
Simulation of Hybrid Systems from Natural-Language Requirements

Bruno Oliveira1, Gustavo Carvalho1, Mohammad Reza Mousavi2, Augusto Sampaio1

Abstract— Cyber-physical systems are characterised by a
massive and tight interaction between computer systems and
physical components. Hybrid systems provide an abstraction for
modelling cyber-physical systems by featuring the integration
of discrete and continuous behavioural aspects. Simulation is
an important tool for validating hybrid system models, which
are often too complex to be treated using other validation and
verification techniques. Motivated by the industrial need for
such tools, we propose a strategy (h-NAT2TEST) for simulation
of hybrid systems from natural-language requirements. Using
the proposed approach, one writes the system specification
using a controlled natural language, from which an informal
semantics is automatically inferred based on the case grammar
theory. Then, a formal representation is built considering a
model of hybrid data-flow reactive systems (h-DFRS). Finally, in
order to allow for rigorous simulation, an Acumen specification
is derived from the h-DFRS model. Simulation is supported by
the Acumen modelling environment. A DC-DC boost converter
is used as a case study to illustrate the overall approach.

Index Terms— Hybrid systems; controlled natural language;
data-flow reactive system; simulation; Acumen; NAT2TEST.

I. INTRODUCTION

Cyber-physical systems (CPSs) have become ubiquitous
in the industry and society, appearing in critical application
domains such as aerospace, automotive, healthcare, and
process control. Hybrid systems provide an abstraction to
model the discrete and the continuous dynamics of CPSs that
are often tightly intertwined aspects of CPS behavior [1].

Advances in technology continuously lead to the con-
struction of increasingly complex CPSs; therefore, early and
efficient validation and verification of CPSs is an eminent
and timely challenge. Simulation is a lightweight approach to
understanding and evaluating the behaviour of these systems.
Simulation offers several advantages: firstly, it is a time-
efficient technique. A computer simulation reflects the effects
of real-world reactions and changes in a compressed time
frame. Secondly, it is cost effective. It allows for early val-
idation of engineering design without producing a physical
prototype. Such an early validation is particularly valuable
when prototyping is expensive (both in time and cost) and
later removal of faults will be extremely costly [2].

Given the importance of hybrid systems modelling, simu-
lation of such systems can bring about the above-mentioned
benefits to the analysis of CPSs. Simulation for purely
dynamical and purely discrete systems is well understood.
There exist several numerical simulation methods for systems

1Universidade Federal de Pernambuco,
Centro de Informática, 50740-560, Brazil,
{bmo,ghpc,acas}@cin.ufpe.br

2Center for Research on Embedded
Systems, Halmstad University, Sweden,
m.r.mousavi@hh.se

of Ordinary Differential Equations (ODE). However, the
combination of discrete and continuous dynamics leads to
challenging problems for simulation. The motivation for
hybrid system simulation led to the development of several
notations, tools and frameworks, such as 20-sim [3], Mod-
elica [4], and Acumen [5], among others.

In this work our major and distinguishing goal has
been to develop an environment that supports as early
as possible simulations, generated directly from system-
level requirements, and thus even before models are avail-
able. We base our solution (h-NAT2TEST) on a previous
framework NATural Language Requirements to TEST Cases
(NAT2TEST) [6], which automatically generates test cases
from natural-language requirements of timed discrete sys-
tems. We extend NAT2TEST to hybrid systems leading to h-
NAT2TEST. Although h-NAT2TEST is based on our earlier
framework, supporting simulation of hybrid systems has a
vertical impact on the original framework and, thus, all of
its constituent phases were revisited. Our solution includes
an extension of the original natural language to allow for
the specification of continuous dynamics. As a consequence,
more elaborate syntactic and semantic analyses were neces-
sary, as well as an internal representation for requirements
that combines both discrete and continuous behaviour. We
translate this internal representation to Acumen and use
the simulation environment of Acumen, which provides a
rigorous analysis environment for hybrid systems [5]. To
exemplify the proposed simulation strategy, we consider the
requirements of a DC-DC boost converter and detail all the
automatic steps until we obtain a simulation in Acumen.

Section II presents the background to this work. Section III
explains how the NAT2TEST strategy is extended to allow
for simulation of hybrid systems. Section IV details the
application of our proposal to specify and simulate a DC-DC
boost converter. Section V discusses related work. Section VI
summarises our results and comments on future work.

