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Abstract—Generative Al (GenAl) has recently emerged as
a groundbreaking force in Software Engineering, capable of
generating code, identifying bugs, recommending fixes, and
supporting quality assurance. While its use in coding tasks shows
considerable promise, applying GenAl across the entire Software
Development Life Cycle (SDLC) has not yet been fully explored.
Critical uncertainties in areas such as reliability, accountability,
security, and data privacy demand deeper investigation and
coordinated action. The GENIUS project, comprising over 30
European industrial and academic partners, aims to address these
challenges by advancing Al integration across all SDLC phases. It
focuses on GenAI’s potential, the development of innovative tools,
and emerging research challenges, actively shaping the future
of software engineering. This vision paper presents a shared
perspective on the future of GenAl-driven software engineering,
grounded in cross-sector dialogue as well as experiences and
findings within the GENIUS consortium. The paper explores four
central elements: (1) a structured overview of current challenges
in GenAl adoption across the SDLC; (2) a forward-looking
vision outlining key technological and methodological advances
expected over the next five years; (3) anticipated shifts in the
roles and required skill sets of software professionals; and (4) the
contribution of GENIUS in realising this transformation through
practical tools and industrial validation. This paper focuses on
aligning technical innovation with business relevance. It aims to
inform both research agendas and industrial strategies, providing
a foundation for reliable, scalable, and industry-ready GenAl
solutions for software engineering teams.

Index Terms—Software engineering, Generative AI, Large
Language Models, Artificial Intelligence, software development
management, technology forecasting
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1 INTRODUCTION

Generative Al (GenAl) and, in particular, Large Language
Models (LLMs) are advancing rapidly and have already shown
their significant potential to transform software engineering
practices. Tools such as GitHub Copilot [1]], Amazon Q [2],
and Anthropic Claude Code [3]] demonstrate productivity gains
in coding, marking a paradigm shift in how software is
developed [4]. Yet, despite recent advances, the systematic
integration of GenAl throughout the Software Development
Lifecycle (SDLC), spanning requirements engineering, design,
implementation, and testing, remains fragmented and insuffi-
ciently understood [S]—[7].

Existing GenAl adoption remains largely confined to iso-
lated phases, overlooking the opportunities and challenges
of cross-phase integration, human—AlI collaboration at scale,
and deployment in real-world industrial ecosystems. Cur-
rent LLM-based approaches still lack sufficient contextual
grounding, domain adaptation, and reasoning capabilities to
support complex engineering workflows [[8]. These limitations
highlight the need for a coherent vision that connects academic
insight, technological innovation, and industrial experience
into a unified roadmap for the future of GenAl-driven software
engineering. Such a vision must bridge research and industrial
practice, span the full SDLC, and foster large-scale collabo-
ration across multiple domains [9].

This vision paper combines a forward-looking scientific
perspective with practical insights from the GENIUS project
[10], a large-scale European research initiative that aims to
develop automated solutions and customised tools to enhance
and bridge the various phases of the SDLC. GENIUS brings
together leading industrial partners, applied research institutes,
and universities to jointly advance GenAl-driven methods and
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evaluate their impact in industrial development environments.
The ideas presented here have emerged from intensive research
work and extensive discussions among the partners, combining
academic and industrial perspectives grounded in emerging
experiences from real-world industrial settings. The paper aims
to articulate the evolving role of GenAl in software engi-
neering and to examine its broader implications for processes,
tools, and human roles across the SDLC [11]].

In the following, we first identify in Section [2] the key
challenges that currently constrain the reliable adoption of
GenAl across the SDLC. Section Blenvisions and discusses the
potential future of GenAl-driven software engineering, outlin-
ing the capabilities, transformations, and evolving human skills
required for sustainable and trustworthy GenAl ecosystems.
Section [4] then connects these conceptual foundations to their
practical realisation within the GENIUS project, where the
envisioned approaches are operationalised and validated across
diverse industrial domains.

2 CHALLENGES OF GENAI IN SOFTWARE ENGINEERING

The current application of GenAl in software engineering
faces various challenges spanning different stages of the SDLC
as well as aspects of data, training, and evaluation of GenAl.
This section provides an overview of the challenges from our
perspective — based on our experience and findings.

2.1 Hallucinations, Limited Reasoning, and Challenges with
Structured Output Generation

LLMs are trained on large public datasets, including code
repositories, that often include inconsistent, uncurated, or out-
dated information. As a result, LLMs are exposed to learn from
flawed information. Additionally, their probabilistic nature can
lead to confident but incorrect or unverifiable outputs, known
as hallucinations [[12]. For example, it is common for LLM-
generated source code to use deprecated libraries or functions,
potentially introducing security vulnerabilities, and creating
increased technical debt leading to code bases which are
difficult to maintain [13]].

