
Article Type: Description (see below for more detail)

Software Testing in the Quantum World
Rui Abreu, Faculty of Engineering of University of Porto, Portugal; and INESC-ID, Portugal

Shaukat Ali, Simula Research Laboratory, Oslo, Norway

Paolo Arcaini, National Institute of Informatics, Tokyo, Japan

José Campos, Faculty of Engineering of University of Porto, Portugal; and LASIGE, Faculdade de Ciências,
Universidade de Lisboa, Portugal

Michael Felderer, German Aerospace Center (DLR), Germany; and University of Cologne, Germany

Claude Gravel, Toronto Metropolitan University, Toronto, Canada

Fuyuki Ishikawa, National Institute of Informatics, Tokyo, Japan

Stefan Klikovits, Johannes Kepler University, Linz, Austria

Andriy Miranskyy, Toronto Metropolitan University, Toronto, Canada

Mohammad Reza Mousavi, Kings College London, United Kingdom

Anila Mjeda, Munster Technological University, Cork, Ireland

Masaomi Yamaguchi, Fujitsu Limited, Kawasaki, Japan / The University of Electro-Communications, Tokyo, Japan

Lei Zhang, University of Maryland, Baltimore County, United States

Jianjun Zhao, Kyushu University, Fukuoka, Japan

Abstract—Quantum computing offers significant speedups for simulating physical,
chemical, and biological systems, and for optimization and machine learning. As
quantum software grows in complexity, the classical simulation of quantum
computers, which has long been essential for quality assurance, becomes
infeasible. This shift requires new quality-assurance methods that operate directly
on real quantum computers. This paper presents the key challenges in testing
large-scale quantum software and offers software engineering perspectives for
addressing them.

M iranskyy and Zhang [1] highlighted the im-
portance of quantum software testing. Since
then, many methods and tools have focused

on testing small programs executed on ideal, noise-
free classical simulators, conditions rarely met on
quantum computers. As quantum computers become
powerful enough to simulate classically, larger-scale
quantum software must be tested directly on real com-
puters, creating new challenges and research oppor-
tunities that this column highlights.

XXXX-XXX © 2026 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

Scale
Existing testing methods relying on classical simula-
tion fail to scale owing to exponential state growth,
memory constraints, and high computational costs,
including hardware-noise simulations. These methods
are largely infeasible on real quantum computers,
where access is limited, costly, and the hardware
is noisy. Many assumptions in the current methods
further restrict them to simulators (e.g., requiring many
measurements). This mirrors the evolution of classical
software testing, where growing complexity has led
from exhaustive reasoning to abstract methods (e.g.,
model-based testing and surrogate models). There-
fore, developing test abstractions is essential.

Quantum circuit simplification is a promising ap-
proach for improving scalability by reducing circuits and

January Published by the IEEE Computer Society Publication Name 1



THEME/FEATURE/DEPARTMENT

slicing subcircuits as surrogate models for validating
software properties. Property-based testing comple-
ments this by focusing on properties such as symme-
tries, invariants, or unitary relations rather than exhaus-
tive output checks. However, the systematic identifica-
tion of relevant properties remains challenging.

Assume-guarantee decomposition supports
scalability by decomposing global properties into
component-level contracts, enabling compositional
reasoning and targeted integration testing. Together,
abstraction, property-based testing, and compositional
reasoning form plausible solutions. A key challenge
is tool development: fully quantum testing tools do
not yet exist, classical tools fail to scale, and hybrid
quantum-classical solutions are a near-term goal,
whereas fully quantum implementations remain a
long-term objective.

Test Oracle
Efficient test oracles remain an open challenge [2].
Classical strategies based on input-output fail to scale
owing to exponential state growth, limited observ-
ability, and costly hardware access. Measurement-
induced disturbance further complicates oracle design,
requiring repeated program runs to obtain statistically
meaningful evidence. Shadow tomography allows par-
tial estimation; however, exhaustive inspection remains
infeasible, highlighting the need to shift from determin-
istic output verification to probabilistic, property-based
correctness.

Promising directions emphasize implicit and re-
lational oracles that validate properties rather than
explicit outputs [3]. Property-based oracles check se-
mantic properties such as invariants, symmetries, uni-
tarity, or equivalence between program behaviors,
often as relation-checking problems, enabling auto-
mated test artifact construction via metamorphic trans-
formations, self-consistency checks, or equivalence
testing. Approximate and statistical oracles balance
the cost with confidence guarantees, incorporating
adaptive sampling strategies and noise-aware thresh-
olds to remain robust under hardware imperfections.
Entropy- and distribution-based checks provide ad-
ditional fault detection without full-state reconstruc-
tion, albeit at increased measurement cost. Crucially,
these approaches address the quantum kernel in iso-
lation. A scalable oracle strategy must extend across
the entire hybrid architecture, shifting the verification
from component-level properties to the integrity of the
classical-quantum interaction in an end-to-end compu-
tational process.

