
Modular Semantics for Transition System
Specifications with Negative Premises

Martin Churchill1, Peter D. Mosses1, and Mohammad Reza Mousavi2

1 Department of Computer Science, Swansea University
{m.d.churchill,p.d.mosses}@swansea.ac.uk

2 Halmstad University and Eindhoven University of Technology
m.r.mousavi@hh.se

Abstract. Transition rules with negative premises are needed in the
structural operational semantics of programming and specification con-
structs such as priority and interrupt, as well as in timed extensions of
specification languages. The well-known proof-theoretic semantics for
transition system specifications involving such rules is based on well-
supported proofs for closed transitions. Dealing with open formulae by
considering all closed instances is inherently non-modular – proofs are
not necessarily preserved by disjoint extensions of the transition system
specification.
Here, we conservatively extend the notion of well-supported proof to open
transition rules. We prove that the resulting semantics is modular, consis-
tent, and closed under instantiation. Our results provide the foundations
for modular notions of bisimulation such that equivalence can be proved
with reference only to the relevant rules, without appealing to all existing
closed instantiations of terms.

1 Introduction

The main goal of this paper is to provide modular proof theory for structural
operational semantics when transition rules with negative premises are allowed.
The main technical contributions are a notion of well-supported proof for open
transition rules, together with theorems that establish various essential properties
of this notion. This is part of our larger research effort in defining a modular se-
mantic framework, including machinery such as bisimulation proof techniques [15],
and rule formats for the operational semantics of programming and specification
languages which ensure that bisimilarity is a congruence [7].

When Plotkin introduced structural operational semantics (SOS) in his semi-
nal Aarhus lecture notes in 1981 [17], he used only positive transition rules: the
possibility of a transition for a programming construct depended on the possibility
of transitions for its sub-constructs – never on their impossibility. In that context,
the transition relation defined by a set of SOS rules is always well-defined, and the
proof theory of transitions is quite straightforward (except regarding modularity
of bisimilarity; see [15]). Positive transition rules are adequate for specifying the
SOS of many programming and specification language constructs.



2 M. Churchill, P. D. Mosses, M. R. Mousavi

Nevertheless, negative premises have been found useful in SOS. For example,
when termination can be conflated with deadlock (as in some process algebras)
the following transition rules specify sequential execution of the construct (x; y):

x
l−→x′

(x; y)
l−→ (x′; y)

x
l′9 y

l−→ y′

(x; y)
l−→ y′

This avoids the need to introduce distinguished terminal states, or a termination
predicate.

More significantly, it has been shown [3] that transition rules with negative
premises are actually necessary for the SOS of some programming and specifica-
tion constructs, such as priority operators: SOS is strictly more expressive when
negative premises are allowed. Related examples where negative premises are
needed include interrupts and timed extensions of specification languages.

The model- and proof-theoretic semantics for SOS specifications involving
negative premises is considerably less obvious than in the positive case; see
[13,2,12] for detailed discussions and comparison of alternative definitions. A
widely accepted definition is based on well-supported proofs for transition formulae

p
l−→ q where p (and q) are closed terms [12,5]. Well-supported-proofs for open

formulae has remained an open problem since 1995 [11] (and the task was
characterised as ‘somewhat problematic’ by Van Glabbeek [12]). In the negative

setting, the usual closed-instance semantics for open formulae would allow r
l9 to

be inferred whenever it is impossible to infer r
l−→u for any u (corresponding to

‘negation as failure’ in logic programming [8]). But this is inherently non-modular :
proofs are not generally preserved when the transition system specification is
extended with new constructs and with rules defining the transitions of the new
constructs. The non-modularity stems from defining the notion of well-supported
proof with respect to the set of all closed terms in a language: extensions of the
specified language increase that set.

In this paper, we conservatively extend the notion of well-supported proof to
open transition rules, in contrast to closed-instance semantics. We prove that the
resulting semantics is modular, consistent, and closed under instantiation.

The conservativeness of our semantics requires a mild condition on the format
of transition rules: source-dependency, which (informally stated) ensures that
each variable in a rule can be traced back to variables that occur in the source of
the conclusion (via transitions in the premises of the rule). Source-dependency
was also required to show that disjoint extensions are operationally conservative
with respect to closed transition formulae in [10]. Our other results (including
modularity) apply to arbitrary specifications.

The work here provides foundations for modular notions of bisimulation for
systems with negative premises, whereby equivalence between two terms can be
proved with reference only to the rules that define transitions for the constructs
occurring in those terms (independently of the presence or absence of other
constructs and their defining rules). Modular bisimulation proofs correspond



Modular Semantics for TSSs with Negative Premises 3

closely to conventional proofs which appeal to the fact that ‘no further rules need
to be considered’.

