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Abstract
Active automata learning infers automaton models of systems from behavioral observations, a
technique successfully applied to a wide range of domains. Compositional approaches for concurrent
systems have recently emerged. We take a significant step beyond available results, including those
by the authors, and develop a general technique for compositional learning of a synchronizing
parallel system with an unknown decomposition. Our approach automatically refines the global
alphabet into component alphabets while learning the component models. We develop a theoretical
treatment of distributions of alphabets, i.e., sets of possibly overlapping component alphabets.
We characterize counter-examples that reveal inconsistencies with global observations, and show
how to systematically update the distribution to restore consistency. We present a compositional
learning algorithm implementing these ideas, where learning counterexamples precisely correspond
to distribution counterexamples under well-defined conditions. We provide an implementation, called
CoalA, using the state-of-the-art active learning library LearnLib. Our experiments show that
in more than 630 subject systems, CoalA delivers orders of magnitude improvements (up to five
orders) in membership queries and in systems with significant concurrency, it also achieves better
scalability in the number of equivalence queries.
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1 Introduction

Automata learning [?] has been successfully applied to learn widely-used protocols such as
TCP [?], SSH [?], and QUIC [?], CPU caching policies [?] and finding faults in their black-box
actual implementations. Moreover it has been applied to a wide range of applications such
as bank cards [?] and biometric passports [?, ?]. There are already accessible expositions
of the success stories in this field [?, ?]. However, it is well known that the state-of-the-art
automata learning algorithms do not scale beyond systems with more than a few hundreds
of input and output symbols in their alphabets [?].

Scalability to larger systems with large input alphabets is required for many real-life
systems. This requirement has inspired some recent attempts [?, ?, ?] to come up with
compositional approaches to automata learning, to address the scalability issues. Some
of the past compositional approaches [?] relied on an a-priori knowledge of the system
decomposition, while others [?] considered non-synchronizing state machines or a subset of
synchronizing ones to help learning the decomposition [?]. These assumptions need to be
relaxed to enable dealing with legacy and black box systems and dealing with synchronizing
components. In particular, in the presence of an ever-increasing body of legacy automatically-
generated code, architectural discovery is a significant challenge [?, ?, ?]. This is a significant
challenge, because refactoring and rejuvenating legacy systems has been posed as a significant
application of automata learning [?].

In this paper, we take a significant step beyond the available results and develop a
compositional automata learning approach that does not assume any pre-knowledge of the
decomposition of the alphabet and allows for an arbitrary general synchronization scheme,
common in the theory of automata and process calculi [?]. To this end, we take inspirations
from the realizability problem in concurrency theory and use iterative refinements of the
alphabet decomposition (called distributions [?]) to arrive in a provably sound decomposition
while learning the components’ behavior. To our knowledge this is the first result of its kind
and the first extension of realizability into the domain of automata learning.

To summarize, the contributions of our paper are listed below:
We develop a novel theory of system decomposition for LTS synchronization that formally
characterizes which alphabet decompositions can accurately model observed behaviors,
establishing a theoretical foundation for automated component discovery. Proofs of our
theorems are given in the appendix.
Based on this, we propose a compositional active learning algorithm that dynamically
refines component alphabets during the learning process, supporting standard synchro-
nization mechanisms without requiring a priori knowledge of the system’s decomposition.
We implemented our approach as the prototype tool CoalA, built on the state-of-the-art
LearnLib framework [?], and evaluated it on over 630 systems from three benchmark
sets. Compared to a monolithic approach, CoalA achieved substantial reductions in
queries, with up to five orders of magnitude fewer membership queries and one order
fewer equivalence queries across most of our benchmark systems with parallel components,
resulting in better overall scalability. The replication package is available at [?].

2 Related work

Realizability of sequential specifications in terms of parallel components has been a long-
standing problem in concurrency theory. In the context of Petri nets, this has been pioneered
by Ehrenfeucht and Rozenberg [?], followed up by the work of Castellani, Mukund and
Thiagarajan [?]. Realizability has been further investigated in other models of concurrency
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such as team automata [?], session types [?], communicating automata [?] and labelled
transition systems (LTSs) [?]. Related to this line of research is the decomposition of
LTSs into prime processes [?]. We are inspired by the work of Mukund [?], characterizing
the transition systems that can be synthesized into an equivalent parallel system given a
decomposition of their alphabet (called distribution). Mukund explores this characterization
for two notions of parallel composition (loosely cooperating- and synchronous parallel
composition) and three notions of equivalence (isomorphism, language equivalence, and
bisimulation). We base our work on the results of Mukund for loosely cooperating systems
and language equivalence. We extend it to define consistency between observations and
distributions and refining distributions to reinstate consistency.

Our work integrates two recent approaches on compositional learning: we extend the
work on learning synchronous parallel composition of automata [?] by automatically learning
the decomposition of the alphabets, through refinement of distributions; moreover, we extend
the work on learning interleaving parallel composition of automata [?] by enabling a generic
synchronization scheme among components. In parallel to our work, an alternative proposal
[?] has appeared to allow for synchronization among interleaving automata; however, the
proposed synchronization scheme assumes that whenever two components are not ready
to synchronize, e.g., because they produce different outputs on the same input, a special
output is produced (or otherwise, the semantic model is output deterministic). We do not
assume any such additional information and use a synchronization scheme widely used in
the theory of automata and process calculi [?]. Other contributions related to compositional
learning include the active learning of product automata, a variation of Mealy machine where
the output is the combination of outputs of several Mealy machines – as in our case, the
component Mealy machines are learned individually [?]; learning of systems of procedural
automata [?], sets of automata that can call each other in a way similar to procedure calls;
learning asynchronously-communicating finite state machines via queries in the form of
message sequence charts [?], though using a monolithic approach.

3 Preliminaries

We use Σ to denote a finite alphabet of action symbols, and Σ? to denote the set of finite
sequences of symbols in Σ, which we call traces; we use ε ∈ Σ? to denote the empty trace.
Given two traces σ1, σ2 ∈ Σ?, we denote their concatenation by σ1 · σ2. We refer to the
ith element of σ by σ[i]. The projection σ�Σ′ of σ on an alphabet Σ′ ⊆ Σ is the sequence
of symbols in σ that are also contained in Σ′: ε�Σ′ = ε and σ · a�Σ′ = σ�Σ′ · a if a ∈ Σ′
and σ�Σ′ otherwise. We generalize this notation to sets (and thus languages), such that
S�Σ′ = {σ�Σ′ | σ ∈ S}. Given a set S, we write |S| for its cardinality. We write img(f) for
the image of a function f .

3.1 Labelled Transition Systems
In this work we represent the state-based behavior of a system as a labelled transition system.

I Definition 3.1 (Labelled Transition System). A labelled transition system (LTS) is a
four-tuple T = (S,Σ,→, ŝ), where S is a set of states; Σ is a finite alphabet of actions;
→⊆ S × Σ× S is a transition relation; ŝ ∈ S is an initial state.

We write in infix notation s a−→ t for (s, a, t) ∈ →. We say that an action a is enabled in
s, written s a−→, if there is t such that s a−→ t. The transition relation and the notion of
enabled-ness are also extended to traces σ ∈ Σ?, yielding s σ−→ t and s σ−→.

CONCUR 2025
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Figure 1 The parallel composition of two LTSs.

