
On the Complexity of
Input Output Conformance Testing

Neda Noroozi1, Mohammad Reza Mousavi2, and Tim A.C. Willemse1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Center for Research on Embedded Systems, Halmstad University, Sweden

n.noroozi@tue.nl, m.r.mousavi@hh.se,t.a.c.willemse@tue.nl

Abstract. Input-output conformance (ioco) testing is a well-known ap-
proach to model-based testing. In this paper, we study the complexity of
checking ioco. We show that the problem of checking ioco is PSPACE-
complete. To provide a more efficient algorithm, we propose a more re-
stricted setting for checking ioco, namely with deterministic models and
show that in this restricted setting ioco checking can be performed in
polynomial time.

1 Introduction

Motivation. Testing is a major part of the software development process and,
together with debugging, accounts for more than half of the development cost
and effort [14]. Model-based testing is a structured and rigorous discipline of
testing, which is likely to improve the current practice of testing [24, 23, 17].
Input-output conformance (ioco) testing is a well-known formal approach to
model-based testing, which is used extensively in various practical applications,
see [13, 5] and the references therein, and which has been the subject of much
theoretical research, see [21] and the references therein.

In this paper, we study the complexity of checking ioco, a topic which—as
far as we could trace—has not been addressed in the literature. Our study sheds
some light on the theoretical boundaries for this popular notion and possible
enhancements in its efficiency and efficacy by considering restricted forms of
specifications and implementations.

We first show that the upper bound on the complexity of checking ioco is
exponential in the size of the model. This is as expected due to the trace-based
nature of (the intensional definition of) ioco. We show that this exponential com-
plexity bound is indeed tight, by proving that the problem is PSPACE-complete.
This means that, unless the complexity class hierarchy from P to PSPACE col-
lapses, the exponential time complexity in deciding ioco is unavoidable in the
worst case. Next, we identify a more restricted setting for checking ioco which
still admits a polynomial time algorithm. In this restricted setting, implemen-
tations are still permitted to behave non-deterministically, but specifications
must be deterministic. In order to obtain this result, we first give a coinduc-
tive (simulation-like) definition of ioco for deterministic specifications and we
subsequently show that it can be decided in polynomial time.

2

Our study is based on the intensional representation of ioco, which allows
for defining exact complexity bounds on checking conformance. The complexity
bounds for the intensional representation also hold for the extensional represen-
tation, but it remains to be checked under which conditions these bounds can
be realized in the practical setting by using test-cases.

Compositional testing concerns about testing of composite systems consisting
of communication components which can be separately tested. Though ioco
lacks the compositionality property in general, several researches were conducted
to adapt ioco for compositional testing. In [6, 9, 15] some variants of ioco have
been introduced for testing of component-based systems. Our results in this
paper can be easily adapted and applied for those relations as well. For instance,
in [6], a variant of ioco for testing components is introduced such that the
correctness of the integration of the conformed components is guaranteed. That
aforementioned relation coincides with the standard ioco for a restricted class
of specification, namely deterministic models.

Related work. Our polynomial time algorithm for checking ioco (for determinis-
tic models) is inspired by [18], which is based on the reduction of checking ioco
into the NHORNSAT problem [8]. The coinductive definition of ioco, which
is an important means for this result, is akin to the alternating refinement [4] of
Interface Automata [3] (see also [1, 10]). In [22], it is shown that for determin-
istic models and implementations, alternating refinement coincides with ioco.
In this paper, we show that our coinductive definition of ioco coincides with
ioco for deterministic models (and possibly nondeterministic implementations).
In a recent paper [10], a simulation-like relation, called iocos, is presented. It is
shown that iocos is finer than ioco.

In [11], the author proves that testing conformance under asynchronous com-
munication is in general EXPTIME-hard. Then, by restricting to a particular
class of models, called observable IOTSs, the author gives a polynomial time
algorithm for checking conformance under asynchronous FIFO communication.
(The problem remains equally hard for observable models under arbitrary asyn-
chronous communication.) Apart from being in the asynchronous setting, the
notion of conformance used in [11] differs from ioco (e.g., its theory does not
treat quiescence).

Structure of the Paper. In Section 2, we recall some basic definitions regard-
ing labeled transition systems and the input-output conformance relation. In
Section 3, we study the complexity of checking ioco. In order to obtain more
efficient bounds for checking conformance of deterministic models, we first give
a coinductive definition of ioco in Section 4 and use this definition in Section 5
to show that in this restricted setting, conformance checking is indeed possible
in polynomial time. We conclude the paper in Section 6.

3

2 Preliminaries

In this section, we briefly repeat the definitions of the formal models used in our
context for specifying system behavior, as well as the notion of input-output con-
formance testing. Throughout this paper, we use variants of Labeled Transition
Systems (LTSs) for modeling the behavior of specifications and implementations.
The LTS model assumes that systems can be represented using a set of states
and transitions, labeled with events or actions, between such states. The events
leading to new states can be observed by the tester, but the states cannot be in-
spected. We assume the presence of a special action, denoted by τ , which models
an event that is unobservable to the tester.

Definition 1 (LTS). A labeled transition system (LTS) is a 4-tuple 〈S,L,→, s̄〉,
where S is a set of states, L is a finite alphabet of actions that does not contain
the internal action τ , →⊆ S× (L∪{τ})×S is the transition relation, and s̄ ∈ S
is the initial state.

Throughout this section, we assume a fixed yet arbitrary LTS 〈S,L,→, s̄〉.
We tend to refer to LTSs by referring to their initial state, i.e., s̄ in the case of
the above mentioned LTS. Let s, s′ ∈ S and x ∈ L ∪ {τ}. In line with common

practice, we write s
x−→ s′ rather than (s, x, s′) ∈→. Furthermore, we write s

x−→
whenever s

x−→ s′ for some s′ ∈ S, and s 6 x−→ when not s
x−→. The transition

relation is generalized to a relation over a sequence of actions by the following
deduction rules:

s
ε−−→∗s

s
σ−−→∗s′′ s′′

x−−→ s′ x 6= τ

s
σx−−−→∗s′

s
σ−−→∗s′′ s′′

τ−−→ s′

s
σ−→∗s′

We tacitly adopt the same notational conventions both for → and −→∗.
An LTS s̄ is said to be deterministic if the set of states reached after executing

any sequence of actions is always a singleton set; that is, for all s, s′, s′′ ∈ S and
all σ ∈ L∗, if s

σ−→∗s′ and s
σ−→∗s′′ then s′ = s′′.

A state in the LTS s̄ is said to diverge if it is the source of an infinite
sequence of τ -labeled transitions. The LTS s̄ is divergent if one of its reachable
states diverges. Throughout this paper, we confine ourselves to non-divergent
LTSs.

