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Featured Finite State Machines (FFSMs) were proposed as a modeling formalism that represents
the abstract behavior of an entire software product line (SPL). Several model-based testing techni-
ques have been developed to support test case generation for SPL specifications, but none support
the full fault coverage criterion for SPLs at the family-wide level. In this paper, we propose an
extension of the Harmonized State Identifiers (HSI) method, an FSM-based testing method sup-
porting full fault coverage. By extending the HSI method for FFSMs, we are able to generate a sin-
gle configurable test suite for groups of SPL products that can be instantiated using feature
constraints. We implement a graphical tool named ConFTGen to guide the design, validation, der-
ivation and test case generation for state, transition and full fault coverage of FFSMs.
Experimental results indicate a reduction of approximately 50% on the number of test cases
required to test 20 random SPL products. Also, we investigate the applicability of our method by
applying it to a case study from the automotive domain, namely the Body Comfort System.
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1.

INTRODUCTION

Software Product Line Engineering (SPLE) is a paradigm to
develop software where a family of related products (a
Software Product Line—SPL) is built out of a common set of
core assets, thus reducing the development cost for each indi-
vidual product [1]. In SPLE, products are built, step-by-step,
by adding or removing functionalities, to alleviate software
complexity and improve quality.

Similar to the development of single systems, the SPLE
process also has several activities that are executed to ensure
software quality. Testing is an example of such activities that
is performed to ensure quality and to minimize risks. Testing
activities account for a large share of overall project costs and
are even more challenging in SPLE than in single systems [2].
In several domains, it is highly non-trivial to follow develop-
ment standards to efficiently test various product configurations
in a systematic manner. For example, the standard ISO 26262
for safety-critical automotive software states that each developed

"https: //www.iso.org/standard /43464 html

product configuration should be tested using model-based
techniques with a high degree of test coverage under some
test criterion [3].

Several techniques, processes and strategies [4—8] were
developed for testing SPLs, but many problems are still open
in this area of research. First of all, testing every single prod-
uct configuration individually by using common testing tech-
niques is not feasible for large SPLs due to the huge number
of possible configurations. Second, testing products on-
demand is unacceptable, due to the scarce time available for
product assembly. Moreover, there are other challenges in
SPLE including variability, artifact management, test redun-
dancy, overlay and gaps [9, 10].

In the Model-Based Testing (MBT) approach, we select a
test criterion to design test cases using a behavioral test mod-
el. The resulting test suite execution must be able to turn as
many faults into failures as possible [11]. Thus, good test cri-
teria are the results of trade-offs between testing cost and fault
detection capability. The full fault coverage is a test criterion
with such a trade-off. There are a number of MBT methods
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[12—14] that use the full fault coverage to generate test suites from
Finite State Machines (FSMs). We focus on the Harmonized State
Identifiers (HSI) method [13] as it is an improvement of the
well-known W method [12]. We do not use incremental test
generation approaches such as the P method [14] as they are
substantially more complex and our product-line-centered
approach, does not need such a level of complexity. Moreover,
the HST method has better performance than the P method and
can generate small test suites compared to other non-incremental
methods [15].

In this paper, we propose an extension of the HSI method
[13] for Featured Finite State Machines (FFSMs) [16]. We
bring the HSI method to the family level, by extending sev-
eral FSM-based notions of coverage and sequences to the
family-level setting. By extending the HSI method, we can
generate a single configurable test suite for the SPL. Such test
suite can be pruned using feature constraints for a (group of)
product configuration(s). A feature constraint can also be
used in the derivation of sub-FFSM models for specific sets
of SPL product configurations. We implemented a graphical
support tool named Configurable Full Test Generator
(ConFTGen) to guide the design of FFSMs. The tool per-
forms validation, product model derivation and test case gen-
eration for state, transition and full fault coverage. The Z3
SMT tool [17] efficiently process feature constraints.

Moreover, we conducted an experimental study with ran-
dom FFSMs and feature models, and, for each feature model,
we selected 20 random products. We decided to randomize
feature models and FFSMs to avoid the bias of specific
domains. First, a test suite was generated using the extended
HSI method for an FFSM and compared to a second unified
test suite generated using the original HSI method for the
selected 20 individual configurations. The results indicate a
reduction in approximately 50% of the number of new tests
required for testing using the first test suite compared to the
second. The reduction percentage decreases for less than 20
products and increases for more than 20. Moreover, we illus-
trate and evaluate our approach and tool by means of a case
study from the automotive domain, using the Body Comfort
System (BCS) for the VW Golf SPL [18]. The results indicate
25% reduction in the number of new tests required for testing
a slice of the BCS for six products.

The main contributions of this paper are summarized
below:

(1) Proposing an extension of the HSI test case gener-
ation method and proving it to coincide with its
product-based counterpart.

(2) Implementing a model-based test generation tool
with a graphical interface to support design, valid-
ation, derivation and generation of family-based test
artifacts.

(3) Experimentally assessing the proposal with both a
set of random SPLs and a realistic SPL case study.

The remainder of this paper is organized as follows. Section 2
presents some preliminary notions and concepts regarding
the HSI method, feature models and FFSMs. Section 3 pre-
sents our approach which extends the MBT concepts for a
configurable test design including state, transition, and full
fault coverage, followed by the HSI extension. Section 4
presents the implementation details of the ConFTGen tool
and usage of SMT Solvers. Section 5 illustrates the experi-
mental study with random models and the analysis of the
results. Section 6 provides a case study regarding the Body
Comfort System. Section 7 provides an overview of the
related work and a comparison of relevant approaches in the
literature. Section 8 concludes the paper and presents the
directions of our future work.

2. BACKGROUND

This section recapitulates the basic concepts and definitions of
the HSI method, feature models and FESMs (mostly from [16])
that we are going to use throughout the rest of the paper.

2.1. HSI method

The HSI method can generate a test suite which attains the
full fault coverage to test the behavior of a system represented
by a finite state machine.

2.1.1. Finite state machines

The classic Finite State Machine (FSM) formalism, presented
below, is often used due to its simplicity and rigor for model-
ing systems such as communication protocols and reactive
systems [19].

DeriNiTION 2.1, An FSM M is defined as a S5S-tuple
(S, s, I, O, T), where S is a finite set of states, so € S is the
initial state, I is the set of inputs, O is the set of outputs and
T is the set of transitions in the form of t = (s, x, 0, s') € T,
where s € S is the source state, x € I is the input label,
o0 € O is the output label and s’ € S is the target state.

The HSI method requires an FSM with the following three
properties: (a) determinism—for each pair of state and input,
there is at most one outgoing transition; (b) initially connected-
ness—there is a sequence of transitions to every state from the
initial state; and (c) minimality—all pairs of states must behave
differently (be distinguishable) by producing different
sequences of outputs for some sequence of inputs.

ExampLE 1. Figure 1 presents a deterministic, initially con-
nected and minimal FSM M = (S, so, I, O, T), where § =
{1,2,3},s0=1LI={a,b,c},0={0,1} and T = {(1, a, 1, 2),
(1,b,0,1), (1,¢,0, 1), (2,a,0,2), (2,b,1,3), (2, ¢, 1, 1), (3, a,
1,2),(3,b,0,3), (3, ¢, 1, 1)}. For determinism, there is only
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FIGURE 1. Abstract FSM M.

one transition leaving each state for a given input. For initial con-
nectedness, two transitions (1, a, 1, 2) and (2, b, 1, 3) (high-
lighted) connect the initial state to states 2 and 3. For minimality,
the input sequence a results in different output behavior for state
pairs 1; 2 and 2; 3, and the input sequence ¢ for 1; 3.

2.1.2.  Full fault coverage criterion
The full fault coverage criterion is defined using a fault
domain.

DErINITION  2.2.  Consider an FSM M = (S, so, I, O, T)
with n states and its implementation N = (Q, q, 1, o', 1.
The symbol J denotes the fault domain that is the set of all
FSMs that are (i) deterministic; (ii) have the same input
alphabet as M; and (iii) include all defined input sequences
of M. Moreover, J,, is the set of FSMs from J with n states.

The following definition summarizes the main results from
Simao and Petrenko [14] where the full fault coverage criteria
is established based on specific properties.

DErINITION 2.3.  Given a test-suite T for an FSM M with n
states, T is n-complete when for all FSMs N € J, there exist
tests in T that distinguish M and N .

A test suite 7 satisfies the full fault coverage criterion
when it contains an n-complete test suite for an FSM M in
that case, by executing T we are capable of detecting any
fault (from a failure) in all FSM implementations N € 7, (7).

2.1.3. Test case generation

The HSI method is based on the W method [12]; both meth-
ods use a characterizing set to distinguish pairs of states in
the FSM.