The rest of this paper is organised as follows. In Section 2, we recall some
standard notions. In Section 3, we generalise the notion of well-supported proof
to open transition rules. We show that our notion of well-supported proof is
consistent (i.e., does not lead to proofs of denying formulae) and closed under
instantiation of formulae and transition rules. In Section 4, we study the issue of
modularity. First, we show that the usual notion of closed instance semantics
is not modular, in general. Second, we show that our approach to assigning
semantics to open formulae is indeed modular. In Section 5, we show that our
notion of semantics is a conservative extension of the existing notion for closed
terms (i.e., it leads to the same set of provable transitions for closed terms), and
that disjoint extensions are conservative. This requires the mild condition of
source-dependency. We conclude the paper and present some direction for future
work in Section 6.

2 Preliminaries

We begin by recalling some standard definitions regarding SOS specifications
from the literature (see [2,16] for further details).

Definition 1 (Signatures, Terms and Substitutions) We assume a count-
able set V of variables. A signature Σ is a set of function symbols with fixed
arities; the arity of f is a non-negative integer denoted by ar(f). The set of terms
on signature Σ, denoted by T(Σ) and ranged over by s, t, s0, t0, . . ., is defined
inductively as follows: variables and function symbols of arity zero (also called
constants) are terms; given a list of terms, their composition using a function
symbol (while respecting the arity of the function symbol) is a term. Terms are
also called open terms; the set of variables in t is denoted by vars(t). Closed
terms on signature Σ, denoted by C(Σ) and ranged over by p, q, . . ., are those
terms in T(Σ) that do not contain any variable. A substitution σ : V → T(Σ)
is a function from variables to terms; it is closing if it maps variables to closed
terms. These are lifted to functions on terms in the usual manner. We write ι
for the identity substitution, and if σ is a substitution, write σ[x 7→ s] for the
substitution that sends x to s and other variables y to σ(y).

Transition System Specifications (TSSs), introduced in [14,6], are formalisa-
tions of SOS specifications. Here, we consider TSSs where positive formulae are

restricted to labelled transitions s
l−→ t; extension to allow multiple transition

relations and other predicates would be straightforward.

Definition 2 (Transition System Specification) A transition system speci-
fication T is a tuple (Σ,L,D) where Σ is a signature, L is a set of labels (with
typical members a, b, a0, . . .) and D is a set of deduction rules. For all l ∈ L, and

t, t′ ∈ T(Σ) we define that t
l−→ t′ is a positive formula and t

l9 is a negative



4 M. Churchill, P. D. Mosses, M. R. Mousavi

formula; t is the source of both formulae and t′ is the target of the former. A
formula is either a positive or a negative formula. For each t, t′, the formula
t

a9 denies t
a−→ t′ and vice versa. A formula is closed when all terms appearing

in it are closed. A deduction rule d ∈ D is a pair (H,φ), where H is a set of
formulae and φ is a positive formula; φ is called the conclusion and the formulae
in H are called premises. A deduction rule is f -defining when the source of its
conclusion is of the form f(s1, . . . , sn). A deduction rule is an axiom when it
has no premises, and closed when all formulae appearing in it are closed.

We sometimes refer to a TSS by its set of deduction rules. A deduction rule

(H,φ) is also written as H
φ ; in the latter syntax, if H is empty then it may be

omitted.
We next recall the standard notion of proofs in TSSs with negative premises

[12], to be generalised to open terms in the rest of this paper.

Definition 3 (Derivation) A derivation π for H
φ in a TSS T is a well-founded

upwardly branching tree with nodes labelled by formulae of T and of which

– the root is labelled by φ;
– if a node is labelled by ψ and the nodes immediately above it form the set K

then:

• ψ ∈ H and K = ∅, or

• ψ is a positive formula and K
ψ is a substitution instance of a deduction

rule in T .

A derivation is closed if all nodes are labelled with a closed formula. A formula
occurs in a derivation if it labels a node in that derivation. We lift the application
of substitutions to derivations in the usual way.

Definition 4 (Provable Rule) A closed deduction rule H
φ is a provable rule

if it has a closed derivation π.

Definition 5 (Ground Well-Supported Proof) If φ is a closed formula, a
ground well-supported proof for φ in a TSS T is a well-founded upwardly branch-
ing tree with nodes labelled by closed formulae and of which

– the root is labelled by φ;
– if a node is labelled by ψ and the nodes immediately above it form the set K

then:

• ψ is a positive formula and K
ψ is an instance of a deduction rule in T , or

• ψ is a negative formula and, for each set N of closed negative formulae

and each ψ′ denying ψ such that N
ψ′ is a provable rule, there is a formula

in N denying a formula in K.

The above definition corresponds to Definition 12 in [12].



Modular Semantics for TSSs with Negative Premises 5

3 Well-Supported Proofs

In this section, we generalise the notion of well-supported proof from closed
formulae to open rules.

3.1 Provable Ruloids and Well-Supported Proofs

In order to build up a proof tree for H
φ , one must provide justification for the

to-be-proven formulae, until reaching a premise in H. For the positive formulae
in such a proof tree, we require them to be justified using the deduction rules in
the TSS. For the negative formulae, we consider provable ruloids : a generalisation
of the notion of provable rule from closed to open rules.

