explication of actual causality is but-for causality [25]—an event
without which the effect wouldn’t occur. There are also more sophisticated def-
initions like Halpern-Pearl (HP) [16, 18] definitions, which, although influential,
are computationally demanding—HP is DP

2 [3] or DP
1 based on the version of the

definition [16]. We base our efficient approach on but-for causality, although our
framework is general and accommodates any reasonable notion of actual causality.

2.2 Causality in liability law
Actual causality (cause in fact) underpins liability law (criminal, tort, insur-
ance) [21]. Liability apportionment typically involves: (i) dividing damages into
indivisible causal components and (ii) apportioning each component, often us-
ing subjective rules based on fault [19]. Recent principled yet abstract methods
(i.e., Shapley values) are emerging [12, 14, 20]. These works are abstract because
they do not address how one can measure the contribution of a component in the
overall system failure. Our approach retains this two-step process, contributing a
principled, concrete, and computationally efficient liability definition.

2.3 Liability in autonomous systems
The rise of autonomous vehicle functions necessitates new insurance frameworks.
Two notable examples are Manufacturer Enterprise Liability [2] and the UK’s
Automated & Electric Vehicles Act 2018, which faces legal criticism [11]. Man-
ufacturer Enterprise Liability exclusively burdens manufacturers, regardless of
fault. Our paper provides a formal approach enabling manufacturers to distribute
liability among suppliers, supporting broader insurance adoption.

2.4 Quantification of causality
Although causality is typically binary, liability apportionment requires quanti-
fied causality measures [17]. Three prominent quantified causality approaches are
responsibility, harm, and Shapley values.
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Responsibility and harm Responsibility [8], developed from HP causality, quanti-
fies actual causality as inversely proportional to the number of causes in a causal
set [9,30]. Unlike our method, responsibility addresses actual implementation sys-
tems without relying on formal specifications and is computationally expensive.
Harm quantifies causality by looking at the outcome differences with and without
an event [6]. Our work is a generalisation of the notion of the harm where compo-
nent interactions are taken into account and failure is quantified by robustness of
the system wrt a general failure formula.

Game theoretic approaches Shapley values apportion payoffs in cooperative games
based on fairness axioms [7]. They are applied to liability by modelling tortfea-
sors as game players [12,14,20]. Unlike abstract Shapley approaches, we propose a
concrete structural causal model-based method with polynomial-time complexity,
avoiding Shapley values’ exponential complexity.

Remark 1. Type causality quantification significantly differs from actual causal-
ity. For example, Pearl’s graphical approach employs probability distributions and
interventions [26,27], unlike actual causality focused on individual events.

2.5 Risk assessment

Reliability engineering methods, such as Failure Mode and Effects Analysis (FMEA)
[29] and Fault Tree Analysis (FTA) [31], focus on risk identification and modelling
failure propagation via logical gates. Our method, in contrast, mathematically
models causal structures and assigns liability after failures, differing fundamen-
tally in both approach and purpose.

3 Preliminaries

3.1 Component Model

As we are dealing with systems with multiple components, we define formal ab-
stractions for components, systems, and their specifications and implementations,
inspired by a similar architecture for software liability [24].

Definition 1. A component is a tuple X = (I,O,P,R,f) in which I is a set of
variables called input variables, O is a single variable not in I called the output
variable, P is a set of types, R : I ∪{O}→ P is a function that determines the
types of the input and output variables, and f :

∏
Y ∈IR(Y )→R(O) is the com-

ponent’s function. As a notational convenience, when it is clear from the context,
we use the component’s output variable and the component’s name interchange-
ably. A component is an implementation of another component (labelled as spec-
ification) if they vary only in their functions. A system is a set of components
S={(Ii,Oi,Pi,Ri,fi)}Ni=1 subject to the condition that the output variables of the
components are distinct. An implementation system consists of the implementa-
tions of the components in a specification system.
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As evident from the definition, a component is an entity characterised by one
or several input variables with specified types, an output variable with a specified
type, and a mechanism to transform the inputs into the output. The decision to
have a single output variable is primarily driven by notational convenience. How-
ever, this choice is not restrictive, as there is always the option to combine multiple
variables into a vector.