DEFINITION 2.4.  Given an FSM M = (S, so, I, O, T) with
state set S = {sy,...,8,}, the set W C P(I*) is a characteriz-
ing set if and only if for all 1 <i,j <n with i = j there
exists an input sequence vy € W that distinguishes s; and s;.

The HSI method uses the W set to obtain subsets for each
state.

DEFINITION 2.5.  Given an FSM M = (S, so, I, O, T) with
state set S = {sy,...,s,}, the sets Hy,...,H, C P(I*) are HSI

sets if and only if for all 1 < i,j < n with i = j, there exist
subsets H; C W and H; C W for s; and s; such that a com-
mon prefix v of v, € H; and v € H distinguishes s; and s;.

To generate test cases, we need inputs sequences that reach
all transitions (a transition cover set) and the distinguishing
set(s). The original W method concatenates each input
sequence with the whole W set. The HSI method selects a
HSI set for each input sequence, resulting in less test cases.

ExaMPLE 2. The characterizing set W for FSM M presented
in Fig. 1 is W = {a, ¢}, while the HSI sets are: H; = {a, c},
H, = {a} and H; = {a, c}. The n-complete test suite is
obtained by concatenating a transition cover set CV =
pref ({b, c, ac, aa, aba, abb, abc}) with H; sets, which
results in TS = pref ({ba, bc, ca, cc, aca, acc, aaa, abaa,
abba, abbc, abca, abcc}).

2.2. Feature model

A feature is a prominent or distinctive user-visible aspect,
quality, or characteristic of a software system or system [20].
Feature models [1] define feature relations based on com-
monalities and variabilities using graphical models such as
feature diagrams. A feature diagram [21] uses a notational
convention to describe constraint-based feature relations. The
basic feature relations are mandatory, optional, inclusive-OR
(or), exclusive-OR (alternative), include and exclude [22]. A
noteworthy feature modeling method is the Feature-Oriented
Domain Analysis (FODA) [20]. Subsequent feature modeling
methods extended the FODA to add new dependency rela-
tions like the Orthogonal Variability Model (OVM) [23].

ExaMPLE 3. We use in this paper a simplified version of the
Car Audio System (CAS) that was presented as a running
example in [5]. The CAS SPL can produce different audio
systems for cars and provides playbacks and controls.
Figure 2 shows the feature diagram of CAS based on FODA.
There are two alternative features for the Player module (CD
and Cassette) and one optional feature (USB) for the
Playback module. One and only one alternative feature must
be selected, and the optional feature may or may not be
included.

In general, due to the dependencies and constraints on fea-
ture combinations, only some products can be derived.
Assume a set of features F' of a feature model. The set of all
valid products P of an SPL is a subset of feature combina-
tions from the power set P(F) that satisfies the constraints
specified by the feature model [24].

A feature constraint  is a propositional formula that inter-
prets elements of the feature set F' as propositional variables.
The set of all feature constraints is denoted by B (F). Feature
relation and constraints of a feature diagram can be extracted
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as a feature constraint following a formal semantics [21]. A
product configuration p € B(F) of a product p € P is a fea-
ture constraint of the form p = (Asepf) A (Asgp — f), ie
the conjunction of all features present in p and the conjunc-
tion of all features absent from p. The set A C B (F) denotes
all valid product configurations of the SPL. Given a feature
constraint y € B(F), a product configuration p € A satisfies
x (denoted by p F x), if and only if the feature constraint
p N\ x is satisfiable.

ExampLE 4. Given the feature diagram of Fig. 2 the extracted
feature set is F = {A,B,M, L, N, W, Y, U, C, T}, where
O={A,B,M,L, N, W, Y} CF is the subset of mandatory
features. The extracted feature constraint that represents all
valid products is x = ((Aseof) A (U=>B) A (CV T)A
—(CAT)) € B(F). There are only four product configura-
tions that satisfy y

p=(ANI)NCAN=TA=U,
feo

pr=(Nf) NCA=TAU,
feo

pr=(ANS) N~ CATAU,
feo

ou=(Nf)AN-CATAU.
feo

The feature diagram graphically represents the feature rela-
tion while a feature model can be used to represent relevant
information for testing. A feature model is defined as follows.

DEFINITION 2.6. A feature model FM is a triple (F, x, A),
where F is the set of features, x is the feature constraint of
all feature relations and A is the set of product configurations
that satisfies x.

Given two feature constraints w, and wy, and A,, Ap C A
satisfying w, and wy, respectively, we say that w, and wj, are
equivalent under FM if A, C Ay and A, C A,.

2.3. Featured Finite State Machines

A FFSM [16] is an extension of a Finite State Machine (FSM)
in which states and transitions are annotated with feature con-
straints. The syntax of an FFSM is defined as follows.

DEFINITION 2.7.  An FFSM is a 6-tuple (FM, C, ¢y, Y, O, T'),
where

(1) FM = (F, x, A) is a feature model (Definition 2.6),

(2) C C S x B(F) is a finite set of conditional states,
where S is a finite set of state labels, B (F) is the set
of all feature constraints, and C satisfies the follow-
ing condition:

V(s,¢)ec * E|pEA *p F ®

(3) ¢o = (so0, true) € C is the initial conditional state,

(4) YC I x B(F) is a finite set of conditional inputs,
where I is the set of input labels,

(5) O is a finite set of outputs,

6) ' CC x Y x O x C is the set of conditional tran-
sitions satisfying the following condition:

Y(s:0) egon(s el * Toer * PE (9 A @' A ")

The above-given two conditions ensure that every condi-
tional state and every conditional transition is present in at
least one valid product of the SPL. A conditional state
¢ = (s, ¢) € C is alternatively denoted by s(¢). A condi-
tional transition from conditional state ¢ to ¢’ with conditional
input y = x (") and output 0 t = (c, y, o, ¢') is alternatively
denoted by x (¢”) /o or ¢ = ¢’. The operators of feature con-
straints are denoted by && (and), || (or) and ! (not). Omitted

feature conditions mean that the condition is frue, i.ez. state
. . x o, . X, true)

s is equivalent to (s, frue) € C, and — is equivalentto ~— .

o o

ExamMpLE 5. Figure 3 shows an FFSM for the CAS SPL for
the feature model presented in Fig. 2. The playback behavior
begins with radio turned off, and once it is turned on it cycles
between playbacks starting with radio, then alternatively CD or
cassette, and then USB if it was included, otherwise, it gets back
to radio again. This is a simple example in which history is not
included, thus, the first command is to execute the radio module.
From any conditional state except Off, the radio can be turned
off that can be noticed by the shutdown output. Alternative mod-
ules such as CD (green) and Cassette (dark blue) are combined
into a single abstract state independent of the selected feature.
Specific transitions can represent the specific behavior of each
module, i.e. the transitions from Radio to CD|Cassette for CD
and Cassette features, respectively.

We can use a sequence of conditional transitions to form a
conditional path to generate test cases. This concept is forma-
lized in the following definition.

| CAS[A] |

Legend
— Mandatory Feature
O Optional Feature
[ PlaybackB] | [ TMCIM] ] [ Controlll] | | < Atternative Feature
[ usBU] | [PlayerY]] [ ChannelN] | [ Switch(w] |
AN

FIGURE 2. CAS Feature Model (adapted from [5]).
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DErINITION 2.8.  Given a conditional input sequence o =
(Y --) € Y™, where y, = (x;,6;) €Y for 1 <i<k, a
conditional path from conditional state ¢; = (s1, @) 10 Cry1
exists when there are conditional transitions t; = (c;, ¥, 0;,
¢iv1) €T, for 1 <i<k.A conditional path o is a 4-tuple
(v, 6, v, w), where

(D) v={(ct,...,ckr1) € C* is the conditional state
sequence,

(2) 6 = (xiy...,xx) € I* is the input sequence,

3) v = (o1,...,01) € O* is the output result,

@ w=(@ AN AN ) NN ANb) €B(F) is
the resulting path condition.

A conditional path is valid if there is at least a product
configuration p € A that can satisfy the path condition w, i.e.
Jyer * p F w. Notation © (c) is used to denote the set of all
conditional paths that start at conditional state c € C. Opp is
used to denote O (c).

Further details on model derivation and validation proper-
ties for FFSM models can be found in [16].

3. CONFIGURABLE TEST DESIGN

In this section, we extend basic test definitions used in FSM-
based test case generation for state coverage, transition coverage,
and the HSI method [13] for FFSMs. Only FFSM specifica-
tions that are deterministic, initially connected, and minimal
(as presented in [16]) are used for test case generation.

3.1. Configurable test suites

To generate conditional test cases, we use sequences of inputs
that are valid in at least one product configuration. A configur-
able test suite, also defined below, is a set of conditional tests.