II. BACKGROUND

We first recall basic concepts of hybrid systems in Sec-
tion II-A considering a running example: a DC-DC boost
converter [7]. Afterwards, in Section II-B, we describe the
original NAT2TEST strategy, which is adapted here to allow
for simulation of hybrid systems.

A. Hybrid Systems

Hybrid systems feature a combination of discrete and con-
tinuous events. These events coexist, interact and change in
response to dynamics described by differential or difference
equations in time [1]. One way to define the behaviour of



hybrid systems is via the set of all possible trajectories of
the variables associated with the system. In this context, a
hybrid system is represented as a hybrid automaton model.

A hybrid automaton consists of a finite-state automaton
extended with continuous variables. The discrete changes are
modelled by edges between the locations of the automaton
(possibly guarded by expressions over continuous variables).
The continuous evolution is modelled by differential equa-
tions that are associated with these locations [8].

A classical example of a hybrid system is a DC-DC Boost
Converter (BC): it raises the voltage while decreasing the
current from its input to its output. This type of device is
widely used in modern equipment. For example, the engines
used in electric vehicles, which require much higher voltage
than the one that can be provided by a single battery.

Fig. 1. Electrical circuit of a boost converter

Fig. 1, extracted from [7], shows an electrical circuit char-
acterising the physical elements of this system. This boost
converter is composed of an Inductor (L), a capacitor (C), a
switch (S), a diode (D), and a resistive load (R); E denotes
the input voltage. Closing S generates a short circuit from
the right-hand side of L to the negative input. Consequently,
a current flows from the positive to the negative supply
terminals through L, which stores energy in its magnetic
field. Opening S causes this accumulated energy to flow
to the right side of the circuit, where it charges C. When
S is closed again, energy is provided to L by C, which is
recharged each time the switch opens again. It is desired to
maintain an almost steady output voltage across L. Although
the electrical circuit of the boost converter is a continuous
system, the control system turns it into a hybrid one.

The control system of the boost converter has four oper-
ating modes according to the current position of the switch
and whether the diode D is conducting/blocking energy. In
each mode, the continuous evolution of the electric charge
of the capacitor (q) and the magnetic flux of the inductor
(Φ) is defined by two differential equations, respectively.
For instance, when the switch is open and the magnetic flux
of the inductor is positive, the continuous evolution of q
and Φ is defined as q′ = Φ

L − 1
RC q and Φ′ = − 1

C q + E,
respectively. Therefore, the behaviour of this system can be
formally modelled as a hybrid automaton, which has four
different locations (one for each operating mode) connected
by the appropriate edges and with two differential equations
mapped to each location.

B. NAT2TEST

NAT2TEST [6] is an entirely automatic strategy for test
case generation from natural-language requirements that was
developed in close contact with industry. This strategy aims
at reactive systems, whose behaviour can be described as
actions that should be taken when certain conditions are met.
For an automatic processing of requirements and generation
of test cases, the requirements must be written according
to a specific grammar, namely the System Requirements
Controlled Natural Language (SysReq-CNL).

The SysReq-CNL is a Controlled Natural Language (CNL)
grammar that has been created in order to turn the writing
of system specifications more standardised, facilitating the
conversion of the system requirements into a formal notation.
In particular, this grammar supports writing requirements
of data-flow reactive systems: a class of embedded systems
where inputs and outputs are always available as signals.

After writing the system requirements according to the
SysReq-CNL grammar, informal semantics is given to the
specification by means of the case grammar theory [9]. In
this theory, a sentence is analysed in terms of the semantic
(thematic) roles (TR) played by each word in the sentence.
The verb is the main element of the sentence, and it de-
termines the role that each word plays with respect to the
action or state described by the verb. The verbs’ associated
TRs are aggregated into a case frame (CF). Each verb in
a requirement specification gives rise to a different CF. All
derived CFs are joined afterwards to compose what we call
a requirement frame (RF). In other words, the semantics of
each system requirement is given by the corresponding RF.