Definition 6 (Provable Ruloid) A context is a set {xi
li−→ si, tj

lj9 | i ∈ I,
j ∈ J} of formulae (for possibly empty sets of indices I and J). A deduction rule
H
φ is a provable ruloid if H is a context and H

φ has a derivation π. We say that

π witnesses the provable ruloid H
φ . A derivation π is a provable ruloid derivation

if it witnesses some provable ruloid, i.e., each leaf with a positive formula has a
variable as its source.

The arbitrary negative formulae appearing in contexts and leaf positions of
provable ruloid derivations correspond to the set N in Definition 5.

We next generalise the definition of well-supported proof to the open setting,
in the presence of a set of hypotheses asserting the possibility or impossibility of
transitions from variables (so-called GSOS [4] contexts). We may discharge proof
obligations for a negative formula by appealing to an appropriate hypothesis
or by denying its possible proofs. In the open setting, such possible proofs may
conclude substitutive instances of the formula in question.

Definition 7 (Well-Supported Proof) A context H is called a GSOS context
if the source of each formula in H (in particular, the negative ones) is a variable.

For a GSOS context H and formula φ, a well-supported proof for H
φ in a TSS

T is a well-founded upwardly branching tree with nodes labelled by formulae and
of which

– the root is labelled by φ;
– if a node is labelled by ψ and the nodes immediately above it form the set K

then:

• ψ ∈ H and K = ∅, or

• ψ is a positive formula and K
ψ is an instance of a deduction rule in T , or

• ψ is a negative formula and for each substitution σ, ψ′ denying σ(ψ) and
provable ruloid derivation π concluding ψ′, there exists κ ∈ K and κ′

occurring in π such that κ′ denies σ(κ).



6 M. Churchill, P. D. Mosses, M. R. Mousavi

If Hφ has a well-supported proof, we write that H
φ is (ws-)provable. A well-

supported proof is closed if it contains only closed formulae.

Remark 8 In any TSS, x
l9 does not have a well-supported proof. For suppose

it did, and consider the smallest such proof, with conclusion x
l9 and immediate

premises K. Then x
l−→x denies ι(x

l9 ), and x
l−→x

x
l−→x

is a provable ruloid, wit-

nessed by a derivation π with a single node x
l−→x. Hence there exists κ ∈ K

and κ′ denying ι(κ) = κ occurring in π. But the only formula κ′ occurring in π is

x
l−→x and we must have κ = x

l9 . Hence, there exists another (smaller) proof

for x
l9 in the original proof; this contradicts the assumption that we started

from the smallest such proof.

The above fact is crucial for modularity: the TSS may be extended with

new constructs (and rules for them) which violate the general formula x
l9 , and

we wish the old proofs to remain valid as the TSS is extended. The notion of
negative proof search used in our notion of well-supported proof does not admit
exhaustive case analysis on the possible instantiations of the variables.

Our definition of well-supported proof (Definition 7) differs from the closed
notion (Definition 5) in some important respects, as illustrated by the following
examples. However, in Section 5 we will show that for closed φ in a source-
dependent TSS, φ is ws-provable if and only if φ has a ground well-supported
proof.

Example 9 Consider a TSS with unary symbols f , g; constants 0 and 1; label

a; and deduction rules
f(x)

a9
g(x)

a−→x
, f(0)

a−→ 0. Then:

– f(1)
a9 is provable as there are no provable ruloids concluding σ(f(1)

a−→ y).

Thus, g(1)
a−→ 1 is also provable.

– Since f(0)
a−→ 0 is a provable ruloid derivation, neither f(0)

a9 nor g(0)
a−→ 0

are provable.

– f(x)
a9 is not provable, due to the provable ruloid derivation f(0)

a−→ 0

concluding ι[x 7→ 0](f(x)
a−→ 0). Thus, g(x)

a−→x is not provable.

The above example demonstrates why we must consider counterexamples up

to substitution: otherwise, f(x)
a9 and g(x)

a−→x would indeed be provable,

but g(0)
a−→ 0 unprovable – provability would not be closed under instantiation,

which is counter-intuitive.

Example 10 Consider a TSS with constant 0, unary f , labels a and b, and

deduction rule x
a−→ 0

f(x)
b−→ 0

. Then x
a9

f(x)
b9

is provable. Each φ that denies σ(f(x)
b9 )



Modular Semantics for TSSs with Negative Premises 7

is of the form σ(f(x)
b−→ s) and the only provable ruloid derivation concluding

this is
σ(x)

a−→ 0

f(σ(x))
b−→ 0

. But σ(x
a−→ 0) occurs in this derivation, denying σ(x

a9 ),

as required.

If we extend the TSS with an additional symbol 1 with 1
a−→ 0 then x

a9
f(x)

b9
remains provable. This time, if σ(x) = 1, there is an additional provable ruloid

derivation concluding σ(f(x)
b−→ s) to consider: 1

a−→ 0

f(1)
b−→ 0

. But 1
a−→ 0 occurs in

this provable ruloid, which denies σ(x
a9 ), as required.