DEFINITION 3.1, Given an FFSM FF = (FM, C, ¢y, Y, O, T)
such that FM = (F, x, A), a conditional test case (or simply
a conditional test) of FF is a tuple (6, w) € I* x B(F),
where § is an input sequence of a valid conditional path
((coy---,C), 8, v, w) € OpF, and w is the feature constraint of
the path. A configurable test suite CTS C P(I* x B(F)) of
FF is a finite set of conditional tests of FF.

To determine whether a conditional test (&,, w;,) is a condi-
tional prefix of another conditional test (&, wp), we use the
feature model to compare the configurations satisfied by each
feature constraint.

DErFINITION 3.2.  Given an FF = (FM, C, ¢y, Y, O, T') such
that FM = (F, x, A), a conditional test (6,, w,) is a condi-
tional prefix of (8, wp) if: (i) 6, is a prefix of by; (ii) there exist

configurations that satisfy both feature constraints, i.e.
Jper * p F (wa A wyp); and (iii) Ay C Ay, where Ay, Ay C A
are the subsets of configurations satisfying w, and wy,
respectively.

We denote by cpref (6, w) the set of prefixes of (4, w), and
cpref (CTS) for the prefixes of all tests in a configurable test
suite. Moreover, given two conditional tests (&, w,) and
(6, wp), if &, = &, then they can be merged into a condi-
tional test (&, (w, V wp)). See Section 4.2 for more details
about the prefix check using the Z3 tool.

3.2. Test case derivation

The product derivation operator A, induces an FSM from a
given FFSM and a given feature constraint ¢ [16]. Similarly,
we define the derivation of test suites from a configurable test
suite of an FFSM. The feature constraint ¢ is able to filter/
prune test cases from the test suite in the same way a config-
uration model is used for test models.

DerFNiTION  3.3. Let FF = (FM, C, ¢y, Y, O,T') be an
FFSM, a configurable test suite CTS for FF, and a product

configuration p € A. The derivation operator A, induces a
test suite A, (CTS) C P(I*) for an FSM, where

A,(CTS) = {6|(6, w) € CTS A p F w}

3.3. State coverage

To define the state coverage criterion for FFSMs, we need to
check whether a given FFSM is initially connected. If the
given FFSM does not have the property, we cannot generate
a configurable state cover set for it. Otherwise, if it is initially
connected, then we generate conditional tests from valid con-
ditional paths found for each conditional state. Note that only
FFSMs that are deterministic, initially connected, and min-
imal are used for test design. See [16] for more details about
FFSM model validation.

DErINITION 3.4, Given an FFSM FF = (FM, C, ¢y, Y, O, T)
and a conditional state ¢ = (s, ) € C, the set CTS C
P(I* x B(F)) covers ¢ for the state coverage criterion if for
all product configurations that satisfy ¢ there is a valid condi-
tional path ((co, ...,¢), 6, ¥, w) € Opf to reach ¢ and (8, w) €
CTS. The set CTS is a configurable state cover test suite if it
covers every conditional state of FF:

VC:<X,¢)€C ° pEA. P E 2 - EI((CO,‘.‘,C),(S‘,%W)G(—)FF
spE(WwA @) A (6, w) € CTS

ExampLE 6. We use the FEFSM FF presented in Fig. 3 to iden-
tify valid conditional paths for generating a configurable state
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off/shutdown

switch[!1U]
switch {fradio_on
/nothing

off/shutdown

off/nothing

switch[C] [~
on/track /ed_on

—
o off Radio j: CD/Cassette[C||T]
— switch[T]

/cass_on

switch
/usb_on

USB[U]

switch/radio_on

off/shutdown

FIGURE 3. FFSM for the CAS SPL.

cover set CTS. To cover state Off, we need a conditional test
with the empty sequence (e, (true)). For state Radio, we can
use a single conditional test (on, (true)). For state CD|Cassette,
we use two conditional tests ((on, switch), (C)) and
((on, switch), (T) ), which can be combined into a single condi-
tional test ((on, switch), (C vV T)). Finally, for state USB, we
need two conditional tests ( (on, switch, switch), (C A U)) and
((on, switch, switch), (T A U)), which can be combined into a
single conditional test ((on, switch, switch), ((CV T) A U)).
Thus, the resulting configurable state cover set is cpref (CTS) =
{((on, switch), (CV T)), ((on, switch, switch), ((C V T) N
U))}. Applying the derivation operator for the product configur-
ation p; = (- A= CATA = U) on CTS, we derive a test
suite cpref (A, (CTS)) = {(on, switch) }.

Algorithm 1 generates a configurable state cover set. We
identify conditional paths using a breadth-first search looking
for different paths’ combinations excluding self-loops transi-
tions and those that create a loop in the current path resulting
in paths no larger than the number of states minus one.

Next, we state and prove that a configurable state cover set
is a state cover set for all its valid product FSMs.

THEOREM 3.1. If the test suite CTS C P(I* x B(F)) is a
configurable state cover for an FFSM FF, then CTS contains
a state cover set A,(CTS) C P(I*) for all derived product
FSMs A, (FF).

Proof. We prove the implication by contradiction. Let the
set CTS C P(I* x B(F)) be a configurable state cover
for an FFSM FF = (FM, C, ¢y, Y, O, T') and assume that
the set A,(CTS) C P(I*) does not cover a state s € S
for a product configuration p under a derived FSM A, (FF) =
(S, so, I, O, T). By Definition 3.4 for every product configur-
ation p € A that can be satisfied by the feature constraint of a
conditional state ¢ = (s, ) € C there exist a valid conditional
path ((co,...,¢), 6, ¥, w) € Opp that reaches c. By Definition
3.3, the conditional input sequence (4, w) € CTS derives an
input sequence 6 € A,(CTS) for p that reaches s, which leads
to a contradiction as 6 ¢ A, (CTYS). OJ

Algorithm 1 Configurable state cover set generation

1: procedure CSTATECOVER(FF)

2:  paths < findNoLoopPaths (FF)
3:  validPaths < checkSat (paths)

4 CT1S — {}

5:  for CState cs : FF.getCStates () do

6: reach — {}

7: for Path path : validPaths do

8: if cs == path.end() then

9: reach — reach U {path}
10:  if checkCov (cs, reach) == false then
11: return null
12:  CTS « CTS U reach.getCSequences ()
13:  CTS <« ReduceRedundantPaths (CTS, cs)
14:  return CTS

3.4. Transition coverage

To extend the transition coverage from FSMs to FFSMs, first
we redefine the transition cover set for FSMs. The transition
coverage criterion uses an input sequence that can reach the
source state of a transition, and then concatenate the transition
input to the input sequence. A test suite is a transition cover
set for an FSM if it can cover all transitions of the FSM.

DEFINITION 3.5.  Given an FSM M = (S, so, I, O, T), and a
state cover set TS C P(I*) for M, the test suite TS covers a
transition (s, x, 0, s') € T if there exist a path ((so,...,s),
a, B) € Qu from state sy to s, where « € TS is the input
sequence to reach s, 3 is the output sequence and ax € TS.
The set TS is a transition cover fest suite of M if it covers
every transition of M :

v(s,x,o,s’)ET ® EIQETS ® El((s(),.A.,s),a',B)eQM *ax € 1S.

To define the transition coverage criterion for FFSMs, we
use valid conditional paths to reach conditional source states
of conditional transitions for all valid products, and then
include each and every outgoing transition.
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a (D
switch @ switch
« (=
switch(not U)
. Radio
switch(C)
a (D
switch @ switch
! switch(T) :
Radio CDCassette(or C T) off Radio
on off
switch(not U) °
° switch °
off

FIGURE 4. Conditional transition tree for AGM.

DErINITION 3.6.  Given an FFSM FF = (FM, C, ¢, Y, O, T),
a configurable state cover CTS C P(I* x B(F)) for
FF (Definition 3.4), and a conditional transition t = (c,,
(x, ©), 0, (sp, wp)) € T, the test suite CTS covers t if for all
conditional tests (6, w) € CTS that reach c, such that exists
a product configuration p € A that satisfies ¢, = (w A
© A wp), then (6x, @) € CTS. The set CTS is a configurable
transition cover fest suite if it covers every conditional trans-
ition of FF':

Vier ® v(zS,La.J)ECTS ® El((cg ,,,,, €a),0,7,w) €O * 3peA *p E ("o
=>(6x, ¢,) € CTS

ExampLE 7. Consider the FFSM FF and the configurable
state cover set CTS for FF presented in Example 6. Its config-
urable transition cover set is an extension of cpref (CTS).
Figure 4 presents a conditional testing tree generated of CTS.
Starting from left to right, the tree shows 11 (the number of
leafs in the tree) valid conditional paths. Thus, after merging
the conditional tests, substituting long feature constraints with
smaller equivalent ones, and removing conditional test pre-
fixes the resulting set is

{(off, true),

switch, true),
on, switch, off), true),

on, switch, switch, off), U),
on, switch, switch, switch), U)})

(
(
(
(
(
(
(

(
(
(on, switch, switch), true),
(
(

Applying the derivation operator for the product configur-
ation p; = (- A= CATA - U) on CTS, we derive a test
suite

cpref (A, (CTS)) = {(off), (switch), (on, off),
(on, switch, off),
(on, switch, switch) }.