I Definition 3.2 (Language of an LTS). The language of T is the set of traces enabled from
the starting state, formally: L(T ) = {σ ∈ Σ? | ŝ σ−→} .

Note that languages of LTSs are always prefix-closed, because every prefix of an enabled
trace is necessarily enabled. LTSs correspond exactly to prefix-closed automata.

The parallel composition of a finite set of LTSs is a product model representing all possible
behaviors when the LTSs synchronize on shared actions. Intuitively, an action a can be
performed when all LTSs that have a in their alphabet can perform it in their current state.
The other LTSs remain idle during the transition.

I Definition 3.3 (Parallel composition). Given n LTSs Ti = (Si,Σi,→i, ŝi) for 1 ≤ i ≤ n,
their parallel composition, denoted ‖ni=1 Ti, is an LTS (S1×· · ·×Sn,

⋃n
i=1 Σi,−→, (ŝ1, . . . , ŝn)),

where the transition relation −→ is given by the following rule:

si
a−→i ti for all i such that a ∈ Σi

sj = tj for all j such that a /∈ Σj
(s1, . . . , sn) a−→ (t1, . . . , tn)

We say that an action a is local if there is exactly one i such that a ∈ Σi; otherwise, it is called
synchronizing. The parallel composition of LTSs thus forces individual LTSs to cooperate on
synchronizing actions; local actions can be performed independently. We typically refer to
the LTSs that make up a composite LTS as components. For a parallel composition of two
LTSs, we use the infix notation, i.e., T ‖T ′, when convenient. Synchronization of components
corresponds to communication between components in the real world.

We define the corresponding notion for languages on restricted alphabets.

I Definition 3.4 (Parallel composition of languages). Given n languages and alphabets (Li,Σi)
such that Li ⊆ Σ?i for all 1 ≤ i ≤ n, let Σ =

⋃n
i=1 Σi. We define ‖ni=1(Li,Σi) as

{σ ∈ Σ? | ∀1 ≤ i ≤ n. σ�Σi
∈ Li} .

I Example 3.5 (Running example). Consider the LTSs T1 and T2 given in Figure 1, with
the respective alphabets {a, b, c} and {b, d}. Their parallel composition is depicted at the
bottom of Figure 1. Here a, c and d are local actions, whereas b is synchronizing. Note that,
although T2 can perform b from its initial state t0, there is no b transition from (s0, t0) in
T1 ‖T2, because b is not enabled in s0. Action b can only be performed in T1 ‖T2 after T1
does an a or a c and moves to s1, which is captured as the a and c transitions from (s0, t0).
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Learner Teacher

Membership query: σ ∈ L?

yes / no

Equivalence Query: L(H) = L?

yes / (no + cex)

Figure 2 Active automata learning for a target language L.

3.2 Active Automata Learning
In active automata learning [?], a Learner infers an automaton model of an unknown language
L by querying a Teacher, which knows L and answers two query types (see Figure 2):

Membership queries: is a trace σ in L? The Teacher replies yes/no.
Equivalence queries: given a hypothesis model H, is L(H) = L? The Teacher either
replies yes or provides a counter-example – a trace that is in one language but not in the
other.

Algorithms based on this framework – Angluin’s L? being the classical example – converge to
a canonical model (e.g., the minimal DFA) of the target language. In practice, the Teacher
is realized as an interface to the System Under Learning (SUL): membership queries become
tests on the SUL, and equivalence queries are approximated via systematic testing strategies
[?, ?].

During learning, the learner gathers observations about the SUL. While these observations
are typically organized in a data structure (e.g., a table or a tree), they can be abstractly
represented as a partial function mapping traces to their accepted (+) or rejected (−) status.

I Definition 3.6 (Observation function). An observation function over Σ is a partial function
Obs : Σ? ⇀ {+,−}.

We write Dom(Obs) for the domain of Obs and only consider observation functions with
a finite domain. We sometimes represent an observation function Obs as the set of pairs
{(σ,Obs(σ)) | σ ∈ Dom(Obs)}.

I Definition 3.7 (Observation function/language agreement). An observation function Obs
agrees with a language L, notation L |= Obs, whenever σ ∈ L ⇔ Obs(σ) = +, for all
σ ∈ Dom(Obs).

To compositionally learn a model formulated as a parallel composition of LTSs ‖ni=1 Ti, we
define how to derive the local observation functions that will be used for the components.

I Definition 3.8 (Local observation function). Given a sub-alphabet Σi ⊆ Σ, a local obser-
vation function ObsΣi

: Σ?i ⇀ {+,−} is defined such that Dom(ObsΣi
) = Dom(Obs)�Σi

and
ObsΣi

(σ′) =
∨
{σ|σ∈Dom(Obs)∧σ�Σi

=σ′}Obs(σ), for all σ′ ∈ Dom(ObsΣi
).

This definition is taken to mimic the behavior of parallel composition, i.e., a component Ti
accepts σ′ if and only if there is some σ such that σ�Σi

= σ′ and ‖ni=1 Ti accepts σ.

I Example 3.9. Consider again the LTSs from Figure 1 and suppose we are given the
following observation function for T1 ‖T2: Obs : a 7→ +; aa 7→ −; abd 7→ +. The local
observation functions we obtain for T1 and T2 are, respectively:

Obs{a,b,c} : a 7→ +; aa 7→ −; ab 7→ + Obs{b,d} : ε 7→ +; bd 7→ +.

The observation Obs(abd) = + requires both components to cooperate, hence Obs{a,b,c}(ab) =
+ and Obs{b,d}(bd) = +. We derive Obs{b,d}(ε) = + from Obs(a) ∨ Obs(aa) = +, since the
projection of both these traces to {b, d} is ε.

CONCUR 2025
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4 Distributions

In this section, we first discuss how we decompose the global alphabet into a distribution, i.e.,
a set of potentially overlapping local alphabets. We then give some properties of distributions
and their relation to observation functions. Based on these, we explain how to extend a
distribution to model a given observation function.

4.1 Distributions and Observations
In a model expressed as a parallel composition ‖i Ti, permuting symbols belonging to different
local alphabets does not affect membership of the language. For example, in Figure 1, because
abcd is in the language, we directly know that abdc is too, as both c and d are local to
different components. To formalize this, we first formally define distributions as follows.

I Definition 4.1 (Distribution). A distribution of an alphabet Σ is a set Ω = {Σ1, . . . ,Σn}
such that

⋃n
i=1 Σi = Σ.

For the rest of this section, we fix an alphabet Σ, a distribution Ω = {Σ1, . . . ,Σn} of Σ and
an observation function Obs over Σ unless otherwise specified.

For a given distribution Ω, we define below the class of languages, called product languages
over Ω, that can be represented over that distribution.

I Definition 4.2 (Product language). L is a product language over Ω, notation Ω |= L, iff
there exists a family of languages {Li}1≤i≤n, where Li ⊆ Σ?

i for all 1 ≤ i ≤ n, such that
L = ‖ni=1(Li,Σi).

I Example 4.3. In Example 3.5, it is clear by construction that {{a, b, c}, {b, d}} |= L(T1 ‖T2).
However, L(T1 ‖T2) is not a product language over Ωsingles = {{a}, {b}, {c}, {d}} because
any product language over Ωsingles should allow for permuting a and b and thus, would fail
to capture the fact that b can only come after one a.

We recall the following key lemma for product languages.

I Lemma 4.4 ([?], Lemma 5.2). A language L is a product language over Ω if and only if
L = ‖ni=1(L�Σi

,Σi).