Example 2. In the context of the AEB system of Example 1, the speedometer com-
ponent is defined as XA=({a},A,{R},RA,fA) in which RA(a)=RA(A)=R and
fA(a)=a+10, where a denotes the actual speed of the vehicle in meters per second
and fA reflects the sensor error in our model. The (inverse) radar component is de-
fined as XB=({b},B,{R},RB ,fB) in which RB(b)=RB(B)=R and fB(b)=b+1,
where b represents actual inverse distance of the vehicle to an impending obstacle in
reciprocal meter. The ECU component is defined asXC=({A,B,c},C,{R},RC ,fC)
in which RC(A)=RC(B)=RC(c)=RC(C)=R and fC(A,B,c)=AB+c, where c
represents a calibrating constant set at construction time. The termAB shows that
the magnitude of the braking force is proportional to the speed of the speedometer
and inversely proportional to the distance to the obstacle. Assuming that XC is
a component specification, there can be many different implementations thereof
which differ only in their functions. The system consisting of these components is
T = {XA,XB ,XC}. As mentioned earlier, when clear, we use output variables to
denote components, so a more succinct notation is T ={A,B,C}.

Note that while we present algebraic definitions of specifications and imple-
mentations for the purpose of formal reasoning, the proposed framework treats
components as black boxes in practice: it only requires query access to component
outputs for given inputs, and does not rely on symbolic representations of their
internal functions.

It is useful to define the notion of a replacement system, a system in which one
or more components is replaced with others.

Definition 2. If S is a system, X ={(Ii,Oi,Pi,Ri,fi)}ki=1⊆S is any set of compo-
nents in S, and X ′={(Ii,Oi,Pi,Ri,gi)}ki=1 is another set of components, then the
replacement system SX→X ′ is defined as (S−X )∪X ′. If X ={X} and X ′={X ′}
are singleton sets, we conveniently denote SX→X ′ =S{X}→{X′} by SX→X′ . If one
or more implementation components are replaced with their corresponding speci-
fications, the replacement is called a fix.

Example 3. Consider the AEB system T defined in Example 2. Suppose there is a
specification radar component X ′

B=({b},B,{R},RB ,gB(b)=b). The replacement
system TXB→X′

B
is the system T in which the radar component is replaced with

the specification one, that is TXB→X′
B
={XA,X

′
B ,XC}.

3.2 Quantification of Failure

Two final definitions concern the characterisation and quantification of the extent
of failure. Failure is characterised as a quantifier-free first-order formula over the
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system variables. The extent of failure is quantified by how much these variables
need to change to no longer satisfy the failure formula.

Definition 3. If P is a quantifier-free first-order formula over a set of variables
V, the extension of P , denoted by ext(P ), is the set of points in the V-space that
satisfy P . If P characterises a system’s failure, it is called a failure formula and
F=ext(P ) is called a failure set.

Example 4. Following Example 2, suppose P (A,B,C)=B≥10∧C≤1, that is, a
failure happens if the detected distance is less than 0.1 meters and the generated
braking force is less than 1 units. Then the failure set is F=ext(P )={(A,B,C)∈
R3 :B≥10∧C≤1}.

To simplify the presentation, we usually refer to failure sets such as F , im-
plicitly assuming suitable quantifier-free first-order formulas, such as P , for which
F=ext(P ).

We quantify the extent of a failure in a system, aka its robustness, by measuring
the distance of the state of the system to the boundary of the failure set, along the
same lines of the robustness semantics for logical specifications [13]. Assuming the
reader is familiar with the concept of a metric space [34], we recall the definition
of the depth of a point in a set:

Definition 4. Consider a metric space, (G,d), a point in the space, x∈G, and a
subset of the space, H⊆G, then

– The distance from x to H is defined as distd(x,H)=inf{d(x,y) :y∈H̄}, where
H̄ is the closure ofH, that is the intersection of all closed sets containingH; and

– The depth of x in H is defined as depthd(x,H)=distd(x,G−H).

The subscript d denotes the distance metric, d, in the metric space, which will
be the Euclidean distance throughout the paper. Also, distd and depthd are non-
negative numbers; for all x∈H, distd(x,H)=0; and for all x /∈H, depthd(x,H)=0.

Example 5. In Example 4, distd((100,5,1),F)=5 and depthd((100,5,1),F)=0.

In practice, the failure formula (hence, the failure set) is usually a function of
only a few system variables. For instance, in our running example, a reasonable fail-
ure formula could be a proposition about the impact velocity (e.g,P :Mvehiclev≥1)
where Mvehicle is the vehicle’s mass. In such cases, the causal models maps inputs
in different dimensions to the same output space through the robustness quantity,
making them comparable through the robustness of the variables in the failure for-
mula. This is one of the benefits of our approach, which facilitates straightforward
comparisons across different variables and units of measurement.

In the rest of this section we define structural causal models [17, 26] and use
them to define a notion of actual causality.
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3.3 Structural Causal Models

Our work is based on structural causal models, which serve both as a basis for the
notion of causality and for our proposed apportionment of liabilities.