Definition 2. Let s′ ∈ S and S′ ⊆ S. The set of traces, enabled actions and
weakly enabled actions for s and S′ are defined as follows:

– traces(s) = {σ ∈ L∗ | s σ−→∗}, and traces(S′) =
⋃

s′∈S′
traces(s′).

– init(s) = {x ∈ L ∪ {τ} | s x−→}, and init(S′) =
⋃

s′∈S′
init(s′).

– Sinit(s) = {x ∈ L | s x−→∗}, and Sinit(S′) =
⋃

s′∈S′
Sinit(s′).

4

Input, output, Quiescence and Suspension Traces. When engaging in interaction
with another system, the actions of an LTS are often assumed to be partitioned
into two subcategories, reflecting which of the systems has the initiative in exe-
cuting the action. Output actions are under the control of the system, whereas
input actions are under the control of the environment of the system. We refine
the LTS model to reflect this distinction in initiative.

Definition 3 (IOLTS). An input-output labeled transition system (IOLTS) is
a tuple 〈S, I, U,→s, s̄〉 such that the tuple 〈S, I ∪U,→, s̄〉 is an LTS in which the
alphabet L is partitioned into a set I of inputs and a set U of outputs.

Testers often not only have the power to observe the events produced by an
implementation, but also can observe the absence of events, or quiescence [21].
A state s ∈ S is said to be quiescent if it does not produce outputs and it
is stable, that is, it cannot, through internal computations, evolve to a state
that is capable of producing outputs. Formally, state s is quiescent, denoted
δ(s), whenever init(s) ⊆ I. In order to formally reason about the observations
of inputs, outputs and quiescence, we introduce the set of suspension traces. To
this end, we first generalize the transition over a sequence of input, output and
quiescence actions. Let Lδ denote the set L ∪ {δ}.

s
σ−−→∗s′

s
σ

==⇒ s′

δ(s)

s
δ

=⇒ s

s
σ

==⇒ s′′ s′′
ρ

=⇒ s′

s
σρ

==⇒ s′

The following definition formalizes the set of suspension traces.

Definition 4. Let s ∈ S and S′ ⊆ S. The set of suspension traces for s,
denoted by Straces(s) is defined as the set {σ ∈ L∗δ | s

σ
=⇒}; we set Straces(S′) =⋃

s′∈S′
Straces(s′).

Input-Output Conformance Testing with Quiescence. Tretmans’ ioco testing
theory [21] is a formal approach to conformance testing. It assumes that the be-
havior of implementations can be described adequately using a class of IOLTSs,
called input output transition systems; this assumption is the so-called testing
hypothesis. Input output transition systems are essentially plain IOLTSs with
the additional assumption that inputs can always be accepted.

Definition 5 (IOTS). Let 〈S, I, U,→, s̄〉 be an IOLTS. A state s ∈ S is input-
enabled iff I ⊆ Sinit(s); the IOLTS s̄ is an input output transition system
(IOTS) iff every state s ∈ S is input-enabled. The class of input output transition
systems ranging over inputs I and outputs U is denoted IOTS(I, U).

While the ioco testing theory assumes input-enabled implementations, it does
not impose this requirement on specifications. This facilitates testing using par-
tial specifications, i.e., specifications that are under-specified. To simplify pre-
senting the input-output conformance relation (ioco), we first introduce the
formal definitions below.

5

s̄

s1

s2s3

coin

refund

tea

(a) IOLTS s̄

r̄

r1r2

r3r4

coin
coin

tea

coin

refund

coin

coincoin

(b) IOTS r̄

ī

i1

i2i3

coin

refund

tea

τ

coincoin

(c) IOTS ī

Fig. 1. A specification s̄ of a tea vending machine, a correct implementation r̄ and an
incorrect implementation ī.

Definition 6. Let 〈S, I, U,→, s̄〉 be an IOLTS. Let s ∈ S, S′ ⊆ S and let σ ∈ L∗δ .

– s after σ = {s′ ∈ S | s σ
=⇒ s′}, and S′ after σ =

⋃
s′∈S′

s′ after σ.

– out(s) = {x ∈ Lδ \ I | s
x
=⇒}, and out(S′) =

⋃
s′∈S′

out(s′).

The ioco conformance relation [21] is then defined as follows.

Definition 7 (ioco). Let 〈Q, I, U,→, r̄〉 be an IOTS representing a realization
of a system, and let IOLTS 〈S, I, U,→, s̄〉 be a specification. We say that r̄ is
input output conform with specification s̄, denoted by r̄ ioco s̄, iff

∀σ ∈ Straces(s̄) : out(r̄ after σ) ⊆ out(s̄ after σ)

Example 1. Consider the IOLTSs pictured in Figure 1. The IOLTS s̄ is a spec-
ification of a vending machine which sells tea. After receiving a coin, it either
delivers tea or refunds the coin. The IOLTS r̄ is a formal model of a possible
implementation of this vending machine. Upon receiving a coin, the machine r̄
chooses non-deterministically between serving tea or refunding the coin. Note
that IOLTS r̄ is input-enabled, because it accepts input action coin (as the only
input action) at every state. The set Straces(s̄) is given by the regular expres-
sion (δ∗) | (δ∗coin) | (δ∗coin(tea|refund)δ∗). Clearly, for all σ ∈ Straces(s̄), we have
out(r̄ after σ) ⊆ out(s̄ after σ). Thus, r̄ ioco s̄.

The IOLTS ī is a formal model of an implementation of a malfunction vending
machine. After receiving a coin, it either delivers tea, refunds the coin or does
nothing. Similar to IOTS r̄, it accepts input action coin at every state. Thus,
the IOLTS ī is input-enabled. Consider the trace coin after which out(s̄) =
{refund, tea} while out(̄i) = {refund, tea, δ}. As a result, we find that ī���ioco s̄.

3 Conformance Checking for Nondeterministic Models

In this section, we study the complexity of input-output conformance checking
in full generality. We prove that, in the general case, checking ioco is PSPACE-
complete. To this end, we first show that checking ioco is in PSPACE. Sub-
sequently, we show that checking ioco is at least as hard as other canonical

6

PSPACE-complete problems and hence, is also PSPACE-complete. We prove
these results by means of two polynomial time reductions, respectively, to and
from the language inclusion problem for regular expressions (or NFAs); the latter
problem is well-known to be PSPACE-complete; see [19] for the classical result
and [2, 16] for some recent developments.

Theorem 1. The problem of checking ioco is in PSPACE.