We can now define product observations over Ω, i.e., an observation that can be generated
by a product language over Ω.

I Definition 4.5 (Product observation). Obs is a product observation over Ω, notation
Ω |= Obs, iff there exists a language L such that Ω |= L and L |= Obs. We conversely say
that Ω models Obs.

While Definition 4.5 does not prescribe how to find such a distribution given an observation
function, it can be used to detect precisely when a current distribution is not consistent with
observations and must be updated. This results in the following proposition linking local
and global observations for a given distribution: an observation is a product observation
over a distribution if and only if its projections according to the distribution hold the same
information as the observation itself. The proof follows largely from Lemma 4.4.

I Proposition 4.6. Ω |= Obs if and only if for all traces σ ∈ Dom(Obs) it holds that
Obs(σ) =

∧
Σi∈Ω ObsΣi

(σ�Σi
).
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I Example 4.7. Following from Example 4.3, consider the following observation function
based on L(T1 ‖T2) from Example 3.5:

Obs : ε 7→ +; a 7→ +; ab 7→ +; b 7→ −; c 7→ +; d 7→ −.

Using the above proposition, we can verify that Ωsingles = {{a}, {b}, {c}, {d}} 6|= Obs. This
is because Obs(b) = −, whereas for all Σi ∈ Ωsingles, ObsΣi

(b�Σi
) = + since ab�{b} = b causes

Obs{b}(b) = + and for other alphabets b�Σi
= ε and ObsΣi

(ε) = +. In contrast, Ω{a,b} =
{{a, b}, {c}, {d}} |= Obs since the alphabet {a, b} allows for distinguishing observations b and
ab.

In our algorithm, this check on local and global observation functions is used to trigger an
update of the current distribution exactly when necessary.

Based on the above proposition, we now define counter-examples to a distribution. By
definition of local observations, if Obs(σ) = +, then ObsΣi(σ�Σi) = +. Hence, to obtain
Obs(σ) 6=

∧
Σi∈Ω ObsΣi

(σ�Σi
), we must have a globally negative observation σN and a set of

globally positive observations whose projections to the local components match the projections
of σN , indicating a mismatch between global and local observations.

I Definition 4.8 (Counter-example to a distribution). A counter-example to Ω |= Obs is a
pair (σN , P ) ∈ Dom(Obs)× Dom(Obs)Ω with

σN a negative observation Obs(σN ) = −;
P a function that maps each Σi ∈ Ω to a positive observation σΣi

, i.e., Obs(σΣi
) = +,

such that σN �Σi
= σΣi�Σi

.
We call img(P ) the positive image of the counter-example. We write CED(Ω,Obs) for the
set of such counter-examples.

Although these counter-examples are not necessarily related to learning, we use the same
terminology as in active learning. This is because the two concepts are directly linked in our
case, as will be explained later.

I Example 4.9. Reusing the observation function Obs and the singleton distribution Ωsingles
defined in Example 4.7, for every element of CED(Obs,Ωsingles) we have σN = b. and
P ({b}) = ab. For the remaining elements of Ω, there are more choices: {a} can be mapped
to either ε or c; {c} to either ε, a or ab; and {d} to either ε, a, ab or c.

Proposition 4.6, specialized to our definition of counter-examples, yields the following corollary,
which will be used in the following to detect that a distribution is a model.

I Corollary 4.10. Ω |= Obs ⇐⇒ CED(Ω,Obs) = ∅.

4.2 Resolving a Counter-example
Given a distribution Ω and a fixed observation function Obs, one key question is how to
extend Ω to a new distribution Ω′ modelling Obs. This is a difficult problem, as new counter-
examples can arise when extending a distribution. In this subsection, we explain how to
resolve a single counter-example as a first step.

When a counter-example (σN , P ) to Ω |= Obs exists, it reveals a limitation in the
distribution Ω: the projections of σN coincide with projections of elements in P , making
them indistinguishable under the current components. To resolve such counter-examples, it is
thus necessary and sufficient to augment Ω with new components that disrupt this matching.
In the following, we will fix (σN , P ) ∈ CED(Ω,Obs) as a counter-example to Ω |= Obs.

CONCUR 2025
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More precisely, for each pair of traces (σN , σ) with σ ∈ P , it suffices to identify a
discrepancy between them. There are two types of discrepancies: multiplicity discrepancies
and order discrepancies. A multiplicity discrepancy is a symbol occurring a different number
of times in each trace. For this, given a trace σ, let Σm(σ) denote the multiset of symbols
occurring in σ. Note that Σm(σ) = Σm(σ′) if and only if σ is a permutation of σ′. The
symmetric difference of multisets A and B is denoted A ∆ B.

I Definition 4.11 (Multiplicity discrepancy). Given a Σi ∈ Ω, the set of multiplicity discrep-
ancies for Σi is DΣi

m (σN , P ) = Σm(σN ) ∆ Σm(P (Σi)).

We now define an order discrepancy, i.e., a pair of symbols whose relative positions differ
between the traces. We do this by considering whether symbols that are not a multiplicity
discrepancy, i.e., those appearing the same number of times in both traces, are permuted.
We choose the permutation such that the relative order of identical symbols is maintained.

I Definition 4.12 (Order discrepancy). Given Σi ∈ Ω, let θ = Σ \ (Σm(σN ) ∆ Σm(P (Σi)))
be the symbols on which σN and P (Σi) agree and define σ′N = σN �θ. Let π be the unique
permutation such that σ′N = π(P (Σi)�θ) and σ′N [j] = σ′N [k] =⇒ π(j) < π(k), for all j < k.
The set of order discrepancies for Σi is then:

DΣi
o (σN , P ) = {{σ′N [j], σ′N [k]} | k < j ∧ π(k) > π(j)}

Multiplicity and order discrepancies can be found in linear and quadratic time, respectively.
Finally, we define the discrepancies for a counter-example as sets that contain at least a
discrepancy of either type for each alphabet in Ω.

I Definition 4.13 (Discrepancy set). A set δ ⊆ Σ is a discrepancy for (σN , P ) iff for all
Σi ∈ Ω, either DΣi

m (σN , P )∩ δ 6= ∅ or there is δΣi ∈ DΣi
o (σN , P ) such that δΣi ⊆ δ. We write

D(σN , P ) for the set of all discrepancies for the counter-example (σN , P ).

For a set of counter-examples {ce1, . . . , cen}, we write D({ce1, . . . , cen}) = {{δ1, . . . , δn} |
∀i. δi ∈ D(cei)}, representing all possible selections of one discrepancy per counter-example.

I Example 4.14 (Multiplicity discrepancy). Following Example 4.9 with the singleton
distribution Ωsingles = {{a}, {b}, {c}, {d}}, consider the counter-example (σN , P ) =
(b, ({a} 7→ ε, {b} 7→ ab, {c} 7→ ε, {d} 7→ ε)). We find the following multiplicity discrep-
ancies: DΣi

m (σN , P ) = {b}, for Σi ∈ {{a}, {c}, {d}}, because b occurs once in σN vs.
zero times in P (Σi), and D{b}m (σN , P ) = {a}. Hence, D(σN , P ) includes all subsets of
{a, b, c, d} containing {a, b}. For a different counter-example such as (σN , P ′) = (b, ({a} 7→
c, {b} 7→ ab, {c} 7→ ab, {d} 7→ c)), we obtain D{a}m (σN , P ′) = D{d}m (σN , P ′) = {b, c} and
D{b}m (σN , P ′) = D{c}m (σN , P ′) = {a}, so D(σN , P ′) includes any subset of {a, b, c, d} that
contains either {a, b} or {a, c}.