Test Adequacy
A suitable notion of test adequacy for quantum pro-
grams should shift from “have the tests exercised all
paths?”, as used in classical computing, to “have the
tests accumulated enough evidence, with stated statis-
tical confidence, that the observed behavior matches
the specification within an acceptable noise margin?”
Given the probabilistic outputs and imperfect hardware,
adequacy must capture what was exercised and the
confidence with which deviations could be detected.

Building on this, the adequacy of hybrid quantum-
classical systems should span the full classical-
quantum workflow covering control flow, quantum re-
sources (e.g., qubits, gate types, entanglement struc-
ture, and depth), and measurement interfaces that
drive classical decisions. In essence, coverage must
address both the classical decision surface and the
quantum state-preparation/measurement space that it
influences.

Given these criteria, the test strength can be eval-
uated using fault-based sensitivity (e.g., mutation-style
fault injection [4]) and statistical power [5]: the smallest
change in the output distribution, expectation value, or
performance metric that a test suite can reliably detect
at a fixed shot budget. This depends on realistic fault
models that combine software defects (e.g., incorrect
gates, qubits, basis, or parameters) with execution
faults (e.g., decoherence and gate errors).

To achieve adequate efficiency, input-space sam-
pling should be adaptive: begin with diverse seeds,
measure coverage and discrepancy, then iteratively se-
lect new inputs or parameters to maximize the number
of uncovered targets or fault-detection coverage, stop-
ping once coverage goals and confidence stabilize.

Quantum Computing for Quantum
Software Testing

Software testing involves computationally intensive
tasks, such as test generation, prioritization, and se-
lection, over large input spaces. As software grows in
size and complexity, classical techniques increasingly
rely on heuristics and trading off optimality to achieve
scalability. Beyond revisiting testing concepts, a com-
plementary question is whether quantum computing
can serve as both a test target and a computational
resource for testing itself.

Quantum computing offers a distinct computational
model with potential speedups for certain search, op-
timization, and learning problems that align naturally
with core testing activities. Quantum search can accel-
erate the discovery of test inputs that satisfy coverage

2 Software Testing in the Quantum World January 2026



THEME/FEATURE/DEPARTMENT

or fault conditions, complementing classical constraint-
based generation. Test prioritization and minimization
problems can be formulated as combinatorial optimiza-
tion tasks, amenable to hybrid quantum–classical ap-
proaches, such as quantum approximate optimization
or annealing. Quantum machine learning also enables
data-driven testing tasks such as fault localization and
approximation of test oracles without precise specifi-
cations.

In the near term, these approaches are quantum-
assisted rather than fully quantum and are integrated
selectively with hybrid workflows alongside classical
heuristics. Despite current hardware limitations, this
perspective clarifies how, in the long term, quantum
computing could provide an additional computational
layer to reduce the growing cost of software testing
tasks as technology matures [6].

Benchmarks and Tools
Benchmarking is central to assessing the scalabil-
ity, effectiveness, and practical relevance of quantum
software testing techniques. Unlike classical bench-
marks, quantum testing benchmarks must account for
hardware noise, finite shot budgets, calibration drift,
and backend heterogeneity, as these factors directly
influence observed behavior. Meaningful benchmarks
should therefore report not only fault-detection rates
or coverage, but also resource usage (e.g., shots,
depth, qubits), statistical confidence, and robustness to
noise and calibration variability. This creates a natural
connection between software and hardware bench-
marks: low-level hardware benchmarks (e.g., gate fi-
delity, readout error) may be reused to parametrize and
contextualize software-level testing results.

Community coordination around shared benchmark
suites and experimental protocols is essential. Pub-
lic, curated benchmarks with representative programs,
standardized fault models, and clearly defined metrics
enable fair comparison across tools and platforms,
support reproducibility through transparent reporting of
execution parameters, and allow longitudinal evalua-
tion as hardware evolves.

Although several tools exist (see Wang et al. [7]),
a key question is whether they can scale and perform
effectively on real quantum hardware. Tool fragmenta-
tion, hardware constraints, and the probabilistic nature
of quantum computers pose significant obstacles.

Tooling remains difficult to integrate into standard
IDEs and CI/CD pipelines, owing to limited interop-
erability, inconsistent APIs, backend variability, and a
lack of standardized formats. Solutions include stable
IDE plugins, unified test and result specifications, and

reference CI/CD templates for managing credentials,
noise models, and execution parameters. Interpreting
test results is challenging owing to probabilistic and
noise-sensitive outputs. Useful reports should include
effect sizes, confidence intervals, circuit-diff views, and
calibration metadata to aid in diagnosis.

Large language models have the potential to
automate test generation and debugging, but they
often produce unreliable outputs. Mitigation includes
retrieval-grounded copilots, schema-constrained
prompting, and benchmarks assessing correctness
and reproducibility. Benchmarks must reflect the
real hardware and integrate low-level hardware
tests with oracles to distinguish software faults from
hardware imperfections. Domain-specific benchmarks
are also crucial, using representative programs,
diverse fault types, and mutation operators tailored to
domain-specific patterns and error models.