Proof. We prove the thesis by showing that the problem of checking ioco for
input-enabled specifications is reducible to the language inclusion problem of
NFAs with ε-moves (hereafter simply referred to as NFAs) in polynomial time.
Observe that without loss of generality we can restrict our attention to the prob-
lem of checking ioco for input-enabled specifications. Indeed, for a non input-
enabled specification A2, we can construct an input-enabled specification Ā2 in
polynomial time such that for any implementation A1, we have A1 iocoA2 iff
A1 ioco Ā2. The construction uses a standard angelic completion, adding miss-
ing input transitions to A2 that lead to fresh input-enabled states that accept
all outputs and quiescence.

Assume that, for i ∈ {1, 2}, we have IOTSs Ai of the form 〈Si, I, U,→i, s̄i〉.
Our reduction proceeds as follows. We define NFAs A′i = 〈Qi, Σ,∆i, qi, F 〉 as
follows:

– Qi = Si is the set of states,
– Σ = Lδ ∪ {ε} where Lδ = I ∪ U ∪ {δ} is the common alphabet,

– ∆i = {(q, a, q′) | q a−→ q′ ∧ a ∈ L} ∪ {(q, ε, q′) | q, q′ ∈ Si ∧ q
τ−→ q′} ∪

{(q, δ, q) | q ∈ Si ∧ δ(q)} is the transition relation, which is that of the corre-
sponding IOTS union with δ-labeled self-loop for single and each quiescent
state.

– qi = s̄i is the initial state, and
– F = Qi is the set of final states.

Note that the above reduction is carried out linearly in the size of the transi-
tion relations of A1 and A2. Moreover, observe that L(A′1) = Straces(A1) and
L(A′1) = Straces(A2). We next proceed by showing that A1 iocoA2 if and only
if Straces(A′1) ⊆ Straces(A′2). We prove the contraposition of both implications
separately.

– Assume that A1���iocoA2. By definition of ioco there is a suspension trace
σ in specification A2 such that for some output x, σx ∈ Straces(A1), but
σx 6∈ Straces(A2). Since L(A′1) = Straces(A1) and L(A′2) = Straces(A2) we
find L(A′1) 6⊆ L(A′2).

– Assume L(A′1) 6⊆ L(A′2). Then there is a word σ ∈ L(A′1) \ L(A′2). Without
loss of generality, assume σ = ρx for some ρ ∈ L(A′1) ∩ L(A′2) and x ∈
Σ. Since L(A′1) = Straces(A1) and L(A′2) = Straces(A2), we have ρx ∈
Straces(A1) \ Straces(A2). We distinguish two cases:
• Suppose x ∈ I. Since,A2 is input-enabled, we know that ρa ∈ Straces(A2)

for all a ∈ I. In particular, ρx ∈ Straces(A2), contradicting ρx 6∈ Straces(A2).
Therefore, x ∈ I cannot be the case.

7

• Suppose x ∈ U∪{δ}. Therefore, x ∈ out(s̄1 after ρ) but x 6∈ out(s̄2 after ρ).
By definition of ioco relation we have A1���iocoA2.

We next establish that the problem of checking ioco is in fact PSPACE-complete.

Theorem 2. The problem of checking ioco is PSPACE-complete.

Proof. We prove the thesis by providing a linear reduction of the PSPACE-
complete language inclusion problem for regular expressions to checking ioco.
Every regular expression can be translated linearly to a language equivalent NFA,
following Kleene’s theorem. In particular, we may assume that the language-
equivalent NFA of a regular expression has one initial and one final state, all
states are reachable from the initial state and can reach the final state, there
is no incoming transition to the initial state and no outgoing transition from
the final state (e.g., by applying Thompson’s algorithm for converting regular
expressions to NFAs [20]).

Formally, let RE1 and RE2 be two regular expressions over alphabet Σ and
assume A1 and A2 are the language-equivalent NFAs for RE1 and RE2. The
inclusion problem of regular expressions of RE1 and RE2 is equivalent to the
problem whether L(A1) ⊆ L(A2). As stated above, we may assume that NFA Ai
is of the form 〈Qi, Σ ∪ {ε}, ∆i, qi, {fi}〉. We define IOTSs A′i = 〈Si, I, U,→i, s̄i〉
as follows:

– Si = Qi,
– I = {i}, where i /∈ Σ is a fresh symbol,
– U = Σ,
– →i= {(q, a, q′) | (q, a, q′) ∈ ∆i∧a ∈ Σ}∪{(q, τ, q′) | (q, ε, q′) ∈ ∆i}∪{(q, i, q) |
q ∈ Qi}, i.e., the transition relation is that of the corresponding automaton
union with i-labeled self-loops for each and every state,

– s̄i = qi.

Note that the two IOLTSs A′1 and A′2 obtained from the above reduction are
input-enabled, because {i} ⊆ Sinit(s) for all s in both A′1 and A′2. Moreover,
the accepting states in A1 and A2 are the only quiescent states in A′1 and A′2.
We proceed to show that language inclusion of A1 in A2 can be decided by
checking for ioco; that is, we prove L(A1) ⊆ L(A2) if and only if A′1 iocoA′2.
The contraposition of each implication is again proved separately.

– Assume that L(A1) 6⊆ L(A2). Thus, there is a word σ ∈ Σ∗ such that
σ ∈ L(A1) but σ 6∈ L(A2). Therefore, the accepting state f1 in NFA A1

is reachable after σ. By construction, the state f1 state in A′1 is quiescent.
Thus, δ ∈ out(A′1 after σ). We distinguish two cases.

• Suppose there is a state in automaton A2 which is reachable after σ.
Thus, σ ∈ Straces(A′2). Since σ 6∈ L(A2), we know that A2 does not
reach its accepting state f2 after σ. Therefore, δ 6∈ out(A′2 after σ). Since
δ ∈ out(A′1 after σ) and σ ∈ Straces(A′2), we find that A′1�

��iocoA′2, which
was to be shown.

8

• Assume there is no state in automaton A2 that is reachable after σ.
Then also σ 6∈ Straces(A′2). Let ρx ∈ Σ+ be a prefix of σ such that
ρ ∈ Straces(A′2) but ρx /∈ Straces(A′2). Note that such a prefix must
exist. Since σ ∈ Straces(A′1), we find that ρx ∈ Straces(A′1). Therefore
A′1�

��iocoA′2, which was to be shown.

– Assume that A′1�
��iocoA′2. Thus, there is a σ ∈ Straces(A′1)∩ Straces(A′2) and

an output x ∈ Σ ∪ {δ} such that σx ∈ Straces(A′1) but σx 6∈ Straces(A′2).
We first define the projection operator ↓ over the sequences in Σ ∪ {i, δ}.
Let γ ∈ (Σ ∪ {i, δ})∗ and a ∈ Σ ∪ {i, δ}. Then (γa)↓ = (γ)↓a when a ∈ Σ,
and (γa)↓ = (γ)↓ otherwise.
Since, by construction, only transitions labeled with an action in Σ invoke
state changes in IOLTS A′1, for all γ we have (A′1 after γ) = (A′1 after γ↓),
and, similarly for A′2. Therefore, without loss of generality we may assume
that σx = (σx)↓; i.e., σx ∈ (Σ ∪ {δ})∗. We distinguish two cases, based on
the type of x.