I Example 4.15 (Order discrepancy). Consider a singleton distribution Ωsingles =
{{a}, {b}, {c}} with Obs(abc) = + and Obs(bac) = −. This yields the counter-example
(σN , P ) = (bac, ({a} 7→ abc, {b} 7→ abc, {c} 7→ abc)). For each Σi ∈ Ωsingles, we find
DΣi
o (σN , P ) = {{a, b}}. Intuitively, these discrepancies reveals that singleton components

allow for all permutations of a and b, but the observation function forbids some of them.
Therefore, D(σN , P ) includes all subsets of {a, b, c} containing {a, b}.

We can now state that discrepancies are both sufficient and necessary additions to a distribu-
tion in order to eliminate their counter-examples.

I Proposition 4.16. Suppose there exists (σN , P ) ∈ CED(Ω,Obs). For each discrepancy
δ ∈ D(σN , P ), (σN , P ) 6∈ CED(Ω∪{δ},Obs). Conversely, for any distribution Ω′ of Σ where
δ 6⊆ Σi, for all δ ∈ D(σN , P ) and all Σi ∈ Ω′, (σN , P ) is a counter-example to Ω′ |= Obs.
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CE′ =
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Figure 3 The different relations between the elements of two sets of counter-examples CE 4 CE′.

4.3 Extending a Distribution to Model an Observation Function
Using the previous subsection as a basis, we leverage structural properties of distributions
to restrict the possible counter-examples that can appear when updating the distribution.
Finally, we devise an iterative process that is guaranteed to converge to a distribution
modelling Obs.

Pre-ordering of Distributions

Distributions can be preordered by their “connecting power”, i.e., by the extent to which
they connect symbols together as part of the same alphabets.

I Definition 4.17 (Connectivity preorder). Given two distributions Ω and Ω′ of alphabet Σ,
we say that Ω is less connecting than Ω′ and write Ω 4 Ω′ when ∀Σi ∈ Ω.∃Σj ∈ Ω′.Σi ⊆ Σj
(equivalently, Ω′ is said to be more connecting than Ω). The relation is strict, written Ω ≺ Ω′,
when Ω′ 64 Ω. The relation 4 forms a preorder with finite chains.

We relate this notion to the sets of counter-examples for a fixed observation function to show
that adding connections in a distribution makes the counter-example set progress along a
preorder. For this, we first define a notion of inclusion for counter-examples.

I Definition 4.18 (Counter-example inclusion). Consider two distributions Ω and Ω′ of Σ,
(σN , P ) a counter-example to Ω |= Obs and (σ′N , P ′) a counter-example to Ω′ |= Obs. We
write (σN , P ) ⊆ (σ′N , P ′) whenever σN = σ′N and img(P ) ⊆ img(P ′). The strict inclusion
(σN , P ) ⊂ (σ′N , P ′) holds whenever σN = σ′N and img(P ) ⊂ img(P ′).

In its simplest form, progress means eliminating counter-examples from the current set of
counter-examples CED(Ω,Obs). However, a counter-example ce might be replaced by new
counter-examples ce′ such that ce ⊆ ce′, which emerge when new connections are added to
the distribution. Hence, progress means that some counter-examples are either eliminated or
replaced by subsuming ones, as depicted in Figure 3.

I Definition 4.19 (Counter-example set preordering). Consider CE and CE′ sets of counter-
examples. We write CE 4 CE′ when ∀ce′ ∈ CE′. ∃ce ∈ CE. ce ⊆ ce′. We write CE ≺ CE′
when, furthermore, either ce ⊂ ce′ or CE 4 CE′ \ {ce′}, for ce ∈ CE and ce′ ∈ CE′.

I Example 4.20. We give a short example of the preorder on set of counter-examples inspired
by our running example, that will later appear in Example 5.5:

{(b, ({a, b} 7→ cb, {c} 7→ ε, {d} 7→ ε))} 4 {(b, ({a, b} 7→ cb, {b, c} 7→ ab, {d} 7→ ε))} .

Notice that these two singleton sets’ only difference is {c} 7→ ε replaced by {b, c} 7→ ab such
that the image of the first is strictly included in the image of the second.

Using the above definitions, we can prove that increasing the connecting power of a distribution
ensures that the set of counter-example progresses.
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I Proposition 4.21. Consider two distributions Ω and Ω′ of Σ. We have Ω 4 Ω′ ⇒
CED(Ω,Obs) 4 CED(Ω′,Obs).

As an immediate consequence, whenever Ω has no counter-examples, any distribution Ω′
that is more connecting than Ω will also have none, i.e., both distributions will model the
same observations.

I Corollary 4.22. Let Ω be a distribution of Σ such that Ω |= Obs. For any distribution Ω′
of Σ such that Ω 4 Ω′, we have Ω′ |= Obs.

Fixing the distribution

Using Propositions 4.16 and 4.21, from an initial distribution Ω 6|= Obs we can create a more
connecting one that entails a strict progression in counter-examples.

I Corollary 4.23. Suppose that CED(Ω,Obs) 6= ∅. For (σN , P ) ∈ CED(Ω,Obs), we pick
a discrepancy δ(σN ,P ) ∈ D(σN , P ). For any non-empty subset S of CED(Ω,Obs), let Ω′ =
Ω ∪ {δce | ce ∈ S}. Then Ω ≺ Ω′ and CED(Ω,Obs) ≺ CED(Ω′,Obs).

I Remark 4.24. Corollary 4.23 gives us the freedom to select any discrepancy δce, for each
counter-example ce. We can select discrepancies that result in a least connecting distribution,
which yields a locally optimal greedy strategy for progress. The intuition behind this choice
is that it leads to: (1) more components that are individually smaller and easier to learn;
and (2) fewer synchronizing actions between components, thus reducing the complexity of
coordination among learners (see Section 5.1 for details).
By iteratively applying this Corollary, we can eliminate counter-examples until reaching a
distribution that models the observations. This leads to the following convergence result:

I Theorem 4.25. Suppose Ω 6|= Obs. The above process converges to a distribution Ω′ |= Obs
such that Ω ≺ Ω′ after finitely many of steps. For choosing S = CED(Ω,Obs) at each step,
the number of steps is bounded by |P(Σ)|.

Canonical distributions: inducing a partial order

Distributions have few constraints: they only need to span the entire alphabet, which
leaves room for redundancies. We propose to remove redundancies without affecting the
distribution’s connecting power, by removing alphabets completely contained within another.

I Definition 4.26 (Canonical distribution). Consider a distribution Ω = {Σ1, . . . ,Σn} and
Sub = {Σi ∈ Ω | ∃Σj ∈ Ω. Σi ⊂ Σj}. The associated canonical distribution is JΩK4 = Ω\Sub.

As one would expect J·K4 collapses equivalence classes of the preorder 4 (i.e., Ω 4 Ω′ and
Ω′ 4 Ω) to create a strict partial order. Canonical distributions allow minimizing the number
of alphabets in the distribution while retaining the same connecting power. This means that
counter-examples can be easily translated between a distribution and its canonical form, and
hence the following proposition.