Definition 5. A structural causal model (SCM) is a tuple M=(U ,V,P,R,E) in
which U and V are two disjoint sets of variables called exogenous and endogenous
variables, respectively, P is a set of types, R :U∪V→P is a function that deter-
mines the types of variables in U and V, and E is the set of structural equations
{X=fX(Y1,Y2,Y3,...,Yn)}X∈V where Yi∈(U∪V)−{X} for all X∈V.

Notation 1 If M=(U ,V,P,R,E) is an SCM, we denote members of each set by
non-calligraphic face with an integer index, such as Ui. Elements in V, R, and
E that share the same index are assumed to correspond. For example, Ri and Ei

denote the type and structural equation of variable Vi, respectively.

The motivation for differentiating between exogenous and endogenous vari-
ables is to distinguish between variables that are the inputs of the system and
those that are influenced by the inputs, respectively. Structural equations (or as-
signments, more precisely) specify how each endogenous variable is influenced by
the exogenous and other endogenous variables.

Example 6. In the AEB system in Example 2, each component (causally) deter-
mines the value of its output based on its inputs. The whole system corresponds
to the following structural causal model: M = ({a,b,c},{A,B,C},R,RA ∪RB ∪
RC ,{A=fA(a),B=fB(b),C=fC(A,B,c)}) .

In line with our focus on particular events and actual causality, we are inter-
ested in the particular values, called state, that variables of the system take:

Definition 6. If M=(U ,V,P,R,E) is an SCM, a context u is a setting of (i.e., a
vector assignment to) variables in U . Similarly, a state v is a setting of variables
in V. The state space of M, denoted by SS(M), is the set of all states of M.
Moreover, if x is a setting of variables in X ⊆ U ∪ V, the value of the variable
X∈X under x is denoted by x[X].

An SCM can be visualised through a graph where each variable in U ∪V is
represented by a node, and a directed edge from X to Y exists iff the value of
Y depends, in at least one state and context, on the value of X. Fig. 1 (middle)
shows the graph corresponding to the SCM in Example 6. An SCM is acyclic if its
corresponding graph is acyclic. If M is an acyclic SCM, a given context u uniquely
determines the state of M. This state is denoted by v=M [u]. For the purpose of
this paper, we align with existing literature and focus on acyclic SCMs.

Example 7. In the SCM in Example 6, one possible context isu=(a,b,c)=(80,4,1).
The resulting state is M[u] = (90, 5, 451). The state space of the system is
{(A= fA(a),B= fB(b),fC(A,B,c)) :a,b,c∈R}={(a+10,b+1,(a+10)(b+1)+c) :
a,b,c∈R}. Also, u[a]=80 and M[u][A]=90.
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As suggested by Example 6, there is a close connection between our component
model and SCMs. As formalised in the following definition, for each system there
exists a corresponding SCM:
Definition 7. Suppose S = {(Ii,Oi,Pi,Ri, fi)}Ni=1 is a system with N compo-
nents. The corresponding structural causal model (SCM) is defined as SCM(S)=
(U ,V,P,R,E) in which V = ∪N

i=1{Oi} is the set of endogenous variables, U =
(∪N

i=1Ii)− V is the set of exogenous variables, P = ∪N
i=1Pi is the set of types,

R = ∪N
i=1Ri is the function that determines the type of the variables, and E =

{Oi=fi(ai)}Ni=1 is the set of structural equations where ai denotes the arguments
of fi.

Example 8. The corresponding SCM of the system in Example 2 is identical to
the SCM presented in Example 6: SCM(T )=M.

Another important notion for defining and quantifying causal effects is that
of an intervention. An intervention refers to deliberately changing the value of a
variable to observe its subsequent effects on the other variables. By conducting
interventions, we gain insights into the causal relationships and assess the impact
of specific variables.
Definition 8. If M= (U ,V,P,R,E) is an SCM, X ∈V, and x∈R(X), then the
intervention model M[X = x] is the SCM (U ,V,P,R,E ′) in which F =F ′ except
that the equation X = fX(Y1,Y2,Y3, ...,Yn),Yi ∈ (U ∪V)−{X}, is replaced with
fX(Y1,Y2,Y3,...,Yn)=x.

Example 9. If we intervene on the SCM in Example 6 by replacing the equation for
B withB=b0 where b0∈RB is a fixed inversed distance to an obstacle, the resulting
intervention model will be M[B= b0]= ({a,b,c},{A,B,C},R,RA∪RB∪RC ,{A=
fA(a),B=b0,C=fC(A,B,c)}). The corresponding graph is shown in Fig. 1 (right).

There is a similarity between the concept of intervention (Definition 8) and
replacement (Definition 2). However, they have a significant difference as well: in
a replacement, a component is replaced with an arbitrary component and function
(with the same arguments, because the replacing component should be the same as
the replaced one in its input and output variables). In contrast, in an intervention,
the replacing function is a constant function.