The RFs are used to derive a formal representation of
the system behaviour: a model of data-flow reactive system
(DFRS [10]). This formal representation is a symbolic,
timed and state-rich automata-based notation for representing
natural-language requirements. Afterwards, for generating
test cases, different notations and tools can be used and,
thus, the DFRS model is accordingly translated into the
chosen formalism. Fig. 2 shows the phases of this approach.
The three initial phases are fixed: (1) syntactic analysis, (2)
semantic analysis, and (3) DFRS generation; the others are
related to the chosen formalism to generate test cases.

III. NAT2TEST FOR HYBRID SYSTEMS

The main purpose here is to support simulation of hybrid
systems from system-level requirements, since more abstract
requirements (e.g., stakeholder requirements) are not neces-
sarily feasible for direct simulation. To allow for simulation,
the requirements are translated to an Acumen [5] model
and its environment is used for simulation. As illustrated
in Fig. 2, our extension (h-NAT2TEST) impacts all fixed
stages of the original NAT2TEST strategy. In what follows,
we describe how each stage is properly adapted. More details
can be found in [11].

A. Syntactic Analysis

The SysReq-CNL grammar is extended conservatively to
accommodate requirements for hybrid systems. The dynam-



Fig. 2. Phases of the hybrid NAT2TEST strategy

ics of hybrid systems are commonly specified with the aid
of mathematical expressions involving variables, functions
and derivatives. Some of these features are not supported by
the previous version of the SysReq-CNL. In the new version
(h-SysReq-CNL), it is now possible to embed mathematical
expressions in the requirements. For instance, consider the
boost converter example; the following requirement describes
when the system shall change its operating mode (from 1 to
2), since the switch (S) is closed (S == 1) and the electric
charge (q) is greater than 0.
• When the system mode is 1, and S == 1 && q >= 0,

the BC control system shall assign 2 to the system mode.
In Table I, one can see a fragment of the h-SysReq-

CNL grammar. A VariableState can also be an Expression
in addition to its other original forms, i.e., noun phrases,
adverbs, adjectives, and numbers. The grammar rules ensure
operator precedence, thus an Expression generates a list of
AndExpression separated by the OR operator, and so on.
In addition to the use of logical and arithmetic operators,
the grammar allows for values, variables, expressions within
parentheses and function applications. The grammar consid-
ers five built-in functions (FunctionID): sin, cos, exp, log and
sqrt, besides user-defined ones. Therefore, we also allow for
declaring functions (FunctionDeclaration), with or without
parameters, which can be referred to within a requirement.

A function declaration begins with an identifier, followed
by an optional list of the parameters, followed by its body.
The body can be a simple expression, or a ternary expression
(TernaryExpression), or can even be defined using pattern
matching (PatternMatching). These last two constructs en-
hance the flexibility and the expressiveness of the grammar.

The ternary conditional operator is similar to an if-then-
else structure: test ? expression1 : expression2, where test is
a boolean expression, expression1 is an expression evaluated
if test is true, whereas expression2 is evaluated otherwise.
PatternMatching allows the definition of functions using
pattern matching, a form widely used in the writing of
mathematical equations. The structure is as follows, (test
DO expression1)+, where test is a boolean expression and

TABLE I
FRAGMENT OF THE H-SYSREQ-CNL GRAMMAR

...

VariableState → ... |Expression;
Expression → AndExpression

(OR AndExpression)*;
...

Function → SIN LP Expression RP
| COS LP Expression RP

...
| Noun (LP ArgumentList RP)?;

ArgumentList → Expression
(COMMA Expression)*;

...
FunctionDeclaration → Noun LP ParameterList? RP

EQUALSSIGN FunctionBody;
ParameterList → Noun (COMMA Noun)*;
FunctionBody → TernaryExpression

| PatternMatching
| Expression;

TernaryExpression → Expression IN
TernaryDefinition COLON
TernaryDefinition;

TernaryDefinition → Expression
| TernaryExpession;

PatternMatching → (Expression
DO Expression)+;

expression1 is an expression evaluated if test is true.
Considering the running example, the behaviour of q in

mode 1, when the switch is open and the magnetic flux in
the inductor is positive, can be described by the function:
q mode1(Phi, L,R,C, q) = (Phi/L) − (1/R ∗ C) ∗ q.

The following requirement illustrates how functions and
derivates can be used to describe the system behaviour.