Algorithm 2 generates a configurable transition cover set.
We reuse a subset of the configurable state cover set to reach
the source state of a conditional transition, and then we con-
catenate the conditional transition to each reachable path,
check whether if it forms a valid conditional path, and finally
add new conditional tests in CTS.

To state and prove that a configurable transition cover set
is a transition cover set for all its valid product FSMs, first we
redefine a transition cover set for an FSM, then, we move to
FFSMs.

THEOREM 3.2. If the set CTS C P(I* x B(F)) is a config-
urable transition cover for an FFSM FF, then CTS contains
a transition cover set A,(CTS) C P(I*) for all derived prod-
uct FSMs A, (FF).

Proof. We prove the implication by contradiction. Let the
set CTS C P(I* x B(F)) be a configurable transition cover
for an FFSM FF = (FM, C, ¢y, Y, O, T') and assume that
the set A,(CTS) C P(I*) does not cover a transition
t = (84 X, 0, 8) € T for a product configuration p under a
derived FSM A, (FF) = (S, so, I, O, T). By Definitions 3.4
and 3.6 for every product configuration p € A that can be
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Algorithm 2 Configurable transition cover set generation

1: procedure CTRANSITIONCOVER(FF')
2:  CTS « CStateCover (FF)

3 paths — recoverValidPaths ()

4 for CState cs : FF.getCStates () do

5: out «— cs.getOut ()

6 for CTransition ¢ : out do

7 for Path path : paths.getReach (cs) do
8 addNewPath (paths, path, t)

9: reach «— checkSat (paths.getTReach (t))
10: if checkTCov (t, reach) == false then
11: return null
12: CTS «— CTS U reach.getSequences ()
13: CTS «— ReduceRedundTPaths (CTS, t)

14: return CTS

satisfied by the feature constraint of a conditional state
¢ = (84 ) € C, there exist a valid conditional path
((cos---sCa), 0, 7, w) € Opf that reaches ¢,, and a transition
t= (s (X, ), 0, (8p, ) €T such that (éx, (w A ¢
A ,)) € CTS. By Definition 3.3, the conditional test
(6x, (WA @ A g,)) € CTS derives an input sequence Ox €
A, (CTS) for p that reaches s, concatenated with x, which leads
to a contradiction as 6x ¢ A, (CTS). O

3.5. Full fault coverage

To extend the HSI method for FFSMs we are going to use two
sets: (i) a configurable transition cover set CTS; and (ii) a con-
figurable characterizing set CW to distinguish conditional states.
We have defined the configurable transition cover set CTS in
Definition 3.6. Now we need to define parametrized separating
sets, define a configurable characterizing set and then build con-
ditional HSI sets for state identification of FFSMs.

3.5.1. Parametrized separating set

To distinguish a pair of states of an FSM, we only need one
separating sequence. However, to distinguish a pair of condi-
tional states of an FFSM, we need a set of separating
sequences.

DEFINITION  3.7.  Let ¢, = (84, ), ¢ = (Sp. ,) be two
distinct conditional states of an FFSM FF and also let
p € A be a product configuration for FF under a given SPL.
If G) pE @ N @y (i) there exist two valid conditional paths
((cas--rey), 6, Y wa) € OpF and ((cp,...,cy')s 6, Yy Wp) € Opp
such that p ¥ w, A wy, and 7y, = vy, then a conditional test
(6, (wg AN wp)) € I* X B(F) is called a separating sequence
for ¢, and cj, under the product p.

Note that for a given FFSM, there might be a single separating
sequence that can distinguish a pair of states for every satisfiable
product configuration. However, we need as many separating
sequences as the number of valid product configurations.

ExampLE 8. Given the FFSM FF presented in Fig. 3 to dis-
tinguish the pair of conditional states (Radio, true) and
(CD|Cassette, (C V T)), we use four transitions:

jich,C
(Radio, true) (k)

cd_on

(CD|Cassette, (CV T))

oh.
(Radio, true) (i)

cass_on

(CD|Cassette, (CV T))

(CD|Cassette, (CV T)) (swizch,~0)

radio_on

(Radio, true)

(switch,true)
—

(CD|Cassette, (CV T)) (USB, U)

usb_on

First, the set of product configurations that we need to cov-
er using separating sequences is true A (C V T) which is
equivalent to all product configurations of A. Then, from the
transitions, we obtain four separating sequences s; = (switch,
(CA=U)), sp = (switch, (C A U)), s3= (switch, (T A = U))
and s4 = (switch, (T A U)). Next, we can optionally combine/
merge those separating sequences into one s = (switch, true).
This is the worst case where there are four product configura-
tions and four separating sequences. However, this is unlikely
to happen frequently due to the SPL commonalities. For
example, for another pair of conditional transitions such as
(Radio, true) and (Off, true) we need a single separating
sequence (off, true).

Given an FFSM and an SPL, there may be exponentially
many number of valid product configurations, hence it may
not be practical to derive a separating sequence for each valid
product configuration. Instead, we compute separating
sequences for sets of product configurations and put in a
parametrized separating set.

DEFINITION 3.8.  Let ¢, = (84 @) ¢ = (Sp, ) be two con-
ditional states of an FFSM FF such that there exists at least
one product configuration p € A\ that satisfying both feature
constraints, i.e. pE g N ¢,. The set PSy, € P(I* x B(F))
is called a parametrized separating set for c, and cy, if the dis-
junction of conditions of every separating sequence
(6, w) € PSyp (Definition 3.7) is equivalent to ¢, A ,. Thus,
PS,;, can distinguish c, and cp.

ExampLE 9. From Example 8, we know that ¢, = (Radio,
true), ¢, = (CD|Cassette, (C vV T)) which results in PS,, =
{(switch, (C A = U)), (switch, (C A U)), (switch, (T A = U)),
(switch, (T A U))}, or simply PS,, = { (switch, true) }.
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3.5.2. State identification

The configurable characterizing set CW for state identification
of FFSMs is built using parametrized separating sets for every
conditional state pair of the FFSM.

DerFINITION  3.9.  Given an FFSM FF = (FM, C, ¢, Y,
O, 1), with conditional state set C = {cy,...,c,}, the set
CW € P(I* x B(F)) is a configurable characterizing set, if
and only if, for all 1 <i,j < nwithi=jand \; N \j = @,
there exists a parametrized separating set PS; C CW
(Definition 3.8).

ExampLE 10. In Example 9, we obtained the parametrized
separating set for conditional states ¢, = (Radio, true), ¢, =
(CD|Cassette, (C V T)). Combining other pairs of condi-
tional states s, = (Off, true) and s; = (USB, U), we have

PS.. = {(off, true) },
PSp = {(off. true) },
PScq = {(off, true) }.

PS,, = { (switch, true)},
PS,q = {(switch, U) },
PSpy = {(switch, U) },

The resulting configurable characterizing set (after remov-
ing conditional prefixes—Definition 3.2) is cpref (CW) =
{ (switch, true), (off, true) }.

The conditional HSI sets for state identification of FFSMs
are built using the configurable characterizing set CW.

DerINITION  3.10.  Given an FFSM FF = (FM, C, ¢, Y,
O, 1), with conditional state set C = {cy,...,c,}, the sets
CH,,...,CH, € P(I* x B(F)) are conditional HSI, if and
only if foralll <i,j < nwithi=jand \; N A; = O, there
exists a common parametrized separating subset PS; C
CW, N CW,; (Definition 3.8) with conditional prefixes from
CW that distinguishes ¢; and c; using separating sequences.

ExampLE 11. The conditional characterizing set CW of
Example 10 for the FFSM FF presented in Fig. 3 is:
CW = {(off, true), (switch, true) }. The conditional HSI sets
for the FFSM FF are

CHoy = {(off, true) },

CHgadio = { (off , true), (switch, true) },
CHcpicassene = { (0ff, true), (switch, true)}, and
CHysg = { (off, true), (switch, U}.

3.5.3. Extended HSI method

Now we have sets CTC for transition coverage and conditional
HSI sets for state identification. Then, the final configurable test
suite CTS is the concatenation of CTC with every CH;.