Notation 2 If S and T are specification and implementation systems, respec-
tively, and u is a context, then the state of the systems under u is denoted by
s[u] and t[u], or simply, s and t, respectively. If X is a component or a set of
components, the state of the replacement system where X is fixed to X ′, i.e.,
SCM(TX→X′)[u] is denoted by t+X.

3.4 Actual Causality

We conclude this section with our definition of actual causality, which is based on
the notion of but-for causality. We define a set of implementation components as
a cause of failure if replacing them with their specifications moves the state of the
system out of the failure region.
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Fig. 2: Failure set in Example 10 (left) and component diagram in Example 12
(right).

Definition 9. Suppose S is a specification system, T is an implementation of S,
F is a failure set, u is a context, X ⊆T , and X ′ is the corresponding components
in S. The components in X are a but-for (BF) cause of T ending up in F , denoted
by BF (T ,X ,u,F), iff the following conditions hold:

– BF1. SCM(T )[u]∈F ;
– BF2. SCM(TX→X ′)[u] /∈F ; and
– BF3. X is minimal, in the sense that none of its subsets satisfies BF1 and BF2.

We define the degree of interaction between the components of a system as the
maximum size of a causal set for the system’s failure. That is, every causal set
has a cardinality less than or equal to the system’s degree of interaction where no
”higher order” interaction exists in the system.

Definition 10. Suppose S is a specification system, T is an implementation of
S, F is a failure set, and u is a context. The degree of interaction between the
components of T is defined as:

degint(T ,u,F)=max{|X | :BF (T ,X ,u,F)} (1)

Example 10. Suppose S and T are a pair of specification and implementation
AEB system similar to the one in Examples 1, respectively. Suppose MS and MT
are the corresponding SCMs characterised by U = {a,b,c}, V = {A,B,C}, and
the equations shown in Table 1 (left). Suppose u = (a,b,c) = (10,10,10), result-
ing into specification and implementation states, s=(A,B,C)= (10,10,110) and
t= (A,B,C) = (20,20,420), respectively. Suppose F = {(A,B,C)∈R3 :C ≥ 250},
representing braking forces beyond the tolerance of the vehicle’s actuators. Fig. 2
(left) depicts this situation.

Under u, the states of the specification, implementation, and fixed systems are
shown in Table 1 (right). It can be seen that {A} and {B} are a cause of T ending
up in F , while {C} is not. The degree of interaction in this system is 1 for the
specified context.
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As stated below, if a component is not faulty, it is not a member of a cause of
the failure:

Theorem 1. Suppose S is a specification system, T is an implementation of S,
F is the failure set, u is a context, X∈T , and X ′ is the corresponding component
in S. If X=X ′, there is no set X ⊆T where X∈X and BF (T ,X ,u,F).

Proof by contradiction. For space considerations, we provide missing proofs in [4].

4 The Liability Framework

In this section, we explain our method of apportionment of liabilities. In line with
the legal procedures for determining liabilities (Section 2), we propose a two-step
procedure: (i) identification of the causal components, and (ii) apportionment of
liabilities. Step (i) is done in accordance with Definition 9. Step (ii) is carried
out by measuring the effect of fixing each component X. To this end, we start
by identifying all causal sets that include the component X. Within each causal
set, we measure the effect of X by fixing all components within the set including
X, and then again, without fixing X. We calculate the difference to measure the
effect. We then average these differences across all causal sets that include X, to
determine the average effect of fixing X. This procedure is repeated for all other
components, and the resulting values are normalised to sum to one.

To keep the liability computation tractable, we restrict our causal sets to a
fixed maximum cardinality, k. This is justified from both a theoretical and an
empirical perspective: theoretically, we show how the assumption about the de-
gree of interaction can be efficiently checked, in Section 4.2. Additionally, there is
empirical evidence showing that higher degrees of interaction (beyond 3) rarely
occur in practice [10,28,32].

Definition 11. Suppose S is a specification system, T is an implementation of
S, F is the failure set, u is a context, s and t are specification and implementation
states under u, respectively, and k≤|T | is a fixed number, then the k-leg liability
of X, denoted by φk

X , is defined as:

φk
X(T ,S,u,F ,k,X)=ω

1

|BX |
∑

K∈BX

max
(
0,depthd(t+K,F)

)
(2)

Table 1: System equations (left) and states (right) in Example 10.
Component Spec. Impl.
A a a+10
B b b+10
C c+AB c+AB+10

State name State value BF (T ,{X},u,F)

s (10,10,110)
t (20,20,420)

t+A (10,20,220) True
t+B (20,10,220) True
t+C (20,20,410) False
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in which BX = {K⊆T :BF (T ,K∪{X},u,F)∧|K|<k}, t+K is defined as in
Notation 2, and:

ω=

[∑
X∈T

∑
K∈BX

1

|BX |
max

(
0,depthd(t+K,F)

)]−1

(3)

The normalizing coefficient ω is chosen so that
∑

Xφk
X =1.