Additionally, LLMs have limited reasoning capabilities be-
cause they rely on statistical pattern matching rather than
genuine contextual understanding, e.g., of source code bases.
Their responses often replicate reasoning patterns seen in
training data, rather than deriving conclusions through logical
deduction [[14]. Furthermore, studies found that current LLMs
often lack sufficient awareness of the user’s expertise and
specific needs, providing responses that are either too complex
or too simplistic for the user’s skill level [15].

Reliable generation of highly structured outputs, such as
programme code, configuration files, or domain-specific lan-
guages, remains challenging for LLMs. One common ap-
proach to address this issue involves guiding the model’s out-
put using predefined grammatical rules — known as Grammar-
Constrained Decoding (GCD). For example, a specific gram-
mar like a context-free grammar designed for a domain-
specific language can be used to limit which words or symbols
the model is allowed to generate. This helps to ensure that

the output follows correct syntax, even if the model was not
explicitly trained on that grammar. However, strictly enforcing
such rules can interfere with the model’s natural generation
process and may lead to low-quality results. Furthermore, these
methods can be technically demanding to set up and may
become slow or inefficient, especially when working with large
or complex grammars [16], [17].

The concern surrounding reliability causes further problems
within the software testing phase. Due to the probabilistic
outputs produced by AI models, slight changes in input data
can lead to significant variations in results, complicating the
establishment of reliable test oracles [[13]].

2.2 Limited Context Awareness and Poor Support for Domain-
Specific Knowledge

GenAl models often struggle to understand specific con-
texts, such as those of large requirements documents or large
source code bases, leading to less precise or relevant sugges-
tions. As a result, LLMs may not fully grasp given specific
requirements, source code dependencies, or architectural goals
of a software engineering project [[13].

Current LLMs show limited understanding of abstract soft-
ware engineering principles, such as design patterns, archi-
tectural tactics, and object-oriented principles like inheritance
and encapsulation [18]. Most LLM development to date has
focused on models that generate functionally and syntactically
correct code [19]. This creates a gap between the capabilities
of these models and the broader expectations of software en-
gineering practice. For example, Wang et al. [20] showed that
current LLMs struggle with Object-Oriented Programming
(OOP) concepts. As a result, these models may produce poorly
structured software designs or designs that do not consider the
reuse of existing source code. Such designs can lead to systems
that are difficult to maintain and more prone to accumulating
redundancies and technical debt.

Without additional measures like Retrieval-Augmented
Generation (RAG) or GraphRAG [21f], GenAl models also
struggle to understand company-internal context and generate
suitable output due to their lack of relevant training data.
There are two potential solutions to this: fine-tuning the LLM
to internalise the domain-specific knowledge or provide the
correct context to garner a specific response. Both of which
suffer from similar problems surrounding knowledge man-
agement. Fine-tuning requires knowledge provided through
datasets that is accurate, complete, and well-structured to be
successful. However, the necessary data is often not in this
condition and requires much effort to pre-process and obtain.
Likewise, providing high-quality context requires knowledge
that meets this criterion along with additional requirements
such as availability and high-velocity retrieval. To address
these challenges, methods such as In-Context Learning (ICL),
RAG, and knowledge graphs as context sources such as those
created in GraphRAG, have been developed.

However, these approaches do not address the critical chal-
lenges related to the distribution of logically connected data



and data sources, which is often the case in the SDLC (e.g., re-
quirements, user stories, specifications, architecture and design
documents, source code, bug reports, and end-user documen-
tation). They also do not address the inconsistent nature of the
data required to build knowledge bases. Furthermore, they do
not resolve the fact that a large portion of this knowledge may
be undocumented. With the proliferation of the Model Context
Protocol (MCP) [22]], the integration of external systems is
becoming increasingly simpler. However, even if MCP were
to be used to integrate with a project management software for
instance, the use of it during software development activities
may be inconsistent. The effectiveness of the MCP integration
for knowledge management is only as good as the data within
the underlying systems.

Another prominent issue is the lack of GenAl support for
cross-SDLC engagement. GenAl solutions are often narrowly
constrained to isolated use cases, with Al artifacts and outputs
commonly remaining ‘single-use’ — either forgotten or inac-
cessible during later SDLC phases. However, accessible and
queryable storage of these artifacts is required as contextual
input to enable seamless application of GenAl across different
SDLC phases.