• When the system mode is 1, the BC control system shall:
set the q first derivative to q mode1(Phi,L,R,C,q), set the
Phi first derivative to Phi mode1(C,q,E).

The next step of the h-NAT2TEST strategy provides
informal semantics for the requirements.

B. Semantic Analysis

The semantic analysis phase receives as input the gen-
erated syntax trees (obtained based on the h-SysReq-CNL
grammar), and delivers a requirement semantic representa-
tion. Therefore, this phase consists of relating syntactic struc-
tures of grammar elements with semantic roles according to
the case grammar theory.

In this work, we consider the same TRs adopted originally
by the NAT2TEST strategy; for the verbs used in action
statements: action (ACT) – the action performed if the
requirement conditions are satisfied; agent (AGT) – entity
who performs the action; patient (PAT) – entity who is
affected by the action; TOV – the patient value after action
completion. Similarly, other five roles are defined for the
verbs used in conditions: condition action (CAC), condition
patient (CPT), condition from value (CFV), condition to
value (CTV), and condition modifier (CMD).

The mapping between words and roles is performed con-
sidering inference rules (see [12]). Since these rules are



TABLE II
EXAMPLE OF A REQUIREMENT FRAME

Condition #1 - Main Verb (CAC): is
CPT: the system mode CFV: -
CMD: - CTV: 1
Action #1 - Main Verb (ACT): set
AGT: the BC control system TOV: q mode1(Phi,L,R,C,q)
PAT: the q first derivative
Action #2 - Main Verb (ACT): set
AGT: the BC control system TOV: Phi mode1(C,q,E)
PAT: the Phi first derivative

syntax-oriented, and part of the structure of the SysReq-
CNL was changed, in this work, we needed to adapt these
rules considering the structure of the h-SysReq-CNL. To
give a concrete example of the semantic analysis, consider
the requirement shown at the end of Section III-A; the
corresponding requirement frame is given in Table II.

After inferring the requirement frames of all requirements,
formal semantics is given by deriving a formal model in the
form of a hybrid data-flow reactive system (h-DFRS).

C. h-DFRS Generation

A data-flow reactive system (DFRS) is a symbolic,
timed and state-rich automata-based notation for represent-
ing natural-language requirements. Formally, it is a 6-tuple
(I,O, T, gcvar, s0, F ). Inputs (I) and outputs (O) are system
variables, timers (T) are a special kind of variable whose
values are non-negative numbers representing a discrete or a
dense (continuous) time. The system global clock (gcvar)
has the same type as the timers. The initial state is s0,
defining the initial values of variables and timers, and F is a
set of functions describing the system behaviour. Briefly, F
describes the expected system reaction given the current sys-
tem state. For a comprehensive and formal characterisation
of DFRS models, we refer to [10].

In the h-NAT2TEST strategy, the DFRS definition is
modified to incorporate the user-defined functions. As
a result, the h-DFRS is now formalised as a 7-tuple:
(I,O, T, gcvar, s0, F, UF ), where UF denotes the user-
defined functions, which can be referred to by definitions
in F . The generation of h-DFRSs from requirements frames
follows the same ideas of deriving DFRS models, which is
fully described in [10].

D. Acumen Generation

After generating an h-DFRS, which formally represents
the system requirements, we translate this model to an Acu-
men model in order to simulate it. The h-DFRS variables are
translated to variables of a hybrid automaton, and the formal
characterisation of the system behaviour (F), along with
the user-defined functions (UF), are used to represent the
edges of the hybrid automaton and the continuous dynamics
associated with the automaton locations.

The translation from h-DFRSs to Acumen models is
implemented with the aid of the Visitor design pattern. An
h-DFRS model is represented as an XML file, and the visitor

pattern visits all nodes of this representation executing the
appropriate translation for each node based on the type of
node, its parent and the data that it holds. In what follows,
we describe the main stages of the translation.
Generating the header The initial settings of the Acumen
specification is generated. Among them, we can highlight
the preamble determining the simulation method (EulerFor-
ward by default, a standard technique used for discretised
approximation of solutions to differential equations) and
the time step (it is a pre-established value), which is the
fixed and discrete increment of time that is considered when
evaluating the differential or difference equations.

Generating variables Model variables are declared to rep-
resent the system inputs, outputs, and timers.