The above example demonstrates why in Definition 7 we must allow κ′ to occur

in a non-leaf position of π. Otherwise, the proof of x
a9

f(x)
a9

would become invalid

after extending by an unrelated constant 1, and modularity would fail.
Unlike the closed case, the provable ruloid derivations we consider may have

positive leaves whose source is a variable. This is to allow negative information
about variables to pass from the well-supported proofs to the provable ruloids.
One might consider restricting negative leaves to those whose source is a variable
(i.e., to GSOS contexts), but this would lead to an inconsistent notion of proof,
as the next example shows.

Example 11 Consider the TSS with the signature containing constant 0, unary

function symbol f , label a, and deduction rule x
a9

f(x)
a−→ f(x)

.

Then f2n+1(0)
a−→ f2n+1(0) is provable for each n ∈ N , by a simple induction

on n.
Now, consider the formula f3(0)

a9 ; in order to prove it, one needs to find

all provable ruloid derivations concluding f3(0)
a−→ t (for some term t) and

deny an occurring formula in each and every derivation. The only provable

ruloid derivation with f3(0)
a−→ t as its conclusion is

f2(0)
a9

f3(0)
a−→ f3(0)

. Thus, if

one only allowed provable ruloid derivations from GSOS contexts, f3(0)
a9 would

be provable as well as f3(0)
a−→ f3(0), and consistency would fail.

In the rest of this paper, we show that Definition 7 supports instantiation
closure, consistency, modularity, and that (under the mild but necessary condition
of source-dependency) disjoint extensions are conservative.

3.2 Basic Results

We first show that our notion of well-supported proof is consistent: it cannot be
the case that both φ and φ′ have well-supported proofs for denying φ and φ′.
Since proofs for open formulae occur with respect to GSOS contexts, we generalise
this notion of consistency to “consistent” contexts, i.e., contexts that do not



8 M. Churchill, P. D. Mosses, M. R. Mousavi

themselves contain a contradiction. In addition, the TSS should satisfy a sanity
condition: it should not induce non-trivial deduction rules concluding formulae
whose conclusion source is a variable. If it did, this can lead to contradiction
when combined with GSOS contexts as proof hypotheses. For example, in a TSS

with deduction rule x
l−→x, any assumption of the form x

l9 yields inconsis-

tency – both x
l9

x
l9

and x
l9

x
l−→x

have well-supported proofs. (In such pathological

systems, consistency can still be recovered under positive GSOS contexts.) These
requirements are captured in the following two definitions.

Definition 12 (Consistent Contexts) A GSOS context is consistent if for

each x, l, s, it does not contain both x
l−→ s and x

l9 .

Definition 13 (Lean TSSs) A TSS is lean if for variables x, H

x
l−→ s

is only

provable when x
l−→ s ∈ H.

Now, we have the ingredients to recast the consistency result in the setting
with open terms.

Theorem 14 (Consistency) Consider a TSS T = (Σ,L,D) and consistent
GSOS context H. Suppose further that T is lean, or H contains only positive

formulae. Let φ and φ′ be denying formulae. Then it is not the case that both H
φ

and H
φ′ have well-supported proofs.

Proof. Assume that both φ and φ′ are provable from H by well-supported proofs
π and π′ respectively. Assume without loss of generality that φ′ is a negative
formula. We will seek a contradiction, proceeding by induction on the total depth
of π and π′.

If π′ appeals to a hypothesis, then φ′ ∈ H and so T must be lean. Then φ′

is of the form x
l9 and φ of the form x

l−→ s. But π is a proof of Hφ , and so by

leanness φ ∈ H. This contradicts consistency of H.

Otherwise, the root of π′ is a negative deduction step. Now, construct a
provable ruloid derivation π1 from π by replacing all subtrees concluding negative

t
l9 by the leaf t

l9 . Then π1 is a provable ruloid derivation concluding φ, which
denies ι(φ′). Hence, there is a formula ψ occurring in π1 and ψ′ a premise of
φ′ in π′, such that ψ denies ι(ψ′) = ψ′. Let π2 denote the subproof of π rooted
at ψ, and π3 the subproof of π′ rooted at ψ′. But then π2 and π3 are proofs of
denying formulae, and are smaller than π and π′ respectively; by the Inductive
Hypothesis, this is impossible. ut

The following result shows that the set of provable formulae is closed under
instantiation.



Modular Semantics for TSSs with Negative Premises 9

Theorem 15 (Closure under Instantiating Formulae) Consider a formula

φ, contexts H and K, and substitution σ. Suppose H
φ has a well-supported proof

and that for each ψi ∈ H, K
σ(ψi)

has a well-supported proof. Then K
σ(φ)

has a

well-supported proof.

Corollary 16 (i) If φ is ws-provable, then so is σ(φ). (ii) If φ is provable and
φ is closed, then φ has a closed well-supported proof.

The following theorem states that our notion of well-supported proof is preserved
under instantiation of deduction rules in the TSS.