Lastly, while context windows of LLMs have supposedly
increased to as much as 100 million tokens for models such
as LTM-2-mini [23]], the resources required, and efficiency of
response is yet to be scientifically evaluated.

2.3 Security and Data Privacy Risks

LLMs can introduce security vulnerabilities into the gener-
ated artifacts such as source code or domain information [24]).
This poses risks to the security and integrity of the developed
software. Furthermore, LLMs can be exploited to support or
carry out cyberattacks.

Several benchmarks exist to evaluate a model’s risk in
producing insecure or vulnerable code as well as its potential
to facilitate cyberattacks [24]. However, most of these bench-
marks present several limitations. They do not provide a com-
prehensive assessment of both insecure coding practices and
the model’s potential to enable cyberattacks, often focusing
only on code completion or natural language prompts without
full end-to-end attack generation [25].

Most benchmarks rely on static evaluation methods, such as
rule-based checks or LLM judgements, which are less precise
than dynamic testing and prone to errors [26]]. Additionally,
there is a trade-off between dataset quality and scalability:
manually created datasets offer high quality but limited scal-
ability, while automated datasets scale better but tend to be
lower quality and less relevant to real-world security issues.

Language also introduces a trade-off, as benchmarks
prompting models in natural language may not fully capture
the model’s actual ability to generate harmful code, sometimes
in a specific language, limiting the realism and depth of the
evaluation [27]].

Adversarial attacks targeting code generation models rep-
resent another critical aspect that must be considered [28]].
Various types of LLMs used for code generation are known

to be susceptible to such attacks, which can compromise
system integrity and security [29]. As a result, incorporating
adversarial training into the development of these models is
essential to enhance their resilience and protect the security
and privacy of the systems in which they are deployed [30].

2.4 Biases in LLM Training Data

LLMs are trained on vast datasets, which may reflect his-
torical biases or flawed software engineering practices present
in the software development community [31].

These biases may manifest across sensitive attributes such
as age, gender, and education. If the training data contains
information that makes gender or race-based assumptions in
user data processing, the LLM may learn and perpetuate these
biases in its generated outputs, such as code. This can lead
to inequitable software solutions and unfair user experiences.
Companies using biased datasets and LLMs in software engi-
neering risk generating discriminatory software that can lead to
legal and reputational damage. Existing bias testing methods,
designed mainly for natural language, struggle to effectively
identify biases within the logical structure of code [32].

Alongside ethical considerations, bias in training data can
materialise in several other ways. Bias towards certain techni-
cal design choices, such as libraries, vendors, and architectural
styles can be perpetuated according to the model supplier, e.g.,
certain models being trained on significantly more solutions
within a particular cloud environment and thus favoring those
services when making architectural decisions, rather than
considering what is best for the requirements. There is ongoing
research that has identified distinct preferences LLMs have for
programming languages and libraries [33]].

2.5 Environmental Impact and Sustainability

Despite its promise, GenAl introduces new environmental
and structural risks across the SDLC. These remain under-
researched and are rarely addressed in practice. Initial analyses
show that GenAl-assisted coding and testing workflows carry
significant energy and emissions costs — particularly when
scaled across teams, automated through agents, or used recur-
sively for prompt tuning and test case generation. Luccioni et
al. [34] report that deployment of the BLOOM large language
model (176 billion parameters) over just 18 days consumed
an average of 40 kWh of electricity per day and generated
approximately 19 kg of CO, emissions per day, depending on
the cloud provider’s energy mix. This illustrates the substantial
operational footprint of GenAl models even after training,
reinforcing the need to account for emissions across the full
deployment lifecycle. The first challenge in this domain is
to provide reliable end-to-end models of carbon footprint
(including the embedded component) of the new processes and
workflows enabled by GenAl. We currently see early results
and research projects emerging in this area [35], [36].

The second challenge is to find patterns in Al-assisted
processes and workflows that mitigate the environmental sus-
tainability risks. Our early results show that architectural
patterns and problem decomposition may be key in finding



such sustainable patterns [37]]. Finally, coming up with action
plans that facilitate the migration of legacy and Al-assisted
processes and code to more environmentally friendly patterns
is a contemporary challenge. In all these challenges, GenAl
can serve as a key component, once its environmentally
sustainable use is well-researched and prioritised.