I Proposition 4.27. CED(JΩK4,Obs) = ∅ ⇔ CED(Ω,Obs) = ∅
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Figure 4 Overview of the algorithm.

5 Compositional Learning Algorithm

In this section, we present our algorithm to compositionally learn an unknown system
SUL = M1 ‖M2 ‖ . . . ‖Mn consisting of the parallel composition of n LTSs, given only a
Teacher for the whole SUL and knowledge of the global alphabet ΣSUL.

A bird’s eye view of the algorithm is provided in Figure 4. The key idea is to learn each
component via a separate learner. Each learner Li poses membership queries independently,
which are suitably translated to queries for the global Teacher, until it produces a hypothesis
Hi. Hypotheses returned by local learners are combined to create a global equivalence query.
Counter-examples obtained through equivalence queries (σ, b) ∈ Σ?SUL × {−,+} are classified
as either global or local. They are global when the updated observations Obs′ = Obs∪{(σ, b)}
and the current distribution Ω of ΣSUL are such that Ω 6|= Obs′, and local otherwise. Global
counter-examples are used to refine the distribution Ω, possibly creating components/learners.
Local counter-examples are used to update the state of local learners.

We briefly recall the local learning procedure, which was introduced in previous work,
before moving on to presenting the details of our main algorithm in Section 5.2.

5.1 Local learners
For each alphabet Σi in the distribution Ω, we spawn a learner Li that is tasked with
formulating a hypothesis for the corresponding component. A key feature of this learner is
the ability to translate local membership queries into global ones for the entire SUL, and
to interpret the results of global queries at the local level [?]. The main difficulty is that
this translation is not always feasible: when a membership query contains synchronizing
actions, cooperation with the other learners is required. This should be done in a way that
is consistent with the current distribution, i.e., if Ω |= Obs, then for any global membership
query result (σ, b) ∈ Σ?

SUL × {−,+}, we require Ω |= Obs ∪ {(σ, b)}. Furthermore, due to
the nature of local observation functions, it is possible that at first ObsΣi

(σ) = −, and
later this becomes ObsΣi

(σ) = + as the set of global observations is extended through
counter-examples; the learners must account for this. In summary, local learners should:

translate local queries to global ones, preserving Ω |= Obs. If a local query cannot be
translated, the answer is “unknown”;
be able to handle “unknown” entries in the learning data structure (e.g., an observation
table), ensuring progress even in the presence of incomplete information; and
be able to correct negative counter-examples on the basis of a later positive counter-
example.
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Our previous work [?] shows one way to implement such a learner as an extension of the L?

algorithm [?], in which LTSs are represented as prefix-closed DFAs. However, we remark
that the algorithms proposed in the present work are independent of the implementation
of these local learners, as long as they satisfy the requirements above. Thus, our L?-based
implementation can be swapped out for other active learner algorithms, such as TTT [?].

5.2 Main algorithm
The main algorithm is presented in Algorithm 1. Initially, Obs is empty, and the distribution
Ω contains singletons of the alphabet of the SUL. The algorithm iteratively performs the
following steps.

Each learner is run in parallel until producing a hypothesis. Observations Obs are suitably
updated to record the interactions with the Teacher. Next, the local hypotheses are composed
in parallel to form H, which is submitted to the Teacher as an equivalence query Teacher(H).
If the query returns no counter-example, the algorithm returns H and terminates. Otherwise,
the returned counter-example (σcex, b) is added to Obs.

Crucially, when (σcex, b) is a global counter-example, it corresponds exactly to counter-
examples to the distribution (Definition 4.8), as shown in the following lemma.

I Lemma 5.1. Given a global counter-example (σ, b), let Obs′ = Obs ∪ {(σ, b)}:
if b = −, then there is P ∈ Dom(Obs)Ω such that (σ, P ) ∈ CED(Ω,Obs′).
else, there is σN ∈ Dom(Obs), S ⊆ Ω and P ∈ Dom(Obs)Ω\S such that (σN , P ∪ (Σi 7→
σ)Σi∈S) ∈ CED(Ω,Obs′)

Furthermore, all of the elements of CED(Ω,Obs′) have the above structure.

Therefore, based on this lemma, the distribution is augmented with discrepancies for a
chosen subset S of distribution counter-examples, following Corollary 4.23. This process
eventually converges to provide Ω such that Ω |= Obs (Theorem 4.25). The new distribution
is then optimized by making it canonical (Definition 4.26) and, if desired, increasing its
connectivity. The optimization step does not affect counter-example-freeness (by Proposi-
tion 4.27 and Corollary 4.22) and may be used to reduce synchronizations, which improves
performance (see Section 6). New learners are then started over the updated alphabets.1

If, instead, the counter-example is local, its projections are forwarded to the local learners,
and the next iteration starts.
I Remark 5.2. We leave the selection of counter-example set S as an implementation choice.
While S = CED(Ω,Obs) maximizes counter-example elimination, finding all counter-examples
may be expensive. In our implementation, we process just one counter-example at a time,
which in practice often yields a valid distribution after a single update step.
Our main theorem for this section states that the algorithm terminates and returns a correct
model of the SUL.

I Theorem 5.3. Let SUL = M1 ‖M2 ‖ . . . ‖Mn consist of n parallel LTSs. Algorithm 1
terminates and returns H1,H2, . . . ,Hk such that H1 ‖H2 ‖ . . . ‖Hk ≡ SUL.

I Remark 5.4. We make no claims regarding the number of components returned by the
algorithm, nor whether Hi ≡ Mi, for all i. This is because the final distribution may
vary depending on counter-example and discrepancy choices. Moreover, different sets of

1 In practice, learners leverage Obs to partially initialize their observation tables.
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Algorithm 1 Main learning algorithm.

Input: The alphabet of the SUL ΣSUL and the teacher Teacher .
Init: Obs = ∅, Ω = {{a} | a ∈ ΣSUL}, L = {new learner Li on Σi | Σi ∈ Ω}

1 while True do
2 foreach Li ∈ L in parallel do
3 Locally learn using Teacher until an hypothesis Hi is returned
4 Obs← Obs ∪ {(σ, b) | (σ, b) ∈ global membership queries of Li}
5 H = ‖|Ω|i=1Hi
6 CEX = Teacher(H)
7 if CEX is empty then
8 Return H1, . . . ,H|Ω|
9 else if CEX = (σcex, b) then

10 Obs← Obs ∪ {(σcex, b)}
11 if (σcex, b) is global then
12 while CED(Ω,Obs) 6= ∅ do
13 Pick S ⊆ CED(Ω,Obs) non-empty
14 Ω← Ω ∪ Ω′ for some Ω′ ∈ D(S)
15 Optimize(Ω)
16 L← {new learner Li on Σi | Σi ∈ Ω}
17 else
18 foreach Li ∈ L learning on Σi do
19 Forward σcex�Σi

to Li

component LTSs can result in the same parallel composition (see [?, Remark 2]). While the
composition H1 ‖H2 ‖ . . . ‖Hk may not be canonical (i.e., minimal), each Hi is guaranteed
to be a canonical model of the local observation function ObsΣi

, as each local learner is a
(slightly modified) instance of L?, for which we have minimality guarantees.

I Example 5.5 (Example run). We give an example run where the target SUL is the model
of Figure 1. For the sake of simplicity, we focus on the global counter-examples and the
subsequent distribution updates, considering only one distribution counter-example per step.
Moreover, we consistently select a smallest discrepancy for each counter-example as our
greedy strategy to minimize the connectivity of the resulting distribution.