• Assume that x ∈ Σ. Since σx ∈ Straces(A′1) ∩ Σ∗, there is a state
in A1 that is reachable after σx. Since the accepting state f1 in A1 is
reachable from every all states in A1, there must be a ρ ∈ Σ∗ such
that σxρ ∈ L(A1). From σx 6∈ Straces(A′2) and σx ∈ Σ∗ we can deduce
that no state in A2 can be reached via the word σx. Consequently, the
extended word σxρ is also not accepted by A2; i.e., σxρ 6∈ L(A2). Since
σxρ ∈ L(A1), we conclude that L(A1) 6⊆ L(A2).
• Assume that x 6∈ Σ; it then follows that x = δ. Thus, δ ∈ out(A′1 after σ).

By our construction, a δ-labeled transition is enabled only at state f1 in
A′1 and state f2 in A′2. From this, it follows that word σ is accepted by
A1, i.e., σ ∈ L(A1). Following a similar line of reasoning, we conclude
from δ 6∈ out(A′2 after σ) that the word σ is not accepted by A2, i.e.,
σ /∈ L(A2). But then L(A1) 6⊆ L(A2), which we needed to show.

Since the reduction we used is linear in the size of A1 and A2 and since checking
ioco conformance is in PSPACE (Theorem 1), it follows that checking ioco
conformance is PSPACE-complete.

0 1
a

(a) A1

0 1 2
a

a

ε

(b) A2

0 1
a

i i

(c) A′1

0 1 2
a

i a, i

τ

i

(d) A′2

Fig. 2. NFA’s A1 and A2 represents the regular expression a and aa∗ respectively.
IOLTS’s A′1 and A′2 depicts two input-enabled IOLTS’s over the language L = I ∪ U ,
where I = {i} and U = {a}

Example 2. Consider automata A1 and A2 over Σ = {a} depicted in Figure 3.
Automata A1 and A2 accept regular languages a and aa∗, respectively. Thus,

9

L(A1) ⊂ L(A2). Now consider the IOLTS’s A′1 and A′2 in Figure 3 with {a}
as the output alphabets and {i} as the set of inputs. Observe that IOLTS’s A′1
and A′2 can be obtained from A1 and A2 according to the reduction algorithm
presented in the proof of Theorem 2. Both models are input-enabled because
they have a transition labeled with i as the only input action at every state. The
set Straces(A′2) is given by the regular expression ((δ|i)∗a) | ((δ|i)∗a(a|i)∗(δ|i)∗).
It is clear that A′1 iocoA′2, because for all σ ∈ Straces(A′2), out(A′1 after σ) ⊆
out(A′2 after σ).

4 Coinductive Definition of IOCO

In the previous section, we showed that checking ioco is in general inefficient
and requires exponential time and space (in the size of the specification). In the
next section, we show that checking ioco can be performed in polynomial time
when specifications are deterministic. To accommodate proving this result, we
first show that checking ioco for deterministic specifications reduces to checking
a simulation-like preorder which we call coinductive ioco in this section. This
preorder closely resembles alternating refinement [4] for Interface Automata [3].

Definition 8 (Coinductive ioco). Let deterministic IOLTS 〈S, I, U,→s, s̄〉 be
a specification, and let IOTS 〈Q, I, U,→, r̄〉 be an implementation. A binary
relation R ⊆ Q × S is called a coinductive ioco relation from r̄ to s̄ when
(r̄, s̄) ∈ R and for each (q, p) ∈ R, then

– (Input simulation) if p
a−→s p

′, for a ∈ I, then (q after a) 6= ∅ and for all
q′ ∈ q after a, we have (q′, p′) ∈ R

– (Output simulation) if q
a

=⇒ q′, and a ∈ U ∪ {δ}, then a ∈ out(p) and for all
p′ ∈ p after a, we have (q′, p′) ∈ R.

We write q � p, when there exists a coinductive ioco relation relating q to p.

If the intent is clear from the context, we will simply say that a relation is a
coinductive ioco relation rather than a coinductive ioco relation from r̄ to s̄.

The following theorem is the main result of this section.

Theorem 3. For deterministic specifications, coinductive ioco and ioco coin-
cide.

Before giving the proof of the theorem, we need to show the correctness of the
lemma given below.

Lemma 1. Let deterministic IOLTS 〈S, I, U, s̄,→s〉 be a specification, and let
IOTS 〈Q, I, U, r̄,→〉 be an implementation. Let R ⊆ S×Q be a coinductive ioco
relation, and let σ ∈ Straces(s̄) ∩ Straces(r̄) with length n ≥ 1. Then, (q, p) ∈ R
for all p ∈ (s̄ after σ) and q ∈ (r̄ after σ).

Proof. Because R is a coinductive ioco relation, we have (r̄, s̄) ∈ R. We proceed
with an induction on the length of σ.

10

– For the base case, assume that σ ∈ Lδ is a suspension trace of length 1. We
distinguish two cases. Suppose that σ ∈ I. Following the input simulation
condition with (r̄, s̄) ∈ R, we immediately find that (q, p) ∈ R for p ∈
(s̄ after σ) and q ∈ (r̄ after σ). Suppose σ ∈ U ∪ {δ}. It follows from the
output simulation condition together with (r̄, s̄) ∈ R and the fact that s̄ is
deterministic that (q, p) ∈ R for all p ∈ (s̄ after σ) and q ∈ (r̄ after σ).
Both cases lead to the desired result.

– Assume that the induction hypothesis holds for all sequences of length n−1
and consider a sequence σ ∈ Straces(s̄) ∩ Straces(r̄) with length n ≥ 2. We
may assume that σ is of the form ρa. Let q, q′ ∈ Q be arbitrary states such

that r̄
ρ

=⇒ q′
a

=⇒ q (we know these exist since σ ∈ Straces(r̄)). Likewise, there

are unique p, p′ ∈ S such that s̄
ρ

=⇒s p
′ a

=⇒s p (note that unicity follows from
the fact that s̄ is deterministic). Following the induction hypothesis, we have
that (q′, p′) ∈ R. Therefore, the pair (q′, p′) satisfies the input and output
simulation conditions. We distinguish two cases. Suppose that a ∈ I. Due
to the input simulation condition, we find that (q, p) ∈ R. Suppose that
a ∈ U ∪ {δ}; then (q, p) ∈ R follows from the output simulation condition.
Therefore, (q, p) ∈ R for arbitrary p ∈ (s̄ after σ) and q ∈ (r̄ after σ).