2.6 Unexplored Long-Term Impacts of GenAl in the SDLC

Evaluating the output of LLMs in software engineering
remains a significant challenge. As indicated in Section [2.2]
existing evaluation methods, especially for code generation,
often rely on benchmarks for coding tasks that do not fully
reflect real-world software engineering challenges. These in-
clude large, industrial-grade codebases with complex, evolving
technology stacks and company-specific programming frame-
works and libraries. Additionally, many benchmarks do not
assess whether the generated code adheres to good software
design practices. Consequently, models may achieve high
evaluation scores even when the generated code is poorly
structured or fails to follow essential software engineering
principles.

Beyond the evaluation of LLM-generated output, long-term
assessments of GenAl’s impact on the SDLC are still scarce.
While many studies have explored the short-term effects of
GenAl-based coding assistants [38]], there is limited research
on their influence on long-term industry metrics, such as
those defined by the DORA framework. Initial findings from
the 2024 DORA report [39] suggest that GenAl improves
capabilities typically associated with better software delivery
performance, but also highlight declines in areas such as
software stability and throughput.

Longitudinal research into 2025, however, reveals a complex
and evolving landscape where teams and tools have adapted.
The 2025 DORA report [40] suggests that Al acts as an
amplifier, magnifying existing organisational strengths and
weaknesses. For example, while Al adoption improves soft-
ware delivery throughput and enhances individual effective-
ness, it also increases software delivery instability, indicating
that underlying systems have not yet evolved to safely manage
Al-accelerated development.

The increased adoption of Al-authored code can lead to
a significant surge in duplicated code blocks, often without
developers’ explicit awareness. This creates substantial chal-
lenges for the long-term maintainability of source code. At
the same time, AI’s influence appears to be correlated with
a decline in code refactoring activities, which are essential
for consolidating existing work into reusable modules and
minimising the number of systems requiring maintenance [41]].

More research is needed to understand the long-term impact
of GenAl on software engineering practices.

2.7 Evolving Software Engineering Roles and Processes

With the expanding influence of GenAl across the SDLC
and its acceleration, the role of software engineers will be
evolving. Developers must face these challenges and acquire
and strengthen different competencies than what they have

been trained for, including prompt and context engineering,
Al oversight, debugging Al-generated code, and managing Al
models. These skills are needed to effectively guide Al tools
and ensure the integrity of the software they help produce.

In addition to up-skilling challenges, over-reliance on Al
tools, particularly when developers blindly adopt suggestions,
can erode critical thinking and creativity [42], [43]]. Junior
developers may miss out on foundational learning, creating
skill gaps within teams. This can lead to situations where only
senior engineers understand the system’s architecture and de-
sign decisions [44]. Moreover, Al-generated code is not always
optimal, contextually appropriate or secure (as described in
Section [2.3). It often lacks documentation and may follow
unconventional patterns, making it harder for engineers to
interpret, maintain, and modify the code. These obstacles can
increase technical debt and long-term development costs.

Likely in the short term, we will see software development
be performed in line with best practice before the arrival
of artificial intelligence. However, the assistance of Al will
lead to a shift in the focus of activities. Developers will
progressively move away from active coding and instead
focus on breaking down complex coding tasks for Al tools
while ensuring the quality of the generated output. In this
context, Al coding assistants already help reduce the time
required to create minimum viable products. However, this
also introduces challenges in managing unprecedentedly large
codebases developed within very short time spans. Some of
the authors observed this first-hand in their company context,
where the amount of code increased by a factor of two to three
within the time span of a year. A new process of engineering
will be needed (as outlined in Section [3.1)) to deal with this
unprecedented pace.

For the future, we foresee significant changes in traditional
activities currently considered fundamental to the development
process. As Al tooling advances towards achieving a critical
level of reliability and robustness, many of these activities
may become obsolete. Specific programming tasks can be fully
automated, testing and quality assessment can largely be per-
formed autonomously, and project management and delivery
can be coordinated across teams and organisations [45], [46].
At this point, organisations will be challenged to reconsider
their development and business processes in novel ways to take
maximum advantage. For example, feature updates or bugfixes
in well-understood areas can be delivered autonomously rather
than go through human-managed processes to enhance speed
of delivery, something currently unthinkable.

3 THE FUTURE OF GENAI-DRIVEN SOFTWARE
ENGINEERING: OUR VISION

Over the next five years, we anticipate significant ad-
vancements of Al in software engineering that will address
the limitations highlighted in Section [2] Drawing on our
experience and findings, this section outlines our vision for
how these technological evolutions will transform the software
development process.