DerNITION  3.11.  Given an FFSM FF = (FM, C, ¢y, Y,
O, 1), the configurable transition cover set CTC and the

conditional HSI CH; sets, the extended conditional HSI method
defines a complete configurable test suite CTS for FF by con-
catenating every tuple of CTC with every CH; set for each
¢; € C such that only conditional tests of CTC that reach c;
are concatenated and the conjunction of constraints is satisfied

vc;eC ° v(é,;u)eCTC ° E|((CO ,,,,, ¢i),0,7,w) € OpF
° v(ﬁ,u)’)ECH,» ® EIpEA *p F (w A w/)
= (683, (w A W) € CTS

ExampLE 12. The complete configurable test suite is
obtained by concatenating CTC of Example 7 with the condi-
tional HSI sets presented in Example 11. The following set is
a complete configurable test suite for FF

cpref (CTS) = ((off, off), true),
(switch, off ), true),

on, off, off), true),

on, switch, off, off), true),
on, switch, switch, off ), true),

on, switch, switch, off, off), U),
on, switch, switch, switch, off ), U),
on, switch, switch, switch, switch), U)})

(
(
(
(
(
(
(
(

(
(
(
(on, switch, switch, switch), true),
(
(
(

Applying the derivation operator for the product configur-
ation p; = (- A= CATA = U) on CTC, we derive a test
suite

cpref (A, (CTC)) = {(switch, off) (on, off, off),
(on, switch, off, off),

(on, switch, switch, off),

(on, switch, switch, switch) }.

Next, we state and prove that a complete configurable test
suite is a complete test suite for all its valid product FSMs.

THEOREM 3.3. If the set CTS C P(I* x B(F)) is an n-com-
plete configurable test suite for an FFSM FF, then CTS con-
tains an n-complete test suite TS C P(I*) for all derived
product FSMs A, (FF).

Proof. We prove the implication by contradiction. Let the
set TS C P(I* x B(F)) be an n-complete configurable test
suite for an FFSM FF = (F, A, C, ¢y, Y, O, T") and the set
A, (TS) C P(I*) be not an n-complete configurable test suite
derived from a product configuration p under a derived FSM
A,(FF) = (S, 50, I, O, T). As A,(TS) is not an n-complete
configurable test suite for state A,(FF), then does not exist a
test 6h € A,(TS) such ¢ exists in a path to reach a state s and
h distinguishes s with another state s’. By Definitions 3.10
and 3.11 for each conditional state ¢; € C, we have at least
one conditional test (6h, (w A W')) €TS, pk (wA W)
where (8, w) € CTC reaches ¢; and (h, ') € CH; distin-
guishes ¢; with another conditional state ¢; € C, i = j. By
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var C : boolean
var T : boolean

//output functions

ffsm main region
interface: switch/radio_on()
// inputs
in event on
in event off — m‘%\ —
in event switch on/track o switch[C]/cd_on()
® off,switch/nothing() / 0 switch/usb_on()
features off/shutdown() -
{r{aru : boolean — switch[T]/cass_on(}

switch[!U]/radio_on()

off/shutdown()

operation nothing():integer

off/shutdown()

operation track():integer
operation radio_on():integer
operation cd_on():integer
operation cass_on():integer
operation usb_on():integer
operation shutdown():integer

FIGURE 5. ConFTGen tool graphical interface for CAS SPL.

Definition 3.3, the conditional input sequence (6%, (w A w'))
€ TS derives an input sequence 6h € A, (TS) for p, which is
a contradiction as 6h ¢ A, (TS). O

4. TOOL SUPPORT

This paper reports on the design, implementation and applica-
tion of a test design tool Configurable Full Test Generator
(ConFTGen).” The ConFTGen has a graphical editor based
on the Eclipse platform that was extended from the Yakindu
GitHub Project’ (Eclipse Public Licence) and integrated with
FeatureIDE [25] (Lesser General Public Licence—LGPL) and
Z3 SMT Solver [17] (MIT licence) for constructing feature
models and analyzing feature constraints, respectively.
ConFTGen supports the automatic validation and derivation
of FFSM models, and automatic generation of test suites for
state, transition, and full fault coverage. Figure 5 shows the
FFSM for CAS SPL in the ConFTGen tool. Inputs, outputs
and some features are declared on the left, and behavior
represented inside conditional states are self-loop transitions.

4.1. Eclipse platform

The Eclipse Platform is a framework that provides an open
source software development environment. Eclipse has a core
architecture that supports the integration of tools and other
development environments. Moreover, Eclipse projects are
implemented in Java language and can be run in several oper-
ating systems including Linux, Mac OS X and Windows.

The functional unit of Eclipse is plug-ins. Plug-ins are
combined with the core architecture and can be integrated to
build complex tools. As stated before, the ConFTGen tool

2Open Source Yakindu Project https://github.com/vhfragal/ConFTGen-
tool
3Open Source Yakindu Project https://github.com/Yakindu/statecharts

extends plug-ins from the Yakindu Project. The core plug-ins
used to develop the ConFTGen tool were org.eclipse.core,
org.eclipse.ui, org.eclipse.gef, org.eclipse.emf, org.eclipse.
gmf.

4.2, Satisfiability Modulo theories solvers

The ConFTGen tool has been implemented on the Eclipse
platform, and we used the Z3 Satisfiability Modulo Theory
(SMT) Solver [17] to process feature constraints. It is well-
known that feature models can be translated into propos-
itional formulas; see, e.g. [24, 26]. This translation enables
mechanizing the analysis of feature-based specifications using
existing logic-based tools, such as SMT solvers. We present
how SMT solvers are used for test design by checking prefix
and equivalence relations based on feature constraints. We
used the Java language to parse and process FFSMs and sub-
sequently generate assertions in the SMT file format.

The Z3 tool is used for checking conditional prefixes and
equivalence relations for a pair of conditional tests (&, wy),
(6p, wp) € I'* X B(F), where A, C A is the subset of config-
urations that the constraint w, can satisfy, and A, C A for wj,.
To check whether (,, w,) is a conditional prefix of (&,, wp),
we perform the following steps:

(1) If ¢, is a prefix of &, then we assert the feature con-
straint x of the feature model FM = (F, x, A) and
the logical conjunction of feature constraints
(wy A wp). If it returns unsatisfiable, then there is no
common configuration between both constraints
A, N Ap = & and we cannot derive/deduce the pre-
fix relation.

(2) If the first check returns satisfiable, then, another
check identify the prefix relation A, C A,. We assert
the first condition w, followed by the negation of the
second —w; to check whether A, N (A\A,) = @ is
unsatisfiable. If the proposition turns out to be

SECTION A: COMPUTER SCIENCE THEORY, METHODS AND TOOLS
THE COMPUTER JOURNAL, 2018

Downl oaded from https://academ c. oup. coni conj nl /advance-articl e-abstract/doi/10. 1093/ conj nl / bxy046/ 4993054
by University Col |l ege London user
on 06 July 2018


https://github.com/vhfragal/ConFTGen-tool
https://github.com/vhfragal/ConFTGen-tool
https://github.com/Yakindu/statecharts

EXTENDING HSI TEST GENERATION METHOD FOR SOFTWARE PRODUCT LINES 11

satisfiable, then there are configurations for w, which
—w, was not able to invalidate, ie. A, € A,
Otherwise, when the result is unsatisfiable, then, —wy,
was able to invalidate all configurations of w,, i.e.,
A, C A,

ExamPpLE 13. Figure 6 presents parts of the generated SMT
file used to check whether a conditional test (¢, w,) =
(a, (B AS)) is a conditional prefix of (6, wp) = (aa, (B)),
where (a) all features are declared as Boolean variables, (b)
the feature constraint of the feature model is asserted and (c)
the prefix relation checks are asserted. In Z3, push and pop
commands are used to temporarily set the context (e.g. with
assertions), and once a verification goal is discharged the con-
text can be reset. The (check — sat) command is used to
evaluate the assertions which return sat or unsat. First, we
notice that a is a prefix of aa, then, checking the conjunction
of both conditions ((B A S) A B) = (B A S) results in sar.
Next, we assert the first constraint (B A S) and also assert the
negation of the second constraint —(B) to eliminate configura-
tions of the first, which results in unsat. Thus, (a, (B A S)) is
a conditional prefix of (aa, (B)).

The Z3 tool is also used for checking feature constraints in
most definitions in this paper. The usage is a variation of
Example 13 where we change the (c) part of the SMT file.
Given a feature constraint ¢ € B(F) that requires checking,
we use (assert ) in (c) to check if it returns sar or unsat.