Now, we are in the position to give the proof of Theorem 3.

Proof (Theorem 3). The proof of each implication is given separately.

– We suppose that r̄���ioco s̄, then we show that there is no binary relation R
such that (r̄, s̄) ∈ R and R is such that the input and output simulation
conditions hold for all pairs (q, p) ∈ R. By definition of ioco, we know that
there exists a sequence σ ∈ Straces(r̄)∩ Straces(s̄) and there exits an output
x such that σx ∈ Straces(r̄) but σx 6∈ Straces(s̄). We distinguish two cases;
σ = ε and σ ∈ L+

δ .
• Suppose that σ = ε. Clearly, the pair (r̄, s̄) violates the output simulation

condition, because r̄
x
=⇒, whereas s̄ 6 x=⇒s. Therefore, there can be no re-

lation R that simultaneously satisfies the required simulation properties
and (r̄, s̄) ∈ R.

• Suppose σ ∈ L+
δ . Towards a contradiction, assume that there is a coin-

ductive ioco relation R. Thus, (r̄, s̄) ∈ R. It follows from σx ∈ Straces(r̄)
that there is some q ∈ (r̄ after σ) such that x ∈ out(q). Since s̄ is de-
terministic, from σ ∈ Straces(s̄) we find that there is some unique p ∈ S
such that s̄

σ
=⇒s p. Because σx 6∈ Straces(s̄), we find that x 6∈ out(p). From

lemma 1, we obtain that (q, p) ∈ R. However, the pair (q, p) violates the

output simulation condition since q
x
=⇒ but p 6 x=⇒s. This contradicts the

assumption that there is a coinductive ioco relation R.
– We suppose that r̄ ioco s̄. We construct the relation R = {(r̄, s̄)} ∪ {(q, p) |
∃σ ∈ L+

δ • r̄
σ
=⇒ q ∧ s̄ σ

=⇒s p}. We proceed to show that R is a coinductive
ioco relation. Clearly, (r̄, s̄) ∈ R. So it suffices to show that for arbitrary
pair (q, p) ∈ R the input and output simulation conditions are met. We

assume arbitrary pair (q, p) ∈ R. Thus, there exists σ ∈ L∗δ such that r̄
σ
=⇒ q

11

and s̄
σ
=⇒ p. Because r̄ is input-enabled, q has a matching (weak) transition

for any input action performed by p, i.e., for all a ∈ I such that p
a

=⇒s,
q after a 6= ∅. By definition of R, we find that (q′, p′) ∈ R for an action

a ∈ I such that p
a

=⇒s p
′ and any q

a
=⇒ q′. Thus, (q, p) satisfies the input

simulation condition. Using r̄ ioco s̄, by construction of R, we know that
out(q) ⊆ out(p). Combining this observation with the definition of R results

in (q′, p′) ∈ R for all actions a ∈ U ∪ {δ} for which p
a

=⇒s p
′ and q

a
=⇒ q′.

Thus, (q, p) also satisfies the output simulation condition. Hence, the pair
(q, p) fulfills both input and output simulation conditions which was to be
shown.

Since R satisfies both simulation conditions and (r̄, s̄) ∈ R, we find that R
is a coinductive ioco relation.

Following Theorem 3, we say that a coinductive ioco relation R is a witness for
ī ioco s̄.

Example 3. Consider the IOLTS’s s̄ and r̄ presented in Figure 1 on page 5. We
define the binary relation R = {(r̄, s̄), (r1, s1), (r2, s1), (r3, s2), (r4, s3)}. Clearly,
for all pair of states (q, p) ∈ R, the two input and output simulation conditions
presented in Theorem 3 are satisfied. Thus, the relation R is an ioco coinductive
relation and it is also a witness for r̄ ioco s̄.

Now, consider the IOLTS ī depicted in Figure 1. Because out(̄i after coin) 6⊆
out(s̄ after coin), it is clearly obtained that ī���ioco s̄. Therefore, we find that
there is no binary relation from ī to s̄ such that (̄i, s̄) ∈ R and the two input
and output simulation conditions hold for any pair (q, p) ∈ R. However, we for
the sake of contradiction assume that there is a relation R′ such that (̄i, s̄) ∈ R′
and R′ is such that for any (q, p) ∈ R′, the two conditions in Theorem 3 holds.
Regarding the input simulation condition, (̄i, s̄) ∈ R′ implies that (i1, s1) ∈ R′ as
well. We know from the properties of R′, that s1 has to simulate all the outputs
produced by i1. While observation of quiescence is not possible at s1, via an
internal transition i1 can reach to a quiescent state. Therefore, (i1, s1) violates
the output simulation condition which contradicts with the assumption that all
pairs in R′ respect the output simulation condition.

5 Conformance Checking of Deterministic Specifications

In this section, we give a polynomial-time algorithm for deciding the coinduc-
tive ioco relation defined in the previous section. The results obtained in the
remainder of this section can be adapted in a straightforward manner to some
other conformance relations in the ioco family, such as uioco [6]. Our algo-
rithm is inspired by [18] and is based on the reduction of checking ioco into the
NHORNSAT problem [8].

12

5.1 NHORNSAT Problem

The satisfiability problem for Boolean formulas is a typical (in fact, the first
identified) NP-complete problem. In a restricted setting, however, the problem
becomes decidable in polynomial time.

Definition 9 ((N)HORNSAT). A boolean clause (a disjunction of literals)
containing of at most one positive literal is called a Horn clause. We call the
conjunction of Horn clauses a Horn formula. The satisfiability of a Horn formula
is known as HORNSAT. Similarly, checking the satisfiability of a conjunction
of clauses containing of at most one negative literal is called NHORNSAT.

The size of a (N)HORNSAT instance is defined as the total number of occur-
rences of literals in the given formula. It is well-known that (N)HORNSAT is
decidable in polynomial time in the size of the (N)HORNSAT instance [8].

5.2 Reducing IOCO to NHORNSAT

Throughout this section, we assume that we have an IOTS 〈Q, I, U, r̄,→〉 and
a deterministic IOLTS 〈S, I, U, s̄,→s〉. We assume p, p′, p′′ are states in S and
q, q′, q′′ are states in Q. The algorithm, which we will present shortly, intuitively
uses the following encoding:

1. positive literals Xqp model that q is (purportedly) related to p by a coinduc-
tive ioco relation,

2. negative literals Xqp model that the pair (p, q) cannot be in a coinductive
ioco relation, and

3. implication clauses Xqp ⇒ Xq′p′ , which are shorthand for Xqp∨Xq′p′ , model
that the pair (p, q) can be in a coinductive ioco relation only if (q′, p′) is in
the same relation.