According to this definition, to measure the liability of the implementation
component X, we first create the set B of all component sets of maximum size
k, that include X and are causal for T ending up in F . For each causal set, we
measure the effect of X, as the difference in system robustness between fixing the
entire causal set and fixing the causal set without X. We then average these dif-
ferences across all such causal sets. The following example shows several desirable
properties of our definition which are formalised and proved afterwards.

Example 11. Consider the AEB system shown in Table 2. In this example, A and
B are interpreted as before, C represents a braking coefficient, and D is the final
braking force. Assuming u= (10,10,10,10), state of the specification and imple-
mentation systems are s = (A,B,C,D) = (10,10,10,110) and t = (A,B,C,D) =
(20,20,20,420), respectively. Suppose F ={(A,B,C,D)∈R4 :D≥250} represents
the braking forces beyond the tolerance of the vehicle’s actuators.

The states of the specification, implementation, and replacement systems are
shown in Table 3. It is evident from the table that rows containing D are not a
cause for T ending up in F , because for these rows D=410≥250. Fixing D, even
in combination with other components, does not fix the problem. Therefore, intu-
itively,D should not be held liable. Moreover, the error—i.e., the distance between

Table 2: System equations in Example 11.
Cm. Spec. Impl.
A a a+10

B b b+10

C c c+8

Dsp d+max(AB,AC,BC)

Dim. d+max(AB,AC,BC)+10

Table 3: System states in Example 11.
St. A B C D Value St. A B C D Value
s (10,10,10,110) t+AB * * (10,10,20,220)
t (20,20,20,420) t+AC * * (10,20,10,220)
t+A * (10,20,18,380) t +

AD
* * (10,20,20,410)

t+B * (20,10,18,380) t+BC * * (20,10,10,220)
t+C * (20,20,10,420) t +

BD
* * (20,10,20,410)

t+D * (20,20,18,410) t +
CD

* * (20,20,10,410)
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specification and implementation in this context—in C is 8, which is less than the
error inA andB which is 10. As these errors symmetrically contribute to the failure
as mediated by D, C should be apportioned less liability followed by A and B, and
A and B should be held equally liable. The 2-leg liability follows these intuitions:

φ2
A=ω

1

2
((depthd(t+B,F)−depthd(t+AB,F))+(depthd(t+C,F)−depthd(t+AC,F)))

=ω
1

2
((130−0)+(170−0))=ω150=0.348

Similarly, φ2
B =0.348, φ2

C =0.302, and φ2
D =0. In this example the degree of

interaction is at least k=2, because any single variable’s effect on the output could
be masked by other variables. However, two variables together are able to affect
the output.

4.1 Properties of Liability

Now, we formalise several desirable properties of k-leg liability, which serve as an
axiomatic justification of our definition.

Consistency Consistency states that k-leg liability remains constant beyond the
system’s degree of interaction (see Definition 10):
Theorem 2. Suppose S is a specification system, T is an implementation of S, F
is the failure set, and u is a context. If k=degint(T ,u,F), then for all component
X∈T , φk

X =φk+1
X .

This justifies the relevance of a fixed k in k-leg liability. In the next section, we
show that if the system can be partitioned into non-interacting subsets, the degree
of interaction is bounded accordingly. We also prove sufficient conditions for such
decomposability.

Dummy component This property posits that components not causal for the
failure receive no liability:
Theorem 3. Suppose S is a specification system, T is an implementation of S,
F is the failure set, u is a context, and X∈T is a component. If no subset of T that
includes X is a BF cause of T ending up in F , then φk

X =0 for k=1,2,3,...,|T |.
In particular, non-faulty components receive no liability, because, by Theorem

1, if a component is not faulty, it cannot be a member of a but-for cause of the
failure. Therefore, its k-leg liability is zero.

Polynomial Complexity
Proposition 1. Suppose S is a specification system, T is an implementation of S,
F is the failure set, and u is a context. Calculating k-leg liability of each component
X∈T is O(2k|T |k+1). As k is a fixed number, it is O(|T |k+1).
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4.2 Causal Non-Interaction

In this section, we examine conditions for bounding the parameter k in k-leg
liability. For this purpose, we start with a characterisation of the notion of non-
interaction.