5. EXPERIMENTAL STUDY

To evaluate the applicability and the efficiency of our
approach, we conducted an experiment to evaluate random
FFSMs and random feature models. We focus on the charac-
teristics of the models, the comparison of test suite size and
test generation time against the product-by-product approach.

Focusing on the full fault coverage, we are aware of some
incremental test case generators for FSMs [14, 27, 28]. These
methods can process an existing test set and increment few

(a) (b) (c)
(define-sort Feature () Bool) | [(assert G) (push)
(declare-const G Feature) (assert (and (assert (and (and B S) B) )
(declare-const A Feature) (=AG) (check-sat)
(declare-const M Feature) (=M A) (pop)
(declare-const L Feature) (=LA)
(declare-const C Feature) (=CQ) (push)
(declare-const R Feature) (=R Q) (assert (and B S) )
(declare-const B Feature) (= (or BN W) R) (assert (not B) )
(declare-const N Feature) (not (and B N)) (check-sat)
(declare-const W Feature) (not (and B W)) (pop)
(declare-const V Feature) (not (and N W})
(declare-const Y Feature) (=V Q)
(declare-const P Feature) (=YV)
(declare-const S Feature) (=PV) RESULT
(=» 8 V) sat
) unsat

FIGURE 6. SMT parts for checking a conditional prefix relation.

tests for a new product configuration. Despite the good results
on the few number of new tests, these methods have to pro-
cess the test set for every new product configuration.
Moreover, they are quite sensitive to the size of the test set
used as input. Hence, they may not scale well to increment
large test sets for large specifications.

We aimed at answering the following research questions:

Ql1—Is there a difference between generating a test
suite for an FSM and pruning a configurable test suite
for the same FSM?

Q2—In which scenario do we reduce the number of
test cases using an FFSM instead of FSMs?

e Q3—In which scenario do we have smaller test gener-
ation times using an FFSM instead of FSMs?

Q4—Is there a relation between the feature model and
the configurable test suite size?

5.1. Experimental setup

Our experiment aims at generating test suites (full fault cover-
age) for random FFSMs and random feature models. We
choose to use random FFSMs to avoid bias of specific
domains. Different feature models also were randomized to
use in combination with a respective FESM. Different feature
structures may result in different numbers of product config-
urations which we may check whether it affects validation and
generation or not. The adaptable parameters (independent vari-
ables) include random feature models that are generated with
the following parameters required for the BeTTy tool [29]:

Number of features (20).

Percentage of custom constraints (0).

Probability of a feature being mandatory (0).
Probability of a feature being optional (33).
Probability of a feature being in an or-relation (33).
Probability of a feature being in an alternative-relation
(33).

Maximal branching factor (10).

e Maximal number of children in a set relationship (10).

The probability parameters use numbers from 0 to 100 (in
percentage) and their sum must not exceed 100. We decided
to use no custom constraints and mandatory features. Custom
constraints may be redundant to constraints defined by the
feature structure, and they are not used in order to simplify
the analysis. About mandatory features, we have only one
that is the root feature which represents the core specification.
Using more mandatory features may result in SPLs with few-
er product configurations as we are using a fixed number of
20 features. Moreover, we only use feature constraints with
non-mandatory features in the FFSM model. Thus, all manda-
tory behavior is implicitly represented in the core specification.
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The maximal branching factor limits the number of branches in
the feature model structure. The number of children in a set
relationship limits the number of features that may be in an
alternative /or/optional subset relation.

To visualize some characteristics for the relation/influence of
feature models and FFSMs, we divided 20 random feature mod-
els into two groups. The first group has feature models with
less than the median of independent features. The second group
has feature models with more than the median of independent
features. An independent feature is placed in an or-relation or
set in parallel with other optional features, which makes the
number of product configurations grow exponentially.

To answer our research questions, we executed three
groups of FFSMs. Each group has 20 random FFSMs and 20
random feature models. The FFSM groups are

(1) FFSMs with 12 conditional states, 10~15 inputs/out-
puts and 100450 transitions.

(2) FFSMs with 18 conditional states, 15-20 inputs/out-
puts and 225-800 transitions.

(3) FFSMs with 24 conditional states, 20-25 inputs/out-
puts and 400-1250 transitions.

Each random FFSM is generated by randomizing the target
state of conditional transitions. We assume that only one-
third of the conditional states and transitions have random
feature constraints. Thus, two-third of the behavior is part of
the core specification. We use FFSMs that are deterministic,
initially connected and minimal.

The fixed parameters (controlled variables) are

e Each random FFSM is linked (for feature mapping) to
one random feature model.

e The number of inputs and outputs are the same as the
number of FFSM states.

e One derived FSM (from the FFSM) represents the
core specification of the SPL.

o The test generation method HSI used for FSM and
FFSMs.

Then, we measure (dependable variables):

(1) The number of new different tests: We measure the
number of new tests that are required to test all pro-
ducts using an FFSM-based test suite against 20 ran-
dom products with individual FSM-based test suites.

(2) Test suite size for the FSM core: We measure the
size of the test suite pruned for the FSM core specifi-
cation from an FFSM-based test suite against gener-
ating the test suite directly from the FSM core
specification.

(3) Checking and generation time: We measure the
amount of time it takes to generate tests for an entire
FFSM against one FSM and a set of FSMs.

The running environment used Ubuntu 15.04 (64 bit) operat-
ing system on an Intel processor i7-5500U at 2.40 GHz with
12 GB of RAM.

5.2. Analysis and threats to validity

To answer our questions, we generated complete configurable
test suites for all three groups of FFSMs. As stated before,
each group has 20 random FFSMs, such that each group has
larger FFSM specifications than the previous group. For each
FFSM, we derived an FSM which represents the SPL core
specification (core product). The collected data in our experi-
ments are analyzed below.

5.2.1. QI—Is there a difference between generating a test
suite for an FSM and pruning a configurable test
suite for the same FSM?

Results: To answer this question, we used a one sided test

assuming that the null hypothesis is true. Our null hypothesis

(HO) is: (mu = a) the true mean of complete test suites for

the core product using the HSI method. Our alternative

hypothesis is: (mu > a) the mean of complete test suites for
the core product pruned from a configurable complete test

suite generated using an FFSM is larger than a. Figure 7

shows the results on the test suite size comparing our HO and

HI for all three FFSM groups. The P-value of a normal distri-

bution of all three groups (12, 18 and 24 states) is respect-

ively, 0.149, 0.182 and 0.140.

Analysis: We noticed that the results from the first FFSM
group continue in the other two groups as it increases the
FFSM size. There is a small difference favoring the direct
application of the HSI on the core product over pruning a
configurable test suite from the extended HSI method for the
same core product. Thus, our experiment does not indicate a
statistically meaningful difference between generating a test
suite for an FSM and pruning a configurable test suite for the
same FSM.
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FIGURE 7. Test suite size of the core specification.
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EXTENDING HSI TEST GENERATION METHOD FOR SOFTWARE PRODUCT LINES 13

Threats: The number of FFSMs in each group. Larger sam-
ples may reduce the p-value.

5.2.2.  Q2—In which scenario do we reduce the number of
test cases using an FFSM instead of FSMs?

Results: To answer this question, we selected 20 random
valid configurations of each FFSM. For every selected config-
uration, an FSM was derived and a complete test suite was
generated using the HSI method. Figure 8 shows the results
on the accumulated number of new tests comparing the
(FFSM) configurable test suite size with three cases: (FSM.
core) complete test suite size for the core product; (10FSMs)
merged set of complete test suites from the first 10 selected
configurations; (20FSMs) merged set of complete test suites
from the all selected configurations. In the first FFSM group,
the means are (FFSM) 1422, (FSM.core) 660, (10FSMs)
2199 and (20FSMs) 3782. In the second FFSM group, the
means are (FFSM) 3810, (FSM.core) 1757, (10FSMs) 6819
and (20FSMs) 8946. In the third FFSM group, the means are
(FFSM) 9191, (FSM.core) 3002, (10FSMs) 13924 and
(20FSMs) 16 588.

Analysis: We noticed that the results from the first FFSM
group continue in the other two groups as it increases the
FFSM size. There is a significant difference comparing the
first and third cases as we need to test more FSMs. An FFSM
is linked to a feature model ranging from 21 to 2% valid con-
figurations depending on the feature structure. Selecting up to
the minimum number of valid configurations shows us how
powerful is to exploit commonalities between products com-
pared to the product-by-product approach. For example, an
FFSM of the first group with 12 conditional states may
represent 2'° valid configurations and may have a configur-
able test suite of size 1422 (the mean), and to test 20 out of
210 configurations individually we require an average set of
tests with size 3782. When we create a test case without
checking test suites of similar products we may end up gener-
ating a different but equivalent test case. In our approach, one
test case may be reused across all valid products minimizing
24 States
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Test generation cases using the HSI method

FIGURE 8. Number of new tests for an FFSM and FSMs.

redundant test cases. In all three groups, the difference is
above 50%. Thus, our experiment indicates a statistically
meaningful difference of approximately 50% in the number
of new test cases when we have more than 20 random valid
configurations to test individually compared to an entire SPL
using a configurable test suite generated from an FFSM.