Theorem 17 (Closure under Instantiating Deduction Rules) Consider a
TSS T = (Σ,L,D) and a set of deduction rules D′ ⊆ D; let T ′ be (Σ,L,D ∪
{σd(d) | d ∈ D′}), where σd is an arbitrary substitution for each d ∈ D′. Then

a deduction rule H
φ is provable with respect to T if and only it is provable with

respect to T ′.

The proofs are omitted due to lack of space, but an appendix with full proofs
can be found online at www.plancomps.org/churchill2013c/.

4 Modularity

4.1 Closed Instance Semantics

One can assign meaning to open formulae in a TSS via closed-instance semantics.
This instantiates the deduction rules by all possible closed substitutions and
considers the resulting formulae provable from the closed TSS.

Definition 18 (Closed-Instance Semantics) Given a TSS T = (Σ,L,D),
closed(T ) is defined as (Σ,L, {σ(d) | d ∈ D,σ : V → C(Σ)}), i.e., the set of
deduction rules obtained by applying all closed substitutions on the deduction
rules in D. The closed-instance semantics of a TSS T is the set of all closed
formulae φ that have a ground well-supported proof with respect to closed(T ).

In such a setting, an open formula φ holds in T if and only if for all closed sub-
stitutions σ, σ(φ) has a ground well-supported proof in closed(T ). The following
example demonstrates that this does not coincide with φ having a well-supported
proof in our setting.

Example 19 (Closed-Instance Semantics) Consider TSS T0 with constant

0, unary function f , labels a, b and deduction rule x
b9

f(x)
a−→x

. For each closed

term p, there is a ground well-supported proof in closed(T0) for the deduction rule

f(p)
a−→ p; hence, according to the closed-instance semantics, f(x)

a−→x holds.

However, by Remark 8 there is no well-supported proof for x
b9 in T0, and so no

well-supported proof of f(x)
a−→x.

www.plancomps.org/churchill2013c/


10 M. Churchill, P. D. Mosses, M. R. Mousavi

For closed-instance semantics, a formula φ may hold in T0 while failing in
some disjoint extension [15] T0 ] T1 – closed-instance semantics is not modular.

Definition 20 (Disjoint Extension) Consider two TSSs T0 = (Σ0, L0, D0)
and T1 = (Σ1, L1, D1) of which the signatures agree on the arity of the shared
function symbols. The extension of T0 with T1, denoted by T0 ∪ T1, is defined
as (Σ0 ∪Σ1, L0 ∪ L1, D0 ∪D1). T0 ∪ T1 is a disjoint extension of T0 when each
deduction rule in T1 is f -defining for some f ∈ Σ1 \Σ0.

Example 21 (Non-modularity of Closed-Instance Semantics) Consider
the TSS given in Example 19 and extend it by constant 1 with deduction rule

1
b−→ 1. Then there is no (ground) well-supported proof for f(1)

a−→ 1 and hence,

f(x)
a−→x no longer holds for closed-instance semantics.

4.2 Modularity for Well-supported Proofs

In contrast, we can show that well-supported proofs are modular: well-supported
proofs in T0 remain so in T0 ] T1.

In the following results, by abusing the notation, we write s ∈ T to mean
s is a term in the signature of TSS T . Similarly, we write φ ∈ T to denote
that φ is a formula comprising terms and labels from T . For a substitution σ,
σ ∈ T indicates that for all x, σ(x) ∈ T . We will require the following lemma for
factorising substitutions:

Lemma 22 Let T0 ] T1 be a disjoint extension of T0. Let φ be a formula in
T0 ] T1, and ψ, ω be formulae in T0. Let σ, τ ∈ T0 ] T1 be substitutions such that
σ(ψ) = τ(ω) = φ. Then there exists substitutions σ̂ ∈ T0, τ̂ ∈ T0 and ρ ∈ T0 ] T1
such that σ = ρ ◦ σ̂, τ = ρ ◦ τ̂ and σ̂(ω) = τ̂(ψ).

We first show that each provable ruloid deduction in T0]T1 whose conclusion
is an instance of a T0-formula can be approximated by a provable ruloid deduction
in T0. We do this using the following definition of “at the root” derivation, which
approximates another derivation by proving the same conclusion from a possibly
richer context.

Definition 23 (At The Root Derivation) A derivation φ is at the root of
a derivation ψ if the root node of φ is the root node of ψ, and any immediate
subproof of φ is at the root of an immediate subproof of ψ.

For example, x
a−→w

f(x, y)
b−→ g(w, z)

is at the root of x
a−→w y

a−→ z

f(x, y)
b−→ g(w, z)

.

Lemma 24 (Provable Ruloid Approximation) Let T0]T1 be a disjoint ex-
tension of T0. Suppose π is a provable ruloid derivation in T0 ] T1 concluding φ
with φ = σ(ψ) for σ ∈ T0]T1 and ψ ∈ T0. Then there exists substitutions τ ∈ T0,
τ ∈ T0 ] T1 with σ = τ ◦ τ , and a provable ruloid derivation π′ ∈ T0 concluding
τ(ψ) such that τ(π′) is at the root of π.