Definition 12. Suppose M = (U ,V,P,R,E) is an SCM; A,B,and H ∈ V; h ∈
R(H); u is a context; and v is the corresponding state. Two variables A and B
are causally non-interacting wrt the event H=h iff there is no set C⊆V for which
C=v is a cause of H=h and {A,B}⊆C. Two sets of variables A⊆V and B⊆V
are causally non-interacting iff for all A ∈ A and B ∈ B, A and B are causally
non-interacting. These definitions are generalised to more than two variables and
sets in a straightforward manner.

The following theorem shows a sufficient condition for causal non-interaction:

Theorem 4. Suppose M=(U ,V,P,R,E) is an SCM. If P is a failure formula in
the form P (A) =

∧n
i fi(Ai), where Ai ⊆A, for i= 1,...,n, and Ais are disjoint,

then under any context u for which P , Ais are causally non-interacting wrt P .

This condition mirrors a common way the output of different subsystems con-
tribute to a failure: when both subsystems fail [35]. Now, if we know that system
variables are causally non-interacting, we can use the following corollary to bound
k in k-leg liability.

Corollary 1. Suppose M=(U ,V,P,R,E) is an SCM and P is a failure formula. If
V is partitioned into sets A1,...,An that are causally non-interacting wrt P under
a context u, then degint(M,u,F)≤max{|Ai|}.

The utility of these results is illustrated in the following example.

Example 12. Consider the AV, shown in Fig. 2 (right), that includes two sub-
systems: one is an AEB system described in Example 10, and the other is an
Automated Lane Change (ALC) subsystem consisting of three more components,
that is |ALC|= 3. If an obstacle is detected, the vehicle will crash if neither the
AEB is able to brake nor the ALC is able to change lanes to avoid the obsta-
cle. In this case, PF is a conjunction of the failure condition of the AEB and the
failure condition of the ALC. Therefore, according to Theorem 4, AEB and ALC
are causally non-interacting with respect to PF . By Corollary 1, the maximum k
of k-leg liability is given by max(|AEB|,|ALC|)=3. Thus, we need to search for
causal sets of size at most 3, not 6 (the total number of components). Furthermore,
this search is conducted only within each separate subsystem, without considering
potential causal sets that have elements from both subsystems.

5 Extension to Interval Models

Our liability framework can be extended to handle various real-world complexities
beyond the basic deterministic point-value models. In this section, we present one
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key extension in detail. In many real-world systems, specifications define accept-
able ranges rather than exact values. For instance, a temperature sensor might be
specified to operate within ś2řC of the true temperature. We extend our framework
to handle such interval specifications.

Definition 13. An interval component is a component X =(I,O,P,R,f) where
the specification function f ′

X :
∏

Y ∈IR(Y )→P([l,u]) returns an interval [l,u]⊆R
rather than a point value. That is, for inputs (y1,...,yn) where yi∈R(Yi) for each
Yi ∈ I, we have f ′

X(y1, ... ,yn) = [l(y1, ... ,yn),u(y1, ... ,yn)]. The implementation
function fX returns a point value that may or may not lie within this interval.

For interval models, we need to redefine the notion of fixing a component:

Definition 14. When fixing a component X to its interval specification X ′, the
resulting system projects the implementation value onto the specification interval.
For a system T with interval specification S and context u, the state of the fixed
system SCM(TX→X′)[u] has the value of X computed as:

X=


l(y) if fX(y)<l(y)

fX(y) if fX(y)∈ [l(y),u(y)]

u(y) if fX(y)>u(y)

where y = (y1,...,yn) are the values of X’s input variables in state SCM(T )[u],
and [l(y),u(y)]=f ′

X(y) is the specification interval.

The next example illustrates the interval extension of our liability framework.

Example 13. Consider an AEB system where:

– Speedometer spec: f ′
A(a)=[a−1,a+1] (ś1 m/s tolerance)

– Speedometer impl: fA(a)=a+5 (5 m/s bias error)
– Radar spec: f ′

B(b)=[b−0.5,b+0.5] (ś0.5 1/m tolerance)
– Radar impl: fB(b)=b+2 (2 1/m bias error)
– ECU spec: f ′

C(A,B,c)=[AB+c−1,AB+c+1] (ś1 unit tolerance)
– ECU impl: fC(A,B,c)=AB+c+10 (10 unit bias error)

Given context u = (14,14,12) and failure set F = {(A,B,C) : C ≥ 250}, the
implementation state is t=(19,16,326) where A= fA(14)=19, B= fB(14)=16,
C=fC(19,16,12)=326. Since C=326≥250, the system is in failure.