3.1 Towards Self-* Systems

Most software engineering artifacts along the SDLC, code in
particular, will be generated by Al at an accelerated pace [46[—
[48]. Software engineering tasks such as requirements gather-
ing, architectural design, and testing are becoming increasingly
automated, especially through using agentic Al solutions [8]],
[49]. This will increase the capacity of software engineering
teams and enable them to focus on innovative problem-solving.
As Al takes on routine tasks such as coding and testing,
software engineers will play a critical role in orchestrating
Al efforts by breaking down complex problems into man-
ageable components, just as mentioned in Section In
this context, maintaining sustainable minimalism, particularly
in code, becomes essential to ensure long-term readability,
maintainability, and architectural integrity [50].

To cope with the automated and accelerated development
process, engineering teams must establish the processes and
workflows to validate, verify, and optimise Al-generated ar-
tifacts to ensure software quality — particularly in industrial-
grade systems where reliability, maintainability, and perfor-
mance are paramount [51]. Automation and rigour in these
workflows are essential to mitigate the risk of fatigue and
burnout [52] due to continuous human oversight. Person-
alised feedback will be built into these processes to facili-
tate decision-making and oversight. This is also particularly
important due to the numerous security risks documented in
Section [2.3] such as the introduction of security vulnerabilities
into code, or the utilisation of LLMs within software providing
additional attack vectors.

The increasing autonomy and reliability of GenAl within
the SDLC establishes the foundation for the emergence of
genuinely self-* systems. A self-* system is a system that
can alter itself at runtime, without human intervention, and
encompasses the concepts of self-aware, self-healing and self-
evolving systems [45]], [46], [49]], [53[]. These factors will
coalesce to form the next generation of self-* systems. They
are self-evolving, considering changes in requirements from
various human-approved external sources, such as public re-
views and bug reports, having contextual information about
architectural structures and redeveloping it, testing and de-
ploying themselves to meet these new requirements. All of
these will be facilitated by the AI autonomous agents and
novel forms of agentic teams. It is through the evolution
of these agentic teams that we can address the challenges
with limited reasoning capabilities and the proliferation of
hallucinations, as mentioned in Section Agents working
together autonomously for a shared purpose will validate
each other’s outputs and pool their individual expertise to
tackle harder problems. As an analogy, the evolution of Al in
software engineering towards self-* systems can be likened to
the progression of driver-assistance systems evolving into fully
autonomous driving — a journey from supportive automation
to complete autonomy.

Part of this self-evolution process will be the enhanced
facilitation of research spikes, experimentation and A/B testing

within a system. A common yet costly practice now could be
much more efficient in the future, with agents automatically
identifying, designing, implementing, testing and concluding
alternative approaches.

Once a system’s requirements are stable, these self-* sys-
tems can also become self-healing. Traditionally, this has been
defined as being able to adapt to different environmental
conditions and continue to behave as previously specified,
typically associated with automatic scaling of components to
deal with varying loads, e.g., in cloud deployments. However,
future Al agents will allow for automatic detection of faults
and runtime errors, modifying the system at the source code
and at the architectural level, to patch said faults, all while
meeting the same underlying requirements.

Even in the context of self-* systems, Al will not fully
replace the need for human creativity, judgment, and domain
expertise. Maintaining a balance between leveraging Al and
cultivating human talent will be essential for sustaining inno-
vation, quality, and resilience in the software industry [54].

3.2 Intuitive, Inclusive Multi-Modal Human-Al Collaboration

As mentioned in Section the future will witness the
progression beyond this current state of the art with multiple
agentic teams, each with their own roles, tools, and objectives,
working across these SDLC phases to autonomously develop
and deliver software systems end-to-end. Their interactions
and relations will be loosely defined, driven by the agents
and their internal decision-making processes rather than by
pipelines, while being self-governed by their internal ethics
and human-defined regulations. Along with the progressive
shift towards autonomous development, we will begin to see a
shift in interaction patterns, as teams interact with Al through
a diverse range of modalities beyond the traditional keyboard,
such as voice, touch, and gesture-based interactions. This will
allow for a dynamic workflow that best fits the constraints of
engineering teams while remaining within the bounds of safety
and law.

In essence, humans will interact with the development
process through natural language that centres around the
description of a system through requirements and features,
sitting much closer to the end users of a system and how they
perceive it. This will likely be utilised alongside the more
“traditionally no-code” approach of visual coding, defining
a system through how the user interface should look and
function.

As this approach will be akin to natural language, it will
lend itself better to voice instructions. This interaction pattern
will suit certain developers better than others, but will certainly