We start from Ωsingles = {{a}, {b}, {c}, {d}}. The local alphabets initially contain only
one symbol, so local learners will make membership queries about traces containing exclusively
that symbol. This leads to the components depicted below.

T{a} = s0 s1
a

T{b} = s0 T{c} = s0 c T{d} = s0

The first global counter-example is (ab,+), yielding several counter-examples to Ωsingles |=
Obs, of which we consider (b, ({a} 7→ ε, {b} 7→ ab, {c} 7→ ε, {d} 7→ ε)). The smallest
discrepancy for this counter-example is {a, b}. We use it to update the distribution and
obtain Ωab = {{a, b}, {c}, {d}},2, which models the current observations. The new component
over {a, b} is then learned locally, producing (the {c} and {d} components are unchanged):

2 We made the distribution canonical (Definition 4.26) and removed the {a} and {b} components.
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T{a,b} = s0 s1 s2
a b

T{c} = s0 c T{d} = s0

The next global counter-example (cb,+), leads to distribution counter-example (b, ({a, b} 7→
cb, {c} 7→ ε, {d} 7→ ε)). Its smallest discrepancy is {b, c} and the new distribution is
Ωab,bc = {{a, b}, {b, c}, {d}}. Although the counter-example has been handled, Ωab,bc does not
model the observations, as CED(Ωab,bc,Obs) contains (b, ({a, b} 7→ cb, {b, c} 7→ ab, {d} 7→ ε)).
Its smallest discrepancy {a, b, c} gives Ωabc = {{a, b, c}, {d}}, modelling the observations.

To finish our example, the next global counter-example is (abd,+). The corresponding
distribution counter-example is (d, ({a, b, c} 7→ ε, {d} 7→ abd)). There are two smallest discrep-
ancies for this counter-example: {a, d} and {b, d}. Selecting {b, d} leads to {{a, b, c}, {b, d}},
which models the target language and exactly corresponds to the decomposition of Figure 1.
Selecting {a, d} creates unnecessary connections, resulting (after some omitted steps) in
either {{a, b, c}, {a, d}, {b, d}} or {{a, b, c}, {a, b, d}} as a final distribution.

Our current implementation selects either discrepancy as both are locally optimal. Finding
efficient ways to explore multiple discrepancy choices for globally optimal distributions remains
an open challenge for future work.

6 Experiments

We evaluate the effectiveness of our approach in terms of savings in membership and
equivalence queries. We did not expect to gain efficiency (absolute execution time) over the
mature available tools, because our current implementation of local learners [?] interfaces
with an external SAT solver for forming local hypotheses. To start with, we extended the
tool Coal [?] into CoalA (for COmpositional Automata Learner with Alphabet refinement),
by adding the ability to refine the alphabets based on global counter-examples. The tool is
based on LearnLib 0.18.0 [?]. As discussed in Section 5.2, the theory allows optimizing the
distribution. Our implementation of this is based on greedily finding a (clique) edge cover
in the hypergraph (Σ,∆), where ∆ is the set of all discrepancies found thus far. Since the
learners Li perform better when their alphabet contains more local actions, our algorithm
tries to optimise for this. We sometimes also merge components to convert synchronizations
into local actions.

To validate our approach, we experiment with learning LTSs obtained from three sources:
1. 300 randomly generated LTSs from our previous work [?], varying in structure and size.
2. 328 LTSs obtained from Petri nets that are provided by the Hippo tool [?] website;3 these

are often more sequential in nature than our other models.
3. Two scalable realistic models, namely CloudOpsManagement from the 2019 Model Check-

ing Contest [?] and a producers/consumers model [?, Fig. 8].
Using a machine with four Intel Xeon 6136 processors and 3TB of RAM running Ubuntu
20.04, we apply each of three approaches: (i) our black-box compositional approach (CoalA),
(ii) compositional learning with given alphabets (Coal) [?], and (iii) monolithic learning with
L? (as implemented in LearnLib). Coal can be viewed as an idealized (best-case) baseline
where the knowledge of the system decomposition is already available. Each run has a
time-out of 30 minutes. We record the number of membership and equivalence queries posed
to the Teacher, which we assume answers queries in constant time. This eliminates variations
in runtime caused by the Teacher, and ensures that local negative counter-examples (see

3 https://hippo.uz.zgora.pl/

https://hippo.uz.zgora.pl/
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Figure 5 Performance of L? and compositional learning on 300 randomly generated models.
Dashed lines indicate time-outs. Results obtained with Coal are in gray.

Section 5.1) are always eventually corrected. Resolving this limitation is orthogonal to the
current work and left for future research. A complete replication package is at [?].

Random models

Figure 5 shows the results on our random models. The colors indicate various communication
structures (see [?] for details). As a reference, the results obtained with Coal are given in
gray. We observe that CoalA requires significantly fewer membership queries than L? (note
the logarithmic scale) and is closer to the theoretical optimum of Coal; the result show 5-6
orders of magnitude of improvement in a large number of concurrent systems. The number
of equivalence queries required by CoalA is typically slightly higher, but results of larger
instances suggest that CoalA scales better than its monolithic counterpart. The data shows
that also in the case of equivalence queries, it is not uncommon to gain an order of magnitude
of saving by using our approach. We note that CoalA timeouts occur not due to a high query
count, but because local learners use SAT solving to construct minimal hypotheses from
observation tables that contain unknowns. This process can be computationally expensive.

Petri Net models

The results of learning the Hippo models are given in Figure 6. Here we are not able to run
Coal, since the component alphabets are not known. CoalA does not perform as well as
on random models, in particular it requires more equivalence queries than monolithic L?.
This is explained by the fact that these Petri nets contain mostly sequential behavior, i.e.,
the language roughly has the shape L1 · a · L2 for some languages L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2.
Even though our learner is able to find the decomposition {Σ1 ∪ {a},Σ2 ∪ {a}}, we do not
gain much due to the absence of concurrent behavior. In the Hippo benchmark set, CoalA
typically finds between two and nine components.

Realistic models

Finally, Table 1 shows the results of learning two scalable models with relevant parameters
indicated. No timeouts are reported in the table because all systems were successfully learned
within the time limit. CoalA scales well as the SUL size increases, requiring roughly a
constant factor more queries than Coal for both CloudOps and producers/consumers. We
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Figure 6 Performance of L? and compositional learning on Hippo models. Dashed lines indicate
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remark that practically all runtime of CoalA and Coal is spent in the local learners: they
require expensive SAT queries to construct a local hypothesis. Improving the implementation
of local learners would decrease these times significantly; we stress that this is orthogonal
to the goal of the current work. Furthermore, in any practical scenario, the processing of
queries by the Teacher forms the bottleneck and L? would be much slower than CoalA.

Table 1 Performance of CoalA and L? for realistic composite systems. Reported runtimes are
in seconds. The number of refinement iterations is listed under ‘it.’ and the number of components
found under ‘com’.