Generating auxiliary definitions Some auxiliary structures
are introduced, since they are not explicitly described in
the model. For example, the derivative of the global clock
variable is set to assume a steady growth behaviour.

Generating the main model Here we use if-statements,
whose conditions are composed by discrete and timed
guards. The body of each if-statement comprises contin-
uous and discrete assignments according to the statements
defined in the h-DFRS (F and UF).
To illustrate the last stage, considering the DC-DC boost

converter, we show part of the Acumen code generated for
the requirements previously mentioned (reproduced below).
• When the system mode is 1, and S == 1 && q >= 0,

the BC control system shall assign 2 to the system mode.

if (the_system_mode==1 && (S==1 && q>=0))
then the_system_mode += 2

In the Acumen language, += is used to perform discrete
assignments (as opposed to continuous ones, denoted by =).
• When the system mode is 1, the BC control system shall:

set the q first derivative to q mode1(Phi,L,R,C,q), set the
Phi first derivative to Phi mode1(C,q,E).

if (the_system_mode==1) then
q’ = (Phi/L)-(1/R*C)*q,
Phi’ = (-1/C)*q + E

We note that, in the last example, the function calls were
inlined, and that q′ and Phi′ denote the first derivative of
q and Φ, respectively. After visiting all elements of the
h-DFRS, a complete Acumen specification of the system
behaviour is generated automatically.

IV. CASE STUDY

The h-NAT2TEST strategy is supported by an extension of
the original NAT2TEST tool1. We illustrate the applicability
of our tool by applying it to the requirements of the DC-
DC boost converter (BC). Considering that a typical BC has
four operating modes according to the current position of
the switch and whether the diode D is conducting/blocking
energy, we defined auxiliary functions for each mode. These

1http://www.cin.ufpe.br/˜ghpc/

http://www.cin.ufpe.br/~ghpc/


functions are referred to in the description of the con-
tinuous behaviour of the system (i.e., how q and Φ—the
electric charge of the capacitor and the magnetic flux of the
inductor—evolve continuously). Therefore, eight functions
were created in total. In what follows, one can see the
functions related to q and Φ in the first mode.
FUN-001 q mode1(Phi,L,R,C,q) = (Phi/L) - (1/R*C)*q.
FUN-002 Phi mode1(C,q,E) = (-1/C)*q + E.

Taking into account these functions, four requirements
were written to describe the continuous evolution of the
system (the continuous assignments performed within each
operating mode). To conclude our specification, twelve re-
quirements were written to describe the system’s discrete be-
haviour: the discrete changes between the operating modes.
Therefore, sixteen requirements were written in total: four
describing the continuous dynamics and twelve concerning
the discrete transitions. Two of these sixteen requirements
are presented in the end of Section III.

To analyse whether the specification describes a DC-DC
Boost Converter that is capable of delivering a boosted
and stable output voltage, we employ the h-NAT2TEST to
simulate the natural-language requirements. After checking
whether each system requirement is valid with respect to
the h-SysReq-CNL grammar, thematic roles are inferred
from the obtained syntax trees. Afterwards, an h-DFRS is
derived from the previously obtained requirements frames.
Finally, an Acumen specification is generated and we use its
environment to perform simulations.

Considering our first specification, as it can be seen from
Fig. 3, the system global clock grows steadily, and the switch
changes discretely and periodically between “on” and “off”
positions. However, although such a frequency of open/close
produces a boosted output voltage (see q), it is not a steady
one. In practice, this high oscillation may not be acceptable.

Fig. 3. Specification #1 – simulation of the Acumen model

Inferring such a behaviour (high oscillation of the output
voltage) purely from reading the natural-language require-
ments is not an easy task. In order to have a more steady
output, the specification was revisited. Fig. 4 shows the
simulation obtained from this second specification. As one
can see, a higher frequency of open/close can make the
output voltage more stable. This stabilisation is an expected
behaviour in normal conditions. One may, of course, use
more sophisticated controllers to achieve stability.

Fig. 4. Specification #2 – simulation of the Acumen model

This example illustrates the h-NAT2TEST applicability,
where natural-language specifications are turned into exe-
cutable models and, based on simulations, one can validate
whether the specification describes the intended behaviour.