The reduction of checking for a coinductive ioco relation to NHORNSAT
is presented in Algorithm 1: this algorithm constructs a negative Horn formula
F such that F is satisfiable if and only if there exists a coinductive ioco relation
R from r̄ to s̄.

The algorithm takes an implementation r̄ and a deterministic specification
s̄ as input. We assume that for r̄, the generalized transition relation ⇒ from
→ of r̄ has been computed. This requires a pre-processing step of r̄, involving
a transitive closure computation, see e.g. [12]. Computing ⇒ can be done in
polynomial time.

It is easy to see that the algorithm terminates. In each iteration, of the
outer loop, the set V ⊆ {Xqp | q ∈ Q, p ∈ S} strictly increases and C ⊆
{Xqp | q ∈ Q, p ∈ S}\V is a loop invariant. The algorithm thus terminates after
at most |Q|× |S| iterations of the outer loop. Since the set of actions Lδ is finite,
termination of the two inner loops is also guaranteed. It is equally easy to see
that the formula that is constructed is a NHORNSAT formula.

13

Algorithm 1 ioco-NHORN

1: procedure ioco-NHORN(s̄, r̄)
2: F ← Xr̄s̄ . Positive literal Xr̄s̄ is added to Formula F .
3: C ← {Xr̄s̄} . Set of unprocessed variables
4: V ← ∅ . Set of processed variables
5: while C 6= ∅ do
6: Choose Xqp ∈ C
7: V ← V ∪ {Xqp}
8: C′ ← ∅
9: for a ∈ init(p)∩I do

10: if (q after a) 6= ∅ then
11: Choose p′ ∈ p after a . Due to determinism, |p after a| = 1
12: F ← F ∧

∧
q′∈(q after a)(Xqp ⇒ Xq′p′) . Input simulation condition

13: C′ ← C′ ∪ {Xq′p′ | q′ ∈ q after a} . Add unprocessed variables
14: else
15: F ← F ∧Xqp . Violation of input simulation
16: end if
17: end for
18:
19: for a ∈ out(q) do
20: if a ∈ out(p) then
21: Choose p′ ∈ p after a . Due to determinism, |p after a| = 1
22: F ← F ∧

∧
q′∈(q after a)(Xqp ⇒ Xq′p′) . Output simulation condition

23: C′ ← C′ ∪ {Xq′p′ | q′ ∈ q after a} . Add unprocessed variables
24: else
25: F ← F ∧Xqp . Violation of output simulation
26: end if
27: end for
28: C ← C ∪ (C′ \ V);
29: end while
30:
31: return F . The final negative HORN formula
32: end procedure

Example 4. Reconsider IOLTSs s̄ and ī in Figure 1 on page 5. As we concluded in
Example 1, ī���ioco s̄ because, e.g. out(̄i after coin) 6⊆ out(s̄ after coin). Therefore,
the NHORNSAT instance obtained from Algorithm 1 must be unsatisfiable.
The formula F generated by Algorithm 1 is the following:

Xīs̄ ∧ (Xīs̄ ⇒ Xīs̄) ∧ (Xīs̄ ⇒ Xi1s1) ∧ (Xīs̄ ⇒ Xīs1) ∧ (Xi1s1 ⇒ Xi2s2)
∧(Xi1s1 ⇒ Xi3s3) ∧Xi1s1 ∧Xīs1 ∧ (Xi2s2 ⇒ Xi2s2) ∧ (Xi3s3 ⇒ Xi3s3)

Indeed, it is easily seen that the obtained formula F is unsatisfiable: for F to be
satisfiable, Xīs̄ must be True, which means that Xi1s1 must be True, but that
means that Xi1s1 is False.

14

Next, reconsider IOLTS r̄ of Figure 1. We know from Example 1 that r̄ ioco s̄.
The formula F generated by Algorithm 1 is the following:

Xr̄s̄ ∧ (Xr̄s̄ ⇒ Xr̄s̄) ∧ (Xr̄s̄ ⇒ Xr1s1) ∧ (Xr̄s̄ ⇒ Xr2s1) ∧ (Xr1s1 ⇒ Xr3s2)
∧(Xr2s1 ⇒ Xr4s3) ∧ (Xr3s2 ⇒ Xr3s2) ∧ (Xr4s3 ⇒ Xr4s3)

Clearly, the constructed formula is satisfiable: assigning True to all literals is a
satisfying assignment.

5.3 Correctness of the Reduction Algorithm

The constructed formula F by Algorithm 1 has two key properties that together
ensure the correctness of our algorithm. First, the existence of a coinductive
ioco relation R implies satisfiability of F . This follows from the observation
that from any coinductive ioco relation R the truth assignment ν for F defined
by assigning True to every variable Xqp appearing in F for which (q, p) ∈ R, and
assigning False to all remaining variables in F is a witness to the satisfiability of
F . Second, satisfiability of F implies the existence of a coinductive ioco relation
R. In a nutshell, this follows from the observation that for any given satisfying
assignment ν of F , the binary relation R ⊆ Q × S defined by (p, q) ∈ R iff
variable Xqp appears in F and Xpq = True in ν, is a coinductive ioco relation.
We first prove these two properties, and then state our main theorem claiming
correctness of the algorithm.

Proposition 1. Let 〈S, I, U,→s, s̄〉 be a deterministic IOLTS and let 〈Q, I, U,→
, r̄〉 be an arbitrary IOTS. Let F be the NHORNSAT instance from Algo-
rithm 1. If r̄ � s̄ then F is satisfiable.

The correctness of the above-given proposition results from the following lemma.
This lemma essentially states that the presence of a negative literal Xqp in for-
mula F indicates the pair (q, p) can never be related by a coinductive ioco
relation.

Lemma 2. Let F be the formula obtained from Algorithm 1, and let Xpq be
an arbitrary variable. If F contains the literal Xpq, then no coinductive ioco
relation R for which (q, p) ∈ R exists.

Proof. Towards a contradiction, assume there is a coinductive ioco relation R
such that (q, p) ∈ R. In our algorithm, the literal Xqp is only added to F under
one of the following two conditions:

1. there is an input action a ∈ init(p) while q after a = ∅,
2. there is an output action a ∈ out(q) while a /∈ out(p).

We first assume that Xqp is generated because of the first case, i.e., there is an
input a ∈ init(p) for which q after a = ∅. Then the pair (q, p) ∈ R does not
meet the input simulation condition of Definition 8, contradicting the fact that
the pair (q, p) can be in a coinductive ioco relation R. Next, assume that Xqp is
generated because of the second case. Following the same line of reasoning, the
presence of (q, p) ∈ R violates the output simulation condition, contradicting
that R is a coinductive ioco relation.

15

Next, we return to proving Proposition 1.