Modular Semantics for TSSs with Negative Premises 11

To obtain an approximating derivation in easy: let π′ consist of a single
hypothesis node ψ and set τ = ι and τ = σ. But this is not a provable ruloid
derivation: its hypothesis ψ may be positive but not have a variable at its source.
The next lemma shows that given such an approximating derivation, one can
improve it. Repeated application of this lemma then yields a provable ruloid
derivation.

Lemma 25 Under the hypotheses of Lemma 24, suppose further that σ = τ ◦ τ
with τ ∈ T0 and π′ ∈ T0 concludes τ(ψ) with τ(π′) at the root of π. Suppose that
π′ has a positive hypothesis (leaf) whose source is not a variable. Then there
exists τ1 ∈ T0, τ1 with σ = τ1 ◦ τ1 and π′

1 ∈ T0 concluding τ1(ψ) such that τ1(π′
1)

is at the root of π, with π′
1 strictly larger than π′.

Proof. By assumption, there exists a hypothesis χ in π′ at position P of the

form s
l−→ s′ where s is not a variable. Then τ(χ) = τ(s

l−→ s′) appears in π. This
cannot be a hypothesis of π, as τ(s) is not a variable and π is a provable ruloid
derivation. Hence, τ(χ) must appear in π as the conclusion of a deduction rule d
under substitution ρ (from premises φi). Rule d must occur in T0 since T0 ] T1 is
a disjoint extension of T0 and the head symbol of τ(s) is the head symbol of s

and so in T0. Suppose d =
{ωi : i ∈ I}

ω with τ(χ) = ρ(ω) and φi = ρ(ωi). Since ω
and χ are both in T0 we may apply Lemma 22 to obtain τ̂ , ρ̂ ∈ T0 and τ1 with
τ = τ1 ◦ τ̂ , ρ = τ1 ◦ ρ̂ and τ̂(χ) = ρ̂(ω). Let π′

1 be τ̂(π′) attached to ρ̂(d) at P
and let τ1 = τ̂ ◦ τ . Then π′

1 concludes τ1(ψ) = τ̂ ◦ τ(ψ). Also, τ1(π′
1) is at the

root of π, as τ1(τ̂(π′)) = τ(π′) and τ1(ρ̂(ωi)) = ρ(ωi) = φi. ut

Proof of Lemma 24. First, set τ0 = ι, τ0 = σ and π′
0 the derivation consisting

of a single (hypothesis) node ψ. We then repeatedly apply Lemma 25 obtaining
τi, τ i, π

′
i until some π′

j is a provable ruloid. This process terminates, as each πi
strictly increases in size, but does not exceed the size of π. We then set π′ = π′

j ,
τ = τj and τ = τ j . ut

Using Lemma 24, we next show that well-supported proofs are preserved by
disjoint extensions.

Theorem 26 (Modularity for Well-Supported Proofs) Suppose T0]T1 is
a disjoint extension of T0 and let π be a well-supported proof (resp. derivation)

for H
φ in T0. Then π is a well-supported proof (resp. derivation) for H

φ in T0]T1.

Proof. We first consider derivations. Each derivation in T0 is also one in T0 ] T1.
This follows from a straightforward induction, as each deduction rule in T0 is
also a deduction rule in T0 ] T1.

We now consider the case for well-supported proofs. We proceed by induction
on π. If the derivation just appeals to a hypothesis, then it is also valid in T0]T1.
If the root formula φ is positive and the derivation applies an instance of a
deduction rule of T0 to obtain sub-derivations {πi : i ∈ I} above φ, then we may
apply the inductive hypothesis to the nodes above φ and apply the same instance
of the deduction rule to see that π is a proof in T0 ] T1.



12 M. Churchill, P. D. Mosses, M. R. Mousavi

If φ is negative and π has root
{ψi : i ∈ I}

s
l9

, then we must show that for each

provable ruloid derivation π′ ∈ T0 ] T1 concluding σ(s)
l−→ s′, there is a formula

occurring in π′ denying some σ(ψi). Consider such a π′ and fresh x occurring in

no ψi, and let σ′ = σ[x 7→ s′]. Then π′ concludes σ′(s
l−→x). Since s

l−→x is a
formula in T0, we may apply Lemma 24 to construct τ , τ and π′′ as described

with τ(π′′) at the root of π′. Derivation π′′ is in T0 and concludes τ(s
l−→x),

which denies τ(s
l9 ). Since π is a well-supported proof there is a formula ψ′

occurring in π′′ denying some τ(ψi). Then τ(ψ′) occurs in τ(π′′) and so in π′,
and denies τ(τ(ψi)) = σ′(ψi) = σ(ψi), as required. ut

5 Conservativeness

5.1 Conservativeness for Disjoint Extensions

We next show that for source-dependent TSSs, a disjoint extension of a TSS does
not introduce additional provable formulae from the original TSS. In [10], an
analogous result is presented for closed terms in the more abstract setting of
three-valued stable models. From there, we recall the notion of source-dependency :

Definition 27 (Source-Dependency) Given a proof rule, the source-dependent
variables are defined inductively as follows:

– All variables in the source of the conclusion are source-dependent.
– If all variables in the source of a premise are source-dependent, so are those

in the conclusion of that premise.