Conclusions
The most pressing challenge in quantum software test-
ing is achieving scalable, end-to-end quality assurance
on real, noisy quantum computers within a hybrid
quantum–classical software setup. Addressing this re-
quires a shift toward abstraction, property-based, and
statistically grounded testing. Successfully meeting this
challenge will enable the community to produce reliable
solutions that achieve quantum advantage while also
ensuring their dependability.

REFERENCES
1. A. Miranskyy and L. Zhang, “On testing quantum

programs,” in Proceedings of the 41st International
Conference on Software Engineering: New Ideas
and Emerging Results, ser. ICSE-NIER ’19. IEEE
Press, 2019, p. 57–60. [Online]. Available: https:
//doi.org/10.1109/ICSE-NIER.2019.00023

2. J. M. Murillo, J. Garcia-Alonso, E. Moguel, J. Barzen,
F. Leymann, S. Ali, T. Yue, P. Arcaini, R. Pérez-
Castillo, I. García-Rodríguez de Guzmán et al., “Quan-
tum software engineering: Roadmap and challenges
ahead,” ACM Transactions on Software Engineering
and Methodology, vol. 34, no. 5, pp. 1–48, 2025.

3. R. Abreu, J. P. Fernandes, L. Llana, and G. Tavares,
“Metamorphic testing of oracle quantum programs,”
in Proceedings of the 3rd International Workshop on
Quantum Software Engineering, 2022, pp. 16–23.

4. D. Fortunato, J. Campos, and R. Abreu, “Mutation
Testing of Quantum Programs: A Case Study With
Qiskit,” IEEE Transactions on Quantum Engineering,
vol. 3, pp. 1–17, 2022.

January 2026 Software Testing in the Quantum World 3

https://doi.org/10.1109/ICSE-NIER.2019.00023
https://doi.org/10.1109/ICSE-NIER.2019.00023


THEME/FEATURE/DEPARTMENT

5. A. Miranskyy, J. Campos, A. Mjeda, L. Zhang,
and I. G. R. de Guzmán, “On the Feasibility of
Quantum Unit Testing,” 2025. [Online]. Available:
https://arxiv.org/abs/2507.17235

6. A. Miranskyy, “Using quantum computers to speed up
dynamic testing of software,” in Proceedings of the 1st
International Workshop on Quantum Programming for
Software Engineering, 2022, pp. 26–31.

7. X. Wang, S. Ali, and D. Taibi, “The landscape of quan-
tum software testing tools,” IEEE Software, vol. 42,
no. 5, pp. 136–140, 2025.

Rui Abreu full professor, Faculty of Engineering, Uni-
versity of Porto, Portugal. Contact: rui@computer.org.
Shaukat Ali research professor, Simula
Research Laboratory, Oslo, Norway. Contact:
shaukat@simula.no.
Paolo Arcaini associate professor, National Institute
of Informatics, Tokyo, Japan. Contact: arcaini@nii.ac.jp.
José Campos assistant professor, Faculty of
Engineering, University of Porto, Portugal. Contact:
jcmc@fe.up.pt.
Michael Felderer director of the Institute of Software
Technology, German Aerospace Center (DLR) and full
professor, University of Cologne, Germany. Contact:
michael.felderer@dlr.de.
Claude Gravel assistant professor, Toronto
Metropolitan University, Toronto, Canada. Contact:
gravel@torontomu.ca.
Fuyuki Ishikawa associate professor, National
Institute of Informatics, Tokyo, Japan. Contact: f-
ishikawa@nii.ac.jp.
Stefan Klikovits postdoctoral researcher,
Johannes Kepler University Linz, Austria. Contact:
stefan.klikovits@jku.at.
Andriy Miranskyy associate professor, Toronto
Metropolitan University, Toronto, Canada. Contact:
avm@torontomu.ca.
Anila Mjeda lecturer, Munster Technological
University, Cork, Ireland. Contact: anila.mjeda@mtu.ie.
Mohammad Reza Mousavi professor, King’s
College London, London, United Kingdom. Contact:
mohammad.mousavi@kcl.ac.uk.
Masaomi Yamaguchi researcher, Fujitsu Limited,
Kawasaki, Japan, and Ph.D. student, The University
of Electro-Communications, Tokyo, Japan. Contact:
y.masaomi@fujitsu.com.
Lei Zhang assistant professor, University of Maryland,
Baltimore County, USA. Contact: leizhang@umbc.edu.
Jianjun Zhao professor, Kyushu University, Fukuoka,
Japan. Contact: zhao@ait.kyushu-u.ac.jp.

4 Software Testing in the Quantum World January 2026

https://arxiv.org/abs/2507.17235

	Scale
	Test Oracle
	Test Adequacy
	Quantum Computing for Quantum Software Testing
	Benchmarks and Tools
	Conclusions
	REFERENCES
	REFERENCES
	Biographies
	Rui Abreu