Proof (Proposition 1). Consider a coinductive ioco relation R ⊆ Q × S. Let ν
be a truth assignment for the variables in F defined as follows:

ν(Xqp) =

{
True if (q, p) ∈ R
False otherwise

Since (r̄, s̄) ∈ R, we know that the single literal clause Xr̄s̄ evaluates to True.
Next, consider the other two types of clauses that are introduced in formula F :
single negative literal clauses and implication clauses.

– Clauses of the form Xqp. Due to Lemma 2 we have (q, p) /∈ R whenever the
negative literal clause Xqp is added to F in line 15 or line 25. By definition
we then have ν(Xqp) = False. Consequently, a negative literal clause Xqp in
F evaluates to True.

– Clauses of the form Xqp ⇒ Xq′p′ . We distinguish the cases when (q, p) /∈ R
and (q, p) ∈ R.
• Assume that (q, p) 6∈ R. By definition of ν, we have ν(Xqp) = False.

Then the clause Xqp ⇒ Xq′p′ immediately evaluates to True under ν.
• Suppose that (q, p) ∈ R. Thus ν(Xqp) = True. Therefore the clause
Xqp ⇒ Xq′p′ evaluates to True only if ν(Xq′p′) = True. The implication
clause Xqp ⇒ Xq′p′ in Algorithm 1 is added to F in line 12 when there is
some input a ∈ init(p) or in line 22 when there is some output a ∈ out(q)
for which q′ ∈ q after a and p′ ∈ p after a. From these observations, and
the fact that R is a coinductive ioco relation it follows that (q′, p′) ∈ R.
But then, by definition of ν, we have ν(Xq′p′) = True, which was to be
shown.

As a result, implication clauses in F of the form Xqp ⇒ Xq′p′ evaluate to
True.

Since there are no other types of clauses in F , formula F evaluates to True
under ν.

The proposition below formalizes the second property of algorithm ioco-NHORN.

Proposition 2. Let 〈S, I, U,→s, s̄〉 be a deterministic IOLTS and let 〈Q, I, U,→
, r̄〉 be an arbitrary IOTS. Let F be the NHORNSAT instance from Algo-
rithm 1. If F is satisfiable, then r̄ � s̄.

Proof. Let ν be a truth assignment such that formula F evaluates to True. We
construct a binary relation R ⊆ S ×Q as follows:

R = {(q, p) | variable Xqp occurs in F and ν(Xqp) = True}

We proceed by showing that R is a coinductive ioco relation. Clearly, since the
single literal Xr̄s̄ occurs in F and F is satisfiable, we have ν(Xr̄s̄) = True. By
definition, we then have (r̄, s̄) ∈ R.

Let (q, p) ∈ R be an arbitrary pair. By definition, this means that ν(Xpq) =
True. Observe that this means that formula F cannot contain the single negative
literal Xqp. We next show that the pair (q, p) ∈ R meets both the input and
output simulation conditions:

16

– Ad input simulation. Suppose that p
a−→s p

′ for some a ∈ I. Since F does
not contain the negative literal Xqp, we know that q after a 6= ∅ (line 10).
Therefore, F contains implication clauses of the form Xqp ⇒ Xq′p′ where
q′ ∈ q after a and p′ ∈ p after a. Since, F evaluates to True under ν,
also Xqp ⇒ Xq′p′ evaluates to True under ν. Since q′ ∈ q after a is chosen
arbitrarily, we find that ν(Xq′p′) = True for all q′ ∈ q after a. Then by
construction, (q′, p′) ∈ R for all q′ ∈ q after a.

– Ad output simulation. Suppose that q
a

=⇒ q′ for some a ∈ U ∪ {δ}. Following
the same line of reasoning as in the above case, we find that the pair (q, p)
meets the output simulation condition.

An immediate consequence of the preceding two propositions is the following
theorem, stating that our reduction algorithm for checking ioco is sound.

Theorem 4. Let 〈S, I, U,→s, s̄〉 be a deterministic IOLTS and let 〈Q, I, U,→, r̄〉
be an arbitrary IOTS. Let F be the NHORNSAT instance from Algorithm 1.
Then F is satisfiable if and only if r̄ ioco s̄.

Proof. Following Propositions 1 and 2, we know that the formula F obtained
from Algorithm 1 is satisfiable if and only if there is a coinductive ioco relation.
Combined with Theorem 3 we find that formula F is satisfiable if and only if
r̄ ioco s̄.

5.4 Complexity Analysis

We next analyze the complexity of Algorithm 1. Since NHORNSAT is de-
cidable in linear time [8], proving that we can decide that a possibly non-
deterministic implementation conforms to a deterministic specification in poly-
nomial time only requires showing that the Negative Horn formula F can be
constructed in polynomial time.

Theorem 5. Let 〈S, I, U,→s, s̄〉 be a deterministic IOLTS and let 〈Q, I, U,→, r̄〉
be an arbitrary IOTS for which =⇒ has been computed. Algorithm 1 constructs
formula F , which is of size O(|S| × |Q|2 × |Lδ|) in time O(|S| × |Q|2 × |Lδ|).

Proof. To facilitate writing the proof, we first introduce some auxiliary notation.
Let dsa denote the cardinality of the set of states reachable from a state t after
executing an a-labeled transition, i.e., dta = |t after a|.

The main loop of Algorithm 1 iterates over the set of variables of the form
Xqp, for q ∈ Q and p ∈ S. This means there are at most |Q|× |S| iterations. The
complexity of a single iteration is given by the sum of the complexity of the two
inner loops (lines 9-17 and lines 19-27).

Since the size of a clause Xqp is smaller than the size of an implication clause
introduced in line 12 or line 22, the size of the constructed clause in each iteration
of one of the inner loops is bounded from above by 2 × dqa for each a ∈ I for
the first inner loop, and 2 × dqa for each a ∈ U ∪ {δ}. The cumulative size of
the generated clauses in the first inner loop is therefore bounded from above by

17

2×
∑
a∈I d

q
a and the cumulative size of the generated clauses in the second inner

loop is bounded from above by 2×
∑
a∈U∪{δ} d

q
a.

Thus, the cumulative size of the clauses added in each iteration of the outer
loop is at most 2 × (

∑
a∈I d

q
a +

∑
a∈U∪{δ} d

q
a) = 2 ×

∑
a∈Lδ

dqa. Assuming that
for all q ∈ Q and all p ∈ S, all variables Xqp are inspected, the total size of the
NHORNSAT instance is bound from above as follows:∑

p∈S
∑
q∈Q(2×

∑
a∈Lδ

dqa)

≤†
∑
p∈S

∑
q∈Q(2×

∑
a∈Lδ

|Q|)
= 2× |S| × |Q|2 × |Lδ|

Observe that at †, we used the fact that dqa is bounded from above by the size of
the state space of r̄, i.e., |Q|. Hence, the size of formula F is O(|S|× |Q|2×|Lδ|).
Since we assume that =⇒ has been computed, all operations involving =⇒, such as
after and out() require constant time. Constructing formula F can therefore

also be done in time O(|S| × |Q|2 × |Lδ|).