CoalA Coal L?

model states time memQ eqQ it. com time memQ eqQ com time memQ eqQ

CloudOps W=1,C=1,N=3 690 225.21 7 686 106 67 9 1.27 880 24 5 3.29 2 740 128 88
CloudOps W=1,C=1,N=4 1 932 235.97 9 521 115 74 10 1.93 923 26 6 29.62 22 252 120 216
CloudOps W=2,C=1,N=3 3 858 232.87 25 968 98 63 8 357.51 9 812 29 5 12.69 12 574 560 99
CloudOps W=2,C=1,N=4 10 824 708.95 33 616 111 72 10 555.82 9 532 30 6 143.28 91 178 900 227
ProdCons K=3,P=2,C=2 1 664 3.84 685 26 23 5 1.40 301 13 5 3.05 2 141 165 43
ProdCons K=5,P=1,C=1 170 1.03 451 22 14 3 0.88 118 11 3 0.40 160 126 30
ProdCons K=5,P=2,C=1 662 1.59 379 24 17 4 0.93 158 13 4 2.79 2 523 625 91
ProdCons K=5,P=2,C=2 2 240 5.53 697 28 25 5 2.35 282 14 5 6.40 6 984 705 93
ProdCons K=5,P=3,C=2 8 750 17.82 1 305 31 30 6 6.33 604 15 6 72.87 60 186 235 187
ProdCons K=5,P=3,C=3 30 344 73.69 2 454 34 37 7 32.59 1 269 17 7 321.54 222 567 729 193
ProdCons K=7,P=2,C=2 2 816 5.26 715 29 25 5 2.20 307 15 5 16.92 15 792 997 135

7 Conclusion

We presented a novel active learning algorithm that automatically discovers component
decompositions using only global observations. Unlike previous approaches, our technique
handles a general synchronization scheme common in automata theory and process calculi,
without any prior knowledge of component structure. We developed a theory of alphabet
distributions and their relation to observations, formally characterizing counter-examples
that indicate inconsistencies between distributions and observations, and providing system-
atic methods to resolve them. The algorithm spawns a local learner for each component,
dynamically refining the distribution of the alphabet based on counter-examples. Our
CoalA implementation dramatically reduces membership queries and achieves better query
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scalability than monolithic learning on highly concurrent systems. Future work will focus on:
developing a theory of counter-example and discrepancy selection to characterize optimal
distributions;
extending our approach to apartness-based learning [?] and more expressive formalisms
such as register automata [?] or timed automata [?];
leveraging our compositional techniques to analyze AI-generated code [?]; and
improving the efficiency of the local learners [?].

A Proofs

A.1 Section 4
I Proposition 4.6. Ω |= Obs if and only if for all traces σ ∈ Dom(Obs) it holds that
Obs(σ) =

∧
Σi∈Ω ObsΣi

(σ�Σi
).

Proof. We make the proof by double implication.
Suppose Ω |= Obs. By definition this means that there is Ω |= L such that L |= Obs.

Since L is a product language, Lemma 4.4 yields that L = {σ | ∀1 ≤ i ≤ n. σ�Σi
∈ Li} where

Li = {σ�Σi
| σ ∈ L} for all i.

Now for any σ ∈ Dom(Obs), we wish to show that

Obs(σ) = + iff
∧

Σi∈Ω
ObsΣi(σ�Σi) = +.

We separate the two implications.
If Obs(σ) = +, then ObsΣi(σ�Σi) = + for all i by definition of local observation functions

and we have our result.
If

∧
Σi∈Ω ObsΣi(σ�Σi) = +, it means that for any i, ObsΣi(σ�Σi) = +. By definition of

local observations, for all i there is σ′i ∈ Dom(Obs) such that Obs(σ′i) = + and σ�Σi
= σ′i�Σi

.
As L |= Obs, σ′i ∈ L.

This implies that ∀i.∃σ′i ∈ L ∧ σ�Σi = σ′i�Σi
. Hence for all i, σ�Σi ∈ Li by definition of

Li. It follows by definition of L that σ ∈ L. As L |= Obs, we have Obs(σ) = +.

Conversely, suppose that ∀σ ∈ Dom(Obs), Obs(σ) =
∧

Σi∈Ω ObsΣi
(σ�Σi

).
Consider the language L = {σ ∈ Dom(Obs) | Obs(σ) = +} and, for all i, let Li = {σ ∈

Dom(ObsΣi) | ObsΣi(σ) = +}. Clearly, we have that L |= Obs. Furthermore, by assumption,
L = {σ | ∀1 ≤ i ≤ n, σ�Σi

∈ Li}. Hence Ω |= L by definition. Ω |= Obs follows. J

I Corollary 4.10. Ω |= Obs ⇐⇒ CED(Ω,Obs) = ∅.

Proof. We make the proof by double implication.
When CED(Ω,Obs) 6= ∅ there is a counter-example (σN , P ) to Obs |= Obs. In particular

Obs(σN ) = − and for all Σi ∈ Ω ObsΣi
(σN �Σi

) = ObsΣi
(P (Σi)�Σi

) = + by definition of a
counter-example and local observation functions. Hence by Proposition 4.6, Ω 6|= Obs.

Conversely, when CED(Ω,Obs) = ∅ then for any σ ∈ Dom(Obs) such that Obs(σ) = −
there is some i such that for any σ′ ∈ Dom(Obs) verifying ObsΣi

(σ′�Σi
) = ObsΣi

(σ�Σi
),

Obs(σ′) = −.
It follows that for any σ ∈ Dom(Obs) such that Obs(σ) = −,

∧
1≤i≤n ObsΣi

(σ�Σi
= −).

As by definition of local observations, for any σ ∈ Dom(Obs) such that Obs(σ) = +,∧
1≤i≤n ObsΣi

(σ�Σi
= +) we have Ω |= Obs by Proposition 4.6.

J
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I Proposition 4.16. Suppose there exists (σN , P ) ∈ CED(Ω,Obs). For each discrepancy
δ ∈ D(σN , P ), (σN , P ) 6∈ CED(Ω∪{δ},Obs). Conversely, for any distribution Ω′ of Σ where
δ 6⊆ Σi, for all δ ∈ D(σN , P ) and all Σi ∈ Ω′, (σN , P ) is a counter-example to Ω′ |= Obs.

Proof. Consider a discrepancy δ. We first prove that introducing δ into Ω is sufficient to
remove the counter-example. As Obs is not changed by the change from Ω to Ω′ we have to
prove that there is no σΣi ∈ img(P ) such that σN �δ = σΣi�δ.

Fix σΣi
∈ img(P ).

If DΣi
m (σN , P )∩ δ 6= ∅ then there is a ∈ δ that occurs in different multiplicities in σN and

σΣi
. Hence, a also occurs in different multiplicities in σN �δ and σ�δ. Hence, σ�δ 6= σi�δ.

Otherwise, following the notations of Definition 4.12, σ′N = π(σΣi�θ) and for all j < k

such that σ′N [j] = σ′N [k] it holds that π(j) < π(k). By preserving the order of equal
symbols, we maintain that σ[j] = a is the l-th occurrence of a in σ′N iff σ′[π(j)] = a is
the l-th occurrence of a in σi.
Now {a, b} = {σ′N [j], σ′N [k]} ⊆ δ by definition of a discrepancy and {a, b} is created
from a so-called inversion in π: a pair (j, k) such that j < k and π(j) > π(k). By our
assumption on π, we know that a 6= b and furthermore that in σ′ at least one more copy
of b precedes this a (namely the b at σ′[π(k)]). As a result of this and the fact that
{a, b} ⊆ δ, we have σ′N �δ 6= σΣi�θ�δ

. It follows directly that σN �δ 6= σΣi�δ.