Threats: Very similar specifications may not accumulate so
many different test cases with so few products.

5.2.3.  Q3—In which scenario do we have smaller test
generation times using an FFSM instead of FSMs?

Results: To answer this question, we selected 100 random
valid configurations of each FFSM. For every selected config-
uration, an FSM was derived and a complete test suite was
generated using the HSI method. Figure 9 shows the results
on the time required to generate complete test suites compar-
ing the (FFSM) time to generate a configurable test suite with
three cases: (FSM.core) time to generate a complete test suite
for the core product; (SOFSMs) time to generate complete test
suites from the first 50 selected configurations; (100FSMs)
time to generate complete test suites from the all selected con-
figurations. In the first FFSM group, the means are (in min-
utes): (FFSM) 0.66, (FSM.core) 0.00017, (50FSMs) 0.008
and (100FSMs) 0.017. In the second FFSM group, the means
are (in minutes): (FFSM) 1.92, (FSM.core) 0.012, (50FSMs)
0.63 and (100FSMs) 1.27. In the third FFSM group, the
means are (in minutes): (FFSM) 4.99, (FSM.core) 0.11,
(50FSMs) 5.96 and (100FSMs) 11.92.

Analysis: We noticed that the results vary as it increases
the FFSM size. There is a significant difference comparing
the first and third cases in the last FFSM group. Assume that
we have to generate a configurable complete test suite for an
FFSM which may have 2'° valid configurations or individu-
ally 100 valid configurations. If our FFSM have more than 24
conditional states and 450 conditional transitions and we
need to test more than 100 valid configurations, we may con-
sider a better generation time using our approach.
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FIGURE 9. Time required to execute the HSI method for one
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14 V. H. FRAGAL et al.

Threats: The number of required paths for test generation
due to complex feature models may be different in specific
FFSMs.

5.2.4.  Q4—Is there a relation between the feature model
and the configurable test suite size?

Results: To answer this question, we divided each FFSM
group in two subgroups of 10 FFSMs. The median of the
valid feature configurations was used to separate the FFSMs
into two types of feature models. In the first group of FFSMs
with 12 conditional states, the median of product configura-
tions found from all feature models was 6276, then 12 808
for the second group, and 25608 for the third group.
Figure 10 shows the results for the relation between the con-
figurable test suite size and types of features models.

Analysis: We noticed that the size of complete configurable
test suites is larger in those FFSMs which have feature mod-
els with more than the median of valid configurations in each
group. As we stated before, each random FFSM is generated
by randomizing the target state of conditional transitions. We
assume that only one-third of the conditional states and transi-
tions have random feature constraints. Thus, two-third of the
behavior is part of the core specification. Also, only one fea-
ture is used on each conditional state/transition. The first
FFSM group (12 states) has smaller specifications than other
FFSM groups, and we first believe that less features are used
(out of 20) resulting in a smaller feature configuration
median. To check that belief, we also checked the number of
conditional transitions of each subgroup. Figure 11 shows the
results for the relation between the number of transitions of
FFSMs and types of features models.

We noticed that FFSMs linked to feature models with more
configurations than the median has fewer conditional transitions.
When an FFSM has fewer conditional transitions the extended
HSI algorithm has fewer options to find common conditional
paths, resulting in more different conditional tests.

We also checked the relation between the feature model
and the extended HSI test generation time. Figure 12 shows
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FIGURE 10. Configurable test suite size per kind of feature model.

the results for the relation between the time required to gener-
ate a configurable test suite size and types of features models.

We noticed that the time required to generate configurable
test suites does not have a pattern from the three FFSM
groups. Despite the larger configurable test suites for those
FFSMs with more than the median of valid configurations
presented in Fig. 10, the time required to generate them do
not follow. Also, it does not have a direct relation to the
FFSM size as presented in Fig. 11. We believe that this is
caused by the irregular number of required conditional paths
and separating sequences. Thus, our experiment indicates no
influence of the feature model for the time required to gener-
ate configurable test suites.

Threats: Our experiment indicates a tendency to have larger
configurable test suites for FFSMs when the feature model has
many valid configurations but possibly affected by the number
of fewer transitions. This indication may be a threat to validity.
The irregular distribution of valid configurations may be a coin-
cidence or a consequence of the FFSM random generator.
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FIGURE 11. Number of FFSM conditional transitions per kind of
feature model.
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EXTENDING HSI TEST GENERATION METHOD FOR SOFTWARE PRODUCT LINES 15

6. BODY COMFORT SYSTEM CASE STUDY

We illustrate and evaluate our approach in a prototypical
implementation using a case study from the automotive
domain, namely, Body Comfort System (BCS) for the VW
Golf SPL [18]. We use the BCS to reduce the threats to valid-
ity and contrast the results from randomly generated FFSMs
with their real-world counterparts. The FeatureIDE tool [25]
was used to elaborate feature models and their configurations.
The original BCS system has 19 non-mandatory features and
11 616 configurations.

Our first observation was that flattening the whole system
into an FFSM was infeasible due to a large number of condi-
tional states (in theory more than 50 000 states). Thus, we used
a simplified version (slice) which integrates some components,
and we performed a manual flattening of the slice. We selected
a part of the feature model with four non-mandatory features
and six possible configurations for four components: Finger
Protection (FP) blocking the window movement when a finger
is clamped in a window, Manual Power Window (ManPW ) or
alternatively Automatic Power Window (AutPW ) and Central
Locking System (CLS) with optional Automatic Locking (AL)
when the car is driving. Figure 13 shows the selection of the
Automatic Power Window component while leaving the Central
Locking System and Automatic Locking features open which

valid, 3 possible configurations
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FIGURE 13. Feature model configuration selection for BCS.

means that this model still accommodates three out of six pos-
sible configurations.

To help design FFSM models, we used the ConFTGen tool
proposed in Section 4. Figure 14 presents the flat composition
of four selected components of BCS and abstract inputs and
outputs described below. The original 150% behavioral mod-
el of each component can be found in [18]. States 1, 2 and 3
represent the behavior of Manual and Automatic Power
Window alternative components. The Finger Protection com-
ponent has two states, and hence, the same behavior is
repeated in States 4, 5 and 6. The last component Central
Locking System also has two states which lead to the same
behavior repeated in States 7—12.

The ConFTGen tool has two types of model derivation.
The first type of model derivation (FFSM) ignores the open
features and derives an FFSM for a subset of valid configura-
tions using a feature constraint without the open features. The
second type of model derivation (FSM) uses a feature con-
straint with all features of the model and negates the open
features to derive an FFSM model for a single configuration
that corresponds to an FSM. Figure 15 shows the first FFSM
model derivation type for three product configurations.
Figure 16 shows the second FFSM model derivation type for
a single product configuration which excludes Central
Locking System and Automatic Locking features.

Following our product line-centered approach, the config-
urable test suite obtained for the state coverage has 14 tests
and size 40. The configurable test suite obtained for the trans-
ition coverage has 124 tests and size 715. The configurable
test suite obtained for the full fault coverage has 433 tests and
size 2311. The validation time takes approximately 10 s while
the configurable test suite generation 1 min.

To test individually all six product configurations, we
derived six FSMs and we generated six test suites using the
original HSI method. Then, to calculate the number of new
tests required for all six products we unified all six test suites
and counted the number of tests that would be concretized
and executed. In the end, we found out that our unified test
suite has 463 tests and size 3071. Using our approach we had
433 tests and size 2311 which is a reduction of 25%.

Comparing the results with the random FFSMs with 12
conditional states, we found out that the number of new test
cases is in accordance with Question 2 and test suite gener-
ation is in accordance with Question 3.