V. RELATED WORK

There are many tools available for modelling, simulating
and verifying properties of hybrid systems. In what follows,
we review some of them.
Simulink [13] is an interactive environment for modelling,

simulating, and analysing multidomain dynamic systems.
It supports linear and nonlinear systems, modelled in con-
tinuous time, sampled time, or a hybrid of the two. It is
widely used in many industrial domains for modelling and
analysing various types of CPSs.

20-sim [3] is a modelling and simulation program for
mechatronic systems. The model is built graphically by
drawing an engineering scheme. It is possible to create
models using equations, block diagrams, physical compo-
nents and bond graphs.

Modelica [4] is an object-oriented language for modelling
heterogeneous physical systems for the purpose of simula-
tion. For modelling the physical phenomena, it uses general
equations instead of assignment statements.

SpaceEx [14] is a verification platform for hybrid systems.
It uses components built as hybrid automata as input.

S-TaLiRo [15] is a tool to verify and test CPSs. It is a
modular software tool built on the Matlab platform. S-
TaLiRo can analyse hybrid automata, arbitrary Simulink
models, hardware-in-the-loop and processor-in-the-loop.

In addition to these established tools, in [7] the authors
present a tool prototype for model-based testing of cyber-
physical systems. It is implemented in Matlab and comprises
the three stages of model-based testing, namely, test case
generation, test case execution, and conformance testing. The
specification and implementation models can be provided as
either Matlab or Acumen models.

Despite the existence of numerous tools that work with
hybrid systems, to the best of our knowledge, all available
tools require concrete representations of hybrid systems such
as hybrid automata or block diagrams as their input models.
Therefore, in the preliminary stages of system development,
when typically these models are not yet available, but rather
the system specification in the form of natural-language



requirements might be the only documentation available,
these tools cannot be readily used.

In order to bridge this gap, we proposed in this paper the
h-NAT2TEST strategy. It is important to emphasise that this
strategy does not replace the tools previously mentioned; the
aforementioned tools are still essential when analysing later
system designs, but our tool complements them by allowing
for simulation using early natural-language descriptions.

VI. CONCLUSION

The major motivation for this work is to provide means for
simulating natural-language requirements of hybrid systems,
in order to enable early validation of these requirements.
In [6], a strategy (NAT2TEST) is proposed for analysing and
testing reactive systems from natural-language requirements.
Here, we extend this work to the domain of hybrid systems.
The strategy proposed here (h-NAT2TEST) extends the first
three stages of the original one: syntactic and semantic
analysis, and generation of data-flow reactive models.

In the syntactic analysis, we propose a conservative ex-
tension of the controlled natural language SysReq-CNL (h-
SysReq-CNL), adding to it the manipulation of expressions,
besides declaring and referring to user-defined functions. In
the semantic analysis, the inference rules of thematic roles
were updated considering the new elements now supported
by the h-SysReq-CNL grammar. Moreover, we now consider
a hybrid data-flow reactive system (h-DFRS), suitable for
formally representing hybrid systems.

Finally, a translation from h-DFRSs to Acumen models
was implemented, allowing the user to simulate natural-
language requirements of hybrid systems via the Acumen
tool, without the knowledge of the intermediate notations. We
illustrated this strategy considering a DC-DC boost converter,
whose application was successful and led us to revise our
first specification in order to achieve a description of how to
deliver a boosted and steady output voltage.

As future work, we plan to address the following topics.
• Represent environment properties as natural-language.

Currently, assumptions of the system environment (e.g.,
how the system inputs might evolve over time) are not
described in natural-language and, if required, need to
be manually specified in the Acumen model. We plan to
extend our CNL to be capable of also describing such
properties, besides adapting the strategy in order to gener-
ate Acumen models with such information automatically.

• Expand the proposed approach to performing conformance
testing. Conformance testing is a formal notion of model-
based testing. Conformance is defined as a mathematical
relation between the expected (specification) and observed
(implementation) behaviour. In this direction, we plan to
integrate our work with the tool described in [7], which
also deals with Acumen models.

• Validate the strategy in an industrial context. In order
to demonstrate the technique effectiveness, perform more
empirical analyses concerning the application of the h-
NAT2TEST strategy to real-world large-scale examples of
cyber-physical systems.