The theorem below states the complexity of deciding ioco for deterministic
specifications and possibly non-deterministic implementations.

Theorem 6. Let 〈S, I, U,→s, s̄〉 be a deterministic IOLTS and let 〈Q, I, U,→, r̄〉
be an arbitrary IOTS. Deciding whether r̄ ioco s̄ for deterministic specifications
s̄ and possibly non-deterministic implementations r̄ can be done in O(|Lδ| ×
|Q|2.3727) +O(|S| × |Q|2 × |Lδ|).

Proof. Generating and solving the NHORN formula F obtained from Algo-
rithm 1 requires O(|S| × |Q|2 × |Lδ|), see Theorem 6 combined with the fact
that F can be solved in time linear in the size of F . A precondition to the algo-
rithm is that =⇒ has been computed from →. Following [12], this can be done in
O(|Lδ| × |Q|2.3727).

When both implementation and specification are deterministic, the time com-
plexity of our algorithm reduces to O(|S| × |→|). Note that in this case, the
computation of =⇒ only requires augmenting the transition relation with δ tran-
sitions, which can be done in O(|→|).

6 Conclusion

In this paper, we studied the complexity of checking input-output conformance
(ioco). We proved that the problem of checking conformance is PSPACE-complete.
Then, we presented a coinductive definition of ioco in the restricted setting of
deterministic models and through a reduction to NHORNSAT, presented a
polynomial-time algorithm for checking ioco in this setting.

We plan to investigate the application of our algorithm in Section 5 to check-
ing alternating simulation. Currently, the best known algorithm for this purpose
is proposed in [7], which is a game-based algorithm for deterministic models.
The solution provided in this paper may offer an alternative for the existing

18

algorithms for checking alternating refinement relation, but it must be checked
to see whether the runtime complexity of the resulting algorithm would be com-
parable to that of existing algorithms.

Acknowledgements. We thank Sarmen Keshishzadeh and Jeroen Keiren (both
TU/e) for feedback on earlier drafts of this paper.

References

1. F. Aarts and F. W. Vaandrager. Learning I/O automata. In Proc. of CONCUR’10,
vol. 6269 of LNCS, pp. 71–85. Springer, 2010.

2. P. A. Abdulla, Y.-F. Chen, L. Hoĺık, R. Mayr, and T. Vojnar. When simulation
meets antichains. In Proc. of TACAS’10, vol. 6015 of LNCS, pp. 158–174. Springer,
2010.

3. L. de Alfaro and T. A. Henzinger. Interface automata. In Proc. of FSE/ESEC’01,
pp. 109–120. ACM, 2001.

4. R. Alur, T. A. Henzinger, O. Kupferman, and M. Y. Vardi. Alternating refinement
relations. In Proc. of CONCUR’98, vol. 1466 of LNCS, pp. 163–178, 1998.

5. H. R. Asadi, R. Khosravi, M. R. Mousavi, and N. Noroozi. Towards model-based
testing of electronic funds transfer systems. In Proc. of FSEN’11, vol. 4171 of
LNCS, pp. 253–267. Springer, 2011.

6. M. van der Bijl, A. Rensink, and J. Tretmans. Compositional testing with ioco.
In Proc. of FATES’03, vol. 2931 of LNCS, pp. 86–100. Springer, 2004.

7. K. Chatterjee, S. Chaubal, and P. Kamath. Faster algorithms for alternating
refinement relations. In Proc. of the CSL’12, vol. 16 of LIPIcs, pp. 167–182.
Dagstuhl, 2012.

8. W. F. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfiability
of propositional horn formulae. JLAP, 1(3):267–284, 1984.

9. L. Frantzen and J. Tretmans. Model-Based Testing of Environmental Conformance
of Components. In Proc. of FMCO’06, vol. 4709 of LNCS, pp. 1–25. Springer, 2007.

10. C. Gregorio-Rodriguez, L. Llana, and R. Martinez-Torres. Input-output confor-
mance simulation (iocos) for model based testing. In Proc. of FMOODS’13, vol.
7892 of LNCS, pp. 114–129. Springer, 2013.

11. R. M. Hierons. The complexity of asynchronous model based testing. TCS, 451:70–
82, 2012.

12. P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes, and
three problems of equivalence. Inf. Comput., 86(1):43–68, 1990.

13. W. Mostowski, E. Poll, J. Schmaltz, J. Tretmans, and R. W. Schreur. Model-
based testing of electronic passports. In Proc. of FMICS’09, vol. 5825 of LNCS,
pp. 207–209. Springer, 2009.

14. G. J. Myers, T. Badgett, and C. Sandler. The Art of Software Testing (3rd Ed.).
Wiley, 2011.

15. N. Noroozi, M. R. Mousavi and T. A. C. Willemse. Decomposability in Input
Output Conformance Testing. In Proc. of MBT’13, vol. 111 of EPTCS, pp. 51–
66., 2013.

16. Bas Ploeger. Improved Verification Methods for Concurrent Systems. PhD thesis,
TU/Eindhoven, 2009.

17. A. Pretschner. One evaluation of model-based testing and its automation. In Proc.
of ICSE’05, pp. 722–723. ACM, 2005.

19

18. S. K. Shukla, H. B. Hunt III, D. J. Rosenkrantz, and R. E. Stearns. On the
Complexity of Relational Problems for Finite State Processes (Extended Abstract),
In Proc. of ICALP’96, vol. 1099 of LNCS, pp. 466–477, Springer, 1996.

19. L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time:
Preliminary report. In Proc. STOC’73, pp. 1–9. ACM, 1973.

20. K. Thompson. Regular expression search algorithms. CACM, 11(6):419–422, 1968.
21. J. Tretmans. Model based testing with labelled transition systems. In Formal

Methods and Testing, vol. 4949 of LNCS, pp. 1–38. Springer, 2008.
22. M. Veanes and N. Bjørner. Alternating simulation and ioco. STTT, 14(4):387–405,

2012.
23. M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and L. Nach-

manson. Model-based testing of object-oriented reactive systems with Spec Ex-
plorer. In Formal Methods and Testing, vol. 4949 of LNCS, pp. 39–76. Springer,
2008.

24. V. Vishal, M. Kovacioglu, R. Kherazi, and M.R. Mousavi. Integrating model-based
and constraint-based testing using SpecExplorer. In Proc. MoTiP’12, pp. 219–224.
IEEE, 2012.