7. RELATED WORK

Usually, an SPL can generate several similar products where
only a few features vary from one to another. One challenge in
SPL testing is the verification of products using a simplified
behavioral model that takes advantage of the similarity between
products. There are proposals [3, 30] that provide a concise for-
malism for representing SPL behaviors in one model. However,
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interface:

[/states 1=(pw_up, FP_off,cls_unlock) //states 2=(pw_pend, FP_off,cls_unlock) //states 3=(pw_dn, FP_off,cls_unlock) //states 4=(pw_up, FP_on,cls_unlock)
[/states 5=(pw_pend, FP_on,cls_unlock) //states 6=(pw_dn, FP_on,cls_unlock) //states 7=(pw_up, FP_off,cls_lock) //states 8=(pw_pend, FP_off,cls_lock)
//states 9=(pw_dn, FP_off,cls_lock) //states 10=(pw_up, FP_on,cls_lock) //states 11=(pw_pend, FP_on,cls_lock) //states 12=(pw_dn, FP_on,cls_lock)
//INPUTS

in event inl //pw_but_up[pw_pos
in event in2 //pw_but_up[fp_on Ise]

in event in3 //pw_but_up[pw_pos==0 && fp_on==false]

in event in4 f/pw_but_up[pw_auto_mv==-1]

in event in5 //pw_but_up[pw_auto_mv==0 && fp_on==false]

in event in6 //pw_but_dn[pw_pos==-1]

in event in7 //pw_but_dn[pw_enabled==true]

in event In8 //pw_but_dn[pw_pos==0 && pw_enabled==true]

in event in9 //pw_but_dn[pw_auto_my==0 && pw_enabled==true]

in event in10 //pw_but_dn[pw_auto_mv==1 8& pw_enabled==true]

in event in11 //[pw_pos==1 && pw_auto_mv==1]

in event in12 //[pw_pos==—1 && pw_auto_mv==-1]

in event in13 //fp_finger_detected

in event in14 //pw_but_dn

in event in15 //car_drives

in event in16 //key_pos_lock

in event in17 //key_pos_lock[pw_pos==1]

in event in18 //key_pos_lock[pw_pos!=1]

in event in19 //key_pos_unlock

//FEATURES

var ManPW : boolean var AutPW : boolean var FP : boolean var CLS : boolean var AL : boolean
//OUTPUT FUNCTIONS

operation out0():integer //nothing

operation out1():integer //GEN(pw_mv_up)

operation out2():integer //GEN(pw_mv_dn)

operation out3():integer //pw_auto_mv=0

operation out4():integer //pw_auto_mv=1

out5():integer //pw_auto_mv=-1

out6():integer //fp_on=true

operation out7():integer //fp_of=false

operation out8():integer //pw_auto_mv=0;fp_on=true

operation outd():integer //cls_locked=true

operation out10():integer //cls_locked=true;pw_enabled=false;

operation out11():integer //cls_locked=true;pw_enabled=false;GEN(pw_but_up)

operation out12():integer //cls_locked=false;pw_enabled=true

==1]

FIGURE 14. FFSM of four composed components of BCS.
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FIGURE 15. FFSM derived for three configurations with three composed components.
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FIGURE 16. FFSM derived for one configuration and two composed components.

they are focused on model checking [30] or simple test criteria
like boundary tests [3]. In this paper, we take a step forward by
extending the FSM-based formalism for SPLs. The main pur-
pose of this extension is to enable test case generation methods

that use family-based FSM models to achieve comprehensive,
configurable test suites using the full fault coverage.

Regarding regression-based approaches for SPLs, there are

several incremental test approaches [27, 28, 31-33] devoted
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to generating, reusing and optimizing test suites for SPLs. El-
Fakih et al. [27] adapted FSM-based test generation methods
for conformance testing. Their approach allows for the gener-
ation of test cases only for the modified parts of an evolving
specification. Pap et al. [28] extended their work and
designed a bounded incremental algorithm that maintains two
sets based on the HSI method [13]. They utilize existing test
cases of the previous version of the system to generate test
cases for the modified version. Similarly, Capellari et al. [32]
explored the FSM-based Testing of SPLs (FSM-TSPL) test-
ing strategy where the P method is used to design new test
cases based on the last product derived. Uzuncaova et al. [31]
also developed an incremental test generation approach that
uses SAT-based analysis to develop tests suites for every
product of an SPL, while Baller and Lochau [33] focused on
test suite optimization. Moreover, recent delta-oriented
approaches [7, 34, 35] developed regression-based SPL
approaches to design and reuse test artifacts.

Regarding configurable test artifacts, most modeling con-
cepts for variability can be distinguished into three main
approaches: annotative, compositional and transformational
variability modeling [36]. Compositional approaches for
modeling variability capture variation by selecting specific
component variants. Compositional variability modeling [37]
allows for a modular description of variability but limits the
impact of changes to the applied composition technique.
Transformational approaches represent variability by trans-
formation of a base architectural model. Model transform-
ation rules guide the derivation of products by performing
additions, modifications or removals using variability. For
example, delta modeling [38] can represent variability in the
model transformation in which a core system is developed,
and subsequent products are derived by executing such trans-
formations rules. Annotative approaches use variant annota-
tions (also called 150%-models), e.g. UML stereotypes in
UML models to define which model elements belong to spe-
cific product variants. In the orthogonal variability model
(OVM) [39], a separate variability representation with links
to the architecture model replaces direct annotations. Some
approaches [26, 40] propose a pruning-based approach to
UML 150% test model for SPLs, separating variability from
the base models using mapping models.

Using an annotative 150% statechart test model and trans-
ition coverage criterion, Cichos et al.’s approach [3] presents
SPL test design for complete test model coverage with subse-
quent product subset selection for test suite execution.
Weissleder et al. [S] propose an approach for automatic test
suite derivation based on reusable UML state machine test
models and OCL expressions. Similarly, Liu et al. [41] use
statecharts to model reusable components and also through
pruning, derive instances syntactically, and may be combined
with Wasowski’s approach [42] to flattening statecharts with-
out the state explosion problem. In Devroey et al.’s approach
[43], they use mutation testing applied to annotate Featured

Transition Systems (FTS) [30]. Moreover, Luthmann et al.’s
approach [44] uses the Featured Time Automata formalism (a
variation of FTS) to check real-time properties of SPLs.

Model-based testing can be used in SPL testing. We refer
the reader to Oster et al. [8] for a summary of model-based
SPL testing approaches, to [36, 45-47] for recent surveys,
and Thum et al.’s recent survey [48] for a classification of
different SPL analysis techniques. Some behavioral models
proposed in the literature, e.g. those in [41, 49, 50] are based
on Finite State Machines or Labeled Transition Systems.
They are mainly used to provide a formal specification for
SPLs and enable their formal verification using model
checking.

Our proposed approach for configurable test artifacts can be
classified as a family-based and feature-oriented specification.
To our knowledge, however, there only a few pieces of research
that extend test models, test case generation and test case execu-
tion to the family-based level; examples of such work include
earlier delta-oriented techniques such as [34, 35, 51] and
feature-oriented approaches [52, 53] using FTS-based formal-
isms. However, the approach proposed in [52, 54] exploits a
non-deterministic test case generation algorithm (with no fault
model or finite test suite) and hence, semantic validation of test
models is not an issue in their approach. We are not aware of
any prior study on extending the FSM-based test-model valid-
ation and test case generation techniques to the family-based
setting that is based on the notion of full fault coverage.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an extension of the HSI test case
generation method for FFSMs. An FFSM test model repre-
sents the abstract behavior of SPL components and its com-
positions. The HSI test generation method was originally
designed to generate tests using FSMs for the full fault cover-
age criterion. However, FSMs used as inputs to HSI require
semantic properties such as determinism, initially connected
and minimal. In our previous work [16], we presented an
extension of the FSM for SPLs named FFSMs, where such
semantic properties were extended to FFSMs, and we showed
that they coincide with their corresponding properties for the
product FSM models. In this paper, the HSI method was
extended from FSMs to FFSMs.

We conducted an experimental study comparing the num-
ber of new tests required to test SPL products using the
extended HSI method with a random set of products using
individual test suites. Random FFSMs and feature models
were generated, and our implemented method was applied on
them. The results indicate a significant decrease in the num-
ber of new tests when compared to the traditional product-by-
product approach. The experiments showed that in general,
we have more new tests from only 20 products than the
whole SPL by using our approach with an FFSM. Also, the
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case study shows that only with six products we still have
more new tests using the product-by-product approach.
Moreover, we checked the relation between FFSMs and fea-
ture models in respect to configurable test suite size and test
case generation time. We observed no strong influence on dif-
ferent kinds of feature models for test case generation using
FFSMs.

A prototyping tool named ConFTGen was implemented to
guide the design of FFSMs. The tool also performs valid-
ation, derivation and test case generation for the state, trans-
ition and full fault coverage. A case study for the Body
Comfort System was used to present the tool and show some
issues related to the current FFSM specification.

In a parallel line of work, we plan to extend the FESM model
to Hierarchical FFSMs (using concepts from Statecharts and
UML State Machines) to handle the state explosion problem
identified in the case study. We then apply validation (and test
case generation) on hierarchical models. Another possible line
of work is to improve test case generation using new concepts
from regression-based incremental methods.
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