A rule is source-dependent if all variables it mentions are. A TSS is source-
dependent if all of its rules are.

Theorem 28 (Conservativeness for Disjoint Extensions) Let T0 ] T1 be
a disjoint extension of T0, where T0 is source-dependent, and let φ ∈ T0. Let

π be a well-supported proof (resp. derivation) for H
φ in T0 ] T1. Then π is a

well-supported proof (resp. derivation) for H
φ in T0.

Proof. (Sketch) For derivations and positive steps in well-supported proofs, we
proceed by an outer induction on the proof and an inner induction on the source-
dependence measure. For negative steps in well-supported proofs, we can use
Theorem 26 to see that any denying derivation in T0 is also one in T0 ] T1. ut

The following example demonstrates why source-dependency is necessary for
the above result (it is violated by the occurrence of x):

Example 29 Consider a TSS T0 with constants 0 and 1, labels a and b, and

rule x
b−→ 1

0
a−→ 1

. Let T0]T1 extend T0 with constant 2 and rule 2
b−→ 1. Then 0

a−→ 1

is provable in T0 ] T1 but not in T0, while 0
a−→ 1 is a formula of T0.



Modular Semantics for TSSs with Negative Premises 13

5.2 Conservativeness over Closed-Instance Semantics

We next consider how our notion of well-supported-proof relates to the original
notion of ground well-supported proof [12]. We first show that if a closed formula
has a well-supported proof in T , then it has a ground well-supported proof in
closed(T ). To do this, we define the notion of strict proof, which requires that
the premises of a negative formula may not involve negative non-GSOS formulae.

Definition 30 (Strict Well-Supported Proof) A strict well-supported proof
is one in which if a negative formula φ occurs above a negative formula ψ then
the source of φ is a variable.

Lemma 31 If Γφ has a (closed) well-supported proof, then it has a strict (closed)

well-supported proof.

Theorem 32 (Soundness w.r.t. ground well-supported proofs) For each
closed formula φ, if φ has a well-supported proof in T , then φ has a ground well-
supported proof in closed(T ).

Proof. If φ has a well-supported proof, then by Corollary 16 it has a closed
well-supported proof, and by Lemma 31 a strict closed well-supported proof π.
We claim that π is a ground well-supported proof of φ in closed(T ).

Each positive step in π is a closed instance of a deduction rule in T . This is a
valid step in a ground well-supported proof in closed(T ).

For the negative case, suppose the root is K
φ . Let π′ witness provable rule H

φ′

in closed(T ) where φ′ denies φ. Then π′ is also a provable ruloid derivation in T ,
concluding φ′ which denies ι(φ). Since π is a well-supported proof in T , there is
some χ ∈ K and χ′ occurring in π′ where χ′ denies ι(χ) = χ. Since χ′ occurs in
π′ it must be closed, and so the source of χ must be closed. Since the source of χ
is not a variable, strictness of π ensures that it is positive, and χ′ negative. Since
negative χ′ occurs in provable ruloid derivation π′, it must occur as a leaf, with
χ′ ∈ H. Thus we have found χ ∈ K and χ′ ∈ H denying χ, as required. ut

For the converse, we will require source-dependency. The following example
show that without source-dependency, the converse implication does not hold.

Example 33 Consider TSS T with constants 0 and 1, labels a and b, and

deduction rule x
b−→ 1

0
a−→ 1

. In closed(T ), 0
a9 has a ground well-supported proof

as there are no provable rules concluding 0
a−→ s. But it does not have a well-

supported proof in T : the provable ruloid derivation x
b−→ 1

0
a−→ 1

would require a

well-supported proof of x
b9 1, which does not exist by Remark 8.

The following proposition and subsequent theorem show that in source-
dependent systems the converse of Theorem 32 holds.



14 M. Churchill, P. D. Mosses, M. R. Mousavi

Proposition 34 Consider a source-dependent TSS T . Let φ be a formula whose
source is closed and let π be a derivation in T concluding φ. Then π is a derivation
in closed(T ).

Theorem 35 (Conservativeness over Closed-Instance Semantics)
Consider a source-dependent TSS T . For each closed formula φ, if φ has a ground
well-supported proof with respect to closed(T ), then φ has a well-supported proof
with respect to T .

Proof. Let π be the derivation in closed(T ) witnessing φ. We show that π is also
a well-supported proof in T . Since there are no hypotheses to appeal to, the only
cases we need to consider are the positive and negative deduction steps. For the
positive steps, any instance of a proof rule in closed(T ) is an instance of a proof
rule in T .