ACKNOWLEDGEMENTS

The work of Bruno Oliveira, Gustavo Carvalho and
Augusto Sampaio was partially supported by the CIn-
UFPE/Motorola cooperation project, as well as CNPq grants
303022/2012-4 and 132332/2015-9.

The work of Mohammad Reza Mousavi has been sup-
ported by (Vetenskapsrådet) award number: 621-2014-5057
(Effective Model-Based Testing of Concurrent Systems),
by the Swedish Knowledge Foundation (Stiftelsen for
Kunskaps- och Kompetensutveckling) in the context of the
AUTO-CAAS HÖG project (number: 20140312), and by the
ELLIIT Strategic Research Environment.

REFERENCES

[1] Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine.
An approach to the description and analysis of hybrid systems. In
Hybrid Systems, pages 149–178. Springer, 1993.

[2] Changho Sung and Tag Gon Kim. Framework for simulation of hybrid
systems: interoperation of discrete event and continuous simulators
using HLA/RTI. In Proceedings of the 2011 IEEE Workshop on
Principles of Advanced and Distributed Simulation, pages 1–8. IEEE
Computer Society, 2011.

[3] Jan F Broenink. 20-sim software for hierarchical bond-graph/block-
diagram models. Simulation Practice and Theory, 7(5):481–492, 1999.

[4] Peter Fritzson and Vadim Engelson. Modelica – a unified object-
oriented language for system modeling and simulation. In European
Conference on Object-Oriented Programming, pages 67–90. Springer,
1998.

[5] Walid Taha et al. Acumen: An open-source testbed for cyber-physical
systems research. In International Internet of Things Summit: Internet
of Things. IoT Infrastructures, pages 118–130. Springer International
Publishing, 2016.

[6] Gustavo Carvalho, Flávia Barros, Ana Carvalho, Ana Cavalcanti,
Alexandre Mota, and Augusto Sampaio. NAT2TEST Tool: from
Natural Language Requirements to Test Cases based on CSP. In Inter-
national Conference on Software Engineering and Formal Methods.
Springer International Publishing, 2015.

[7] Arend Aerts, Mohammad Reza Mousavi, and Michel Reniers. A
tool prototype for model-based testing of cyber-physical systems.
In Proceedings of the 12th International Colloquium on Theoretical
Aspects of Computing - ICTAC 2015 - Volume 9399, pages 563–572,
New York, NY, USA, 2015. Springer-Verlag New York, Inc.

[8] Thomas A Henzinger. The theory of hybrid automata. In Verification
of Digital and Hybrid Systems, pages 265–292. Springer, 2000.

[9] Charles J. Fillmore. The Case for Case. In Bach and Harms, editors,
Proceedings of Universals in Linguistic Theory, pages 1–88, USA,
1968. New York: Holt, Rinehart, and Winston.

[10] Gustavo Carvalho, Ana Cavalcanti, and Augusto Sampaio. Modelling
timed reactive systems from natural-language requirements. Formal
Aspects of Computing, 28(5):725–765, 2016.

[11] Bruno Oliveira. Simulation of hybrid systems from natural language
requirements. Master’s thesis, Universidade Federal de Pernambuco,
2016.

[12] Gustavo Carvalho, Diogo Falcão, Flávia Barros, Augusto Sam-
paio, Alexandre Mota, Leonardo Motta, and Mark Blackburn.
NAT2TESTSCR: Test case generation from natural language require-
ments based on SCR specifications. Science of Computer Program-
ming, 95, Part 3(0):275 – 297, 2014.

[13] Mathworks. Simulink: User’s guide, 1995.
[14] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton,

Rajarshi Ray, Olivier Lebeltel, Rodolfo Ripado, Antoine Girard, Thao
Dang, and Oded Maler. SpaceEx: Scalable verification of hybrid
systems. In International Conference on Computer Aided Verification,
pages 379–395. Springer, 2011.

[15] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram
Sankaranarayanan. S-taliro: A tool for temporal logic falsification
for hybrid systems. In International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, pages 254–257.
Springer, 2011.


	Introduction
	Background
	Hybrid Systems
	NAT2TEST

	NAT2TEST for Hybrid Systems
	Syntactic Analysis
	Semantic Analysis
	h-DFRS Generation
	Acumen Generation

	Case study
	Related Work
	Conclusion
	References