We now prove that it is necessary. Consider Ω′ defined as above and fix Σj ∈ Ω′. In the
following, we show that there is σ ∈ img(P ) such that σN �Σj

= σ�Σj
.

For this, as there is no discrepancy δ ∈ D(σN , P ) subset to Σj we know that there
is at least one Σi ∈ Ω such that no order nor multiplicity discrepancy for σ δΣi is a
subset of Σj . Because of this, Σm(σN ) ∆ Σm(P (Σi)) ∩ Σj = ∅. Hence P (Σi)�Σj

and
σN �Σj

are equal up to permutation. Consider any permutation π′ such that σ′N = π′(σi)
(following again the notations of Definition 4.12). Without loss of generality, we do not
permute the position of equal symbols, which fixes a unique permutation π′ = π. For any
{{σ′N [j], σ′N [k]} | j < k ∧ π(j) > π(k)}, we know (as these are elements of DΣi

o (σN , P ))
that we don’t have {σ′N [j], σ′N [k]} ⊆ Σj . It follows that the restriction of π to the indices
corresponding to symbols in Σj is non-decreasing and thus the identity. It follows that
σN �Σj

= P (Σi)�Σj
. J

I Proposition 4.21. Consider two distributions Ω and Ω′ of Σ. We have Ω 4 Ω′ ⇒
CED(Ω,Obs) 4 CED(Ω′,Obs).

Proof. We first prove that CED(Ω,Obs) 4 CED(Ω′,Obs). Suppose Ω 4 Ω′. If
CED(Ω′,Obs) = ∅ then we have our result. Else, take (σN , P ) ∈ CED(Ω′,Obs).

We know that for each Σi ∈ Ω, there is Σi
j ∈ Ω′ such that Σi ⊆ Σi

j . Fix such a Σi
j . We

have that σN �Σi
= P (Σij)�Σi

as Σi ⊆ Σij and (σN , P ) ∈ CED(Ω′,Obs).
By doing this for all Σi ∈ Ω, we get (σN , (P (Σij))Σi∈Ω) ∈ CED(Ω,Obs) and by definition

(σN , (P (Σij))Σi∈Ω) ⊆ (σN , P ). J

I Corollary 4.23. Suppose that CED(Ω,Obs) 6= ∅. For (σN , P ) ∈ CED(Ω,Obs), we pick
a discrepancy δ(σN ,P ) ∈ D(σN , P ). For any non-empty subset S of CED(Ω,Obs), let Ω′ =
Ω ∪ {δce | ce ∈ S}. Then Ω ≺ Ω′ and CED(Ω,Obs) ≺ CED(Ω′,Obs).

Proof. Ω 4 Ω′ follows directly from the definition of Ω′: all elements of Ω are preserved.
Furthermore, for ce ∈ S, for all Σi ∈ Ω we have δce 6⊆ Σi ∈ Ω as σN �δ 6= σΣi�δ and
σN �Σi

= σΣi�Σi
. Hence Ω′ 64 Ω and Ω ≺ Ω′. From Proposition 4.21 we get that
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CED(Ω,Obs) 4 CED(Ω′,Obs). Furthermore, we know by Proposition 4.16 that for a
fixed ce ∈ S, CED(Ω ∪ Dce,Obs) does not contain ce, ensuring that CED(Ω,Obs) ≺
CED(Ω ∪ δce,Obs). As furthermore CED(Ω ∪ δce,Obs) 4 CED(Ω′,Obs) by construction, we
have that CED(Ω,Obs) ≺ CED(Ω′,Obs). J

I Theorem 4.25. Suppose Ω 6|= Obs. The above process converges to a distribution Ω′ |= Obs
such that Ω ≺ Ω′ after finitely many of steps. For choosing S = CED(Ω,Obs) at each step,
the number of steps is bounded by |P(Σ)|.

Proof. In case of convergence, Ω ≺ Ω′ is ensured directly by each step of the process
by Corollary 4.23. We now prove that convergence occurs in a finite amount of steps. Each
step eliminates all counter-examples that are part of the non-empty set S chosen, as proven
in Proposition 4.16 and Corollary 4.23. As CED(Ω,Obs) ≺ CED(Ω′,Obs) the only possible
new counter-examples are ones that contain strictly counter-examples of CED(Ω,Obs). It
follows that iterating this process makes strict progress in the following sense: either counter-
examples are eliminated or they are replaced by ones with a strictly larger positive image.
Because the positive image size of counter-examples is bounded by the size of the distribution,
itself bounded by |P(Σ)|, we know that this converges in a finite number of steps.

If S = CED(Ω,Obs) at each step, we furthermore have that the size of the smallest
positive image of a counter-example increases by at least one at each step, which bounds the
number of steps by |P(Σ)|. J

I Proposition 4.27. CED(JΩK4,Obs) = ∅ ⇔ CED(Ω,Obs) = ∅

Proof. Wemake the proof for a fixed Σi ∈ Sub, the result following by induction. By definition
Ω′ 4 Ω, which entails that CED(Ω,Obs) 4 CED(Ω′,Obs). From there it follows that
CED(Ω,Obs) = ∅ ⇒ CED(Ω′,Obs) = ∅. To get the other one, we reason by contrapositive.
Suppose CED(Ω,Obs) 6= ∅ and consider (σN , P ) in it. Then clearly, taking P ′ = (P (Σj))j 6=i,
(σN , P ′) ∈ CED(Ω′,Obs) and we have our result. J

A.2 Section 5
I Lemma 5.1. Given a global counter-example (σ, b), let Obs′ = Obs ∪ {(σ, b)}:

if b = −, then there is P ∈ Dom(Obs)Ω such that (σ, P ) ∈ CED(Ω,Obs′).
else, there is σN ∈ Dom(Obs), S ⊆ Ω and P ∈ Dom(Obs)Ω\S such that (σN , P ∪ (Σi 7→
σ)Σi∈S) ∈ CED(Ω,Obs′)

Furthermore, all of the elements of CED(Ω,Obs′) have the above structure.

Proof. We know that Ω |= Obs and Ω 6|= Obs′ since the counter-example is global. From
Corollary 4.10 we get that CED(Ω,Obs) = ∅ and CED(Ω,Obs′) 6= ∅.

Consider (σN , P ) ∈ CED(Ω,Obs′). Since it is not a counter-example to Ω |= Obs, σ
must appear in it. If b = − we must have that σN = σ by definition of counter-examples
to a distribution. Similarly, if b = + then σ ∈ img(P ). Observing that Dom(Obs′) =
Dom(Obs) ∪ {σ}, we obtain our result. J

I Theorem 5.3. Let SUL = M1 ‖M2 ‖ . . . ‖Mn consist of n parallel LTSs. Algorithm 1
terminates and returns H1,H2, . . . ,Hk such that H1 ‖H2 ‖ . . . ‖Hk ≡ SUL.

Proof. The correctness of the returned hypothesis is guaranteed by the Teacher.
The algorithm’s termination is established by showing that the “while True” loop cannot

execute indefinitely. This is because the two types of counter-examples can only occur finitely
many times:

CONCUR 2025
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For local counter-examples, when the distribution Ω is fixed, all the learners eventually
converge to a hypothesis after encountering finitely many local counter-examples, as
shown in [?, Theorem 2].
For global counter-examples, each global counter-example leads to an updated distribution
Ω′ such that Ω ≺ Ω′ (Theorem 4.25). This update can only happen finitely many times,
as the top element of ≺ is {ΣSUL}.

J
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