For the negative case, suppose K
φ occurs in π with φ negative. Let π′ witness

a provable ruloid H
φ′ where φ′ denies σ(φ). Then φ is closed since π is a deduction

in closed(T ), and so σ(φ) and the source of φ′ are closed. By Proposition 34, π′ is
a derivation in closed(T ). Each leaf of π′ is in context H and closed, so must be

a negative formula. Thus π′ witnesses the provable rule H
φ′ . Since φ′ denies σ(φ)

and the source of φ is closed, φ′ denies φ. Since π is a ground well-supported
proof, there is a hypothesis χ ∈ K with negative χ′ ∈ H where χ′ denies χ. Since
χ is closed, χ′ also denies σ(χ). Thus χ′ occurs in π′ and denies σ(χ) with χ ∈ H,
as required. ut

6 Conclusions

In this paper, we introduced a notion of semantics for open terms with respect
to transition system specifications with negative premises. This notion extends
the traditional notions [6,12] (which were confined to closed terms) and enjoys a
number of intuitive properties: consistency, closure under instantiation, modular-
ity and conservativeness. Consistency means that no two denying formulae are
provable. Closure under instantiation means that firstly, instantiating deduction
rules does not change the set of provable formulae and secondly, the set of prov-
able formulae is closed under applying substitutions. Modularity means that all
provable open formulae remain provable under disjoint extensions of the transition
system specification. Conservativeness means that firstly, disjoint extensions do
not introduce new provable formulae from the original TSS and secondly, our
notion of semantics leads to the same set of provable closed transition formulae
as the traditional notion.

This research was initiated by our study of bisimulation for open terms,
in particular with regards to congruence (compositionality) and preservation
under disjoint extensions (modularity). Earlier results consider open notions of
bisimilarity purely positive TSSs (e.g., [7,15,1,18,19]). We hope to use the results
here to extend these results to the systems with negative premises (such as those
in the (n)tyft/(n)tyxt [13], ntree [9] or PANTH [20] formats).



Modular Semantics for TSSs with Negative Premises 15

Acknowledgements. Many thanks to the anonymous referees for their useful com-
ments. This work was supported by an EPSRC grant (EP/I032495/1) to Swansea
University in connection with the PLanCompS project (www.plancomps.org).

References

1. Aceto, L., Cimini, M., Ingólfsdóttir, A.: Proving the validity of equations in GSOS
languages using rule-matching bisimilarity. MSCS 22(2), 291–331 (2012).

2. Aceto, L., Fokkink, W.J., Verhoef, C.: Structural operational semantics. In: Hand-
book of Process Algebra, Chapter 3. pp. 197–292. Elsevier, 2001

3. Aceto, L., Ingolfsdottir, A.: On the expressibility of priority. Inf. Process. Lett.
109(1), 83–85 (2008)

4. Bloom, B., Istrail, S., Meyer, A.R.: Bisimulation can’t be traced. JACM 42(1),
232–268 (1995)

5. Bloom, B., and Fokkink, W., van Glabbeek, R.J.: Precongruence formats for
decorated trace semantics. ACM Trans. Comput. Logic 5(1), 2678 (Jan 2004)

6. Bol, R., Groote, J.F.: The meaning of negative premises in transition system
specifications. JACM 43(5), 863–914 (1996)

7. Churchill, M., Mosses, P.D.: Modular bisimulation theory for computations and
values. In: Foundations of Software Science and Computation Structures. LNCS,
vol. 7794, pp. 97–112. Springer (2013),

8. Clark, K.L.: Negation as failure. In: Proc. ADBT’77, pp. 293–322. Plemum Press
(1978)

9. Fokkink, W.J., van Glabbeek, R.J.: Ntyft/ntyxt rules reduce to ntree rules. I&C
126(1), 1–10 (1996)

10. Fokkink, W.J., Verhoef, C.: A conservative look at operational semantics with
variable binding. I&C 146(1), 24–54 (1998)

11. van Glabbeek, R.J.: The meaning of negative premises in transition system specifi-
cations II. Tech. Report, Stanford (STAN-CS-TN-95-16) (1995)

12. van Glabbeek, R.J.: The meaning of negative premises in transition system specifi-
cations II. JLAP 60-61, 229–258 (2004)

13. Groote, J.F.: Transition system specifications with negative premises. TCS 118(2),
263–299 (1993)

14. Groote, J.F., Vaandrager, F.W.: Structured operational semantics and bisimulation
as a congruence. I&C 100(2), 202–260 (1992)

15. Mosses, P.D., Mousavi, M.R., Reniers, M.A.: Robustness of equations under opera-
tional extensions. In: Proc. EXPRESS’10. EPTCS, vol. 41, pp. 106–120 (2010)

16. Mousavi, M., Reniers, M.A., Groote, J.F.: SOS rule formats and meta-theory: 20
years after. TCS 373, 238–272 (2007)

17. Plotkin, G.D.: A structural approach to operational semantics. JLAP 60-61, 17–139
(2004)

18. Rensink, A.: Bisimilarity of open terms. I&C 156, 345–385 (2000)
19. de Simone, R.: Higher-level synchronizing devices in MEIJE-SCCS. TCS 37, 245–267

(1985)
20. Verhoef, C.: A congruence theorem for structured operational semantics with

predicates and negative premises. Nord. J. of Comp. 2(2), 274–302 (1995)

http://www.plancomps.org

	Modular Semantics for Transition System Specifications with Negative Premises