To calculate 2-leg liability, we examine how fixing components affects the depth
in failure:

– t+A: ProjectsA=19 onto [13,15] yieldingA=15, state (15,16,262), depth=12
– t+B: Projects B=16 onto [13.5,14.5] yielding B=14.5, state (19,14.5,297.5),

depth=46.5
– t+C: Projects C = 324 onto [315,317] yielding C = 317, state (19,16,317),

depth=67
– t+ {A,B}: A = 15 (projected), B = 14.5 (projected), C = fC(15,14.5,12) =

15·14.5+12+10=239.5, state (15,14.5,239.5), depth=0 (since 238.5<250)



Causal Liability in Autonomous Systems 15

– t+{A,C}: A=15 (projected), C= fC(15,16,12)=15 ·16+10+12=261, pro-
jection ofC onto [251,253] since f ′

C(15,16,12)=[15·16+12−1,15·16+12+1]=
[251,253], yielding C=253, state (15,16,253), depth=3

– t + {B,C}: B = 14.5 (projected), C = fC(19, 14.5, 12) = 19 · 14.5 + 12 +
10 = 297.5, projection of C onto [286.5, 288.75], yielding C = 288.5, state
(19,14.5,288.5), depth=38.5

The only causal set is {A,B} since fixing both A and B brings the system out
of failure. The 2-leg liability calculation proceeds as follows:

– For componentA:φ2
A=ω · 11 ·max(0,depthd(t+B,F)−depthd(t+{A,B},F))=

ω ·(46.5−0)=46.5ω

– Similarly, for component B: φ2
B=12ω

– For components C: φ2
C=0 (not part of any causal set)

With normalization ω= (46.5+12)−1 = 1/58.5, the final liabilities are: φ2
A =

0.795, φ2
B = 0.205, φ2

C = 0, which is expected because of the symmetric roles of
A and B in causing failure, while A having larger deviation from its specification
results in higher liability.

This demonstrates how interval specifications naturally handle tolerance-based
engineering requirements. The following theorem confirms that the key properties
of our framework are preserved under this extension.

Theorem 5. For systems with interval specifications, the k-leg liability framework
preserves all key properties of Consistency (Theorem 2), Dummy component
(Theorem 3), and Polynomial complexity (Proposition 1).

Proof. The projection operation during fixing, only changes the values of fixed
components, not the causal dependencies. Therefore, the proofs of the original
theorems apply directly, as they rely on the structure of causal sets and distance
calculations, which remain unaffected by interval specifications.

6 Comparison with Harm

Beckers, Chockler, and Halpern (BCH) proposed a qualitative and quantitative
definition of harm [5, 6]. Any definition of harm involves an event causing a loss
for an agent. The causal mechanism is characterised by an SCM that includes a
designated outcome variable. This outcome variable is directly linked to the utility
of the agent. Quantitative harm is defined as the following:

Definition 15. If M=(U ,V,P,R,E) is an SCM, O ∈V is a certain endogenous
variable called the outcome variable, ut : R(O) → [0,1] is a function called the
utility function, and d∈ [0,1] is a number called default utility, then C=(M,ut,d)
is called causal utility model.
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Definition 16. If M= (U ,V,P,R,E) is an SCM and C = (M,ut,d) is a causal
utility model, and X=x instead of X=x′ causes O=o rather than O=o′ in (C,u),
then the (quantitative) harm to agent ag relative to (X = x,X = x′,O= o,O= o′)
is defined as QH(C,u,X=x,x′,o,o′)=max(0,min(d,ut(o′))−ut(o)). The quanti-
tative harm to agent ag caused by X=x in (C,u) is defined as QH(C,u,X=x)=
maxx′,o′QH(C,u,X=x,x′,o,o′) if there is some x′ and o′ such that X=x instead
of X = x′ causes O = o instead of O = o′; if there is no such x′ and o′, then the
quantitative harm is taken to be 0.

Both harm and the 1-leg liability (i.e., k-leg liability with k=1) measure the
difference between the utility of an actual and an expected outcome. In 1-leg lia-
bility, the utility of a state is the depth of the state within the set of failure states
F . The following theorem formalises this relationship:

Theorem 6. Suppose S is a specification system, T is an implementation of S,
M= SCM(S), N = SCM(T ), F is the failure set, u is a context, X ∈ T , X ′ is
the corresponding component in S, and {X} is a BF cause of T ending up in F .
Suppose W =TX→X′ and P =SCM(W). Define x=N [u][X ′] and x′=P[u][X].
Also define the utility function ut(s) = depthd(s,F), loosening its normalisation
condition. Define M′ as an SCM identical with M with the additional (vector) en-
dogenous variable O=V(M) where V(M) denotes the set of endogenous variables
of M. Then we have:

φ1
X =αQH(M′,ut,∞,X=x,x′,P[u],N [u])

where α is constant.

7 Implementation and Empirical Evaluation

In this section, we aim to assess the effectiveness and efficiency of our proposed k-
leg approach for liability apportionment compared to the widely accepted Shapley
value method. We use the Shapley values as the baseline because it is considered
the standard apportionment approach [7, 12,14,20]. Our research questions are:

– RQ1 (Accuracy). Is there a meaningful difference between liabilities calcu-
lated via the k-leg approach and Shapley values?

– RQ2 (Efficiency). Is there a meaningful difference between computational
time of the k-leg approach and Shapley values?

7.1 Methodology

In our experiments, each subject consists of a random linear system of M compo-
nents representing the specification system, re-randomisation of the specification
to act as the implementation, a random failure quantifier-free first-order formula,
and a context: (i) To randomly generate a specification system, we first generate
a random DAG; for each DAG node (corresponding to a system components) the
output is defined as a random linear function of its direct children. The linear
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function coefficients are real numbers uniformly sampled from [−100,+100). (ii)
The first-order failure formula is of the form

∧
(xi≤|≥ai) where at most b|V|/3c

of endogenous variables are randomly selected for xis and ais are real numbers
uniformly sampled from [−90,+90). (ii) Generation of a suitable experimental
context is intricate, because we are interested in the contexts leading to a failure
in implementation, but not a failure in the specification. To this end, we use Z3
SMT solver [23] to find a suitable context. If no context satisfies the constraints,
we discard the generated systems and the failure and try again.

To answer RQ1, we compute the liability of the components in a subject with
both Shapley and k-leg methods (k = 1,2,3). This gives us two vectors s and l,
each summing to one. We get the sum of the absolute value of the difference of
the vectors (i.e.,

∑
i|si− li|), which is a number between 0 and 2. We repeat this

process N = 1000 times for each pair of M = 5−14 and k = 1,2,3. Similarly, for
RQ2, we find the difference between Shapley and k-leg computation times (in sec-
onds), for N =1000 random subjects, and repeat this for each pair of M =5−14
and k=1,2,3. We developed a Python package for quantitative liability analysis
within causal models which will be made available after acceptance.

7.2 Results

RQ1. For each (M,k) pair, we generated N =1000 data points representing the
difference between Shapley and k-leg values. Figure 3 (left) shows these differences
as box plots. The 1st, 2nd, and 3rd quartiles are always 0, indicating the methods
typically agree. To assess significance, we computed the percentage of cases where
the L1 norm difference exceeds 0.4 (maximum possible difference: 2). The result-
ing p-values are reported in Table 4. For k=3, all p-values are below 0.1, showing
no significant difference for systems with up to 9 components and supporting the
k-leg method’s efficacy.

RQ2. For each pair of (M,k) we have N=1000 data points that represent the
time difference between Shapley and k-leg values. The results are plotted on Fig.
3 (right). The exponential time difference is in line with the complexity results
stated earlier.

Table 4: p-values for the difference between k-leg and Shapley liabilities for
M=5−14 and k=1,2,3.

M k=1 k=2 k=3

5 0.021 0.004 0.000
6 0.028 0.018 0.000
7 0.027 0.034 0.002
8 0.033 0.121 0.039
9 0.028 0.101 0.041

M k=1 k=2 k=3

10 0.007 0.183 0.062
11 0.037 0.094 0.050
12 0.036 0.093 0.061
13 0.029 0.085 0.073
14 0.040 0.079 0.071
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Fig. 3: Comparison of Shapley and k-leg methods in terms of liability difference
(left) and computational time (right).

7.3 Discussion

(RQ1) The experimental results indicate that the k-leg approach provides liabil-
ity apportionments that are closely aligned with the Shapley values, particularly
for smaller k values such as k=3, with p-values < 0.05, suggesting no significant
difference between the methods for systems with up to nine components. This
implies that the k-leg method effectively approximates the Shapley value, main-
taining fairness while simplifying computations. (RQ2) Additionally, the compu-
tational efficiency of the k-leg approach is evident from the significant reduction
in execution time compared to the Shapley method, especially as the number of
components M increases (see Fig. 3 (right)). Therefore, the k-leg method offers
a practical and efficient alternative for liability assessment in complex systems
without compromising accuracy.
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8 Conclusion and Future Work

We proposed a formal framework for automatically apportioning liabilities, illus-
trated its desirable features through examples, and established its formal proper-
ties. We introduced the concept of causal non-interaction and identified sufficient
conditions for its validity. Furthermore, we illustrate that our framework handles
real-world complexities such as interval specifications.

Future research directions include applying the k-leg liability concept directly
to definitions of actual causality, extending the framework to incorporate manu-
facturer design flaws, and formally connecting k-leg liability with Shapley-based
apportionment methods, including fairness axioms. Additionally, exploring for-
mal semantic definitions of component interactions and identifying syntactic con-
ditions that entail them present promising avenues for further research.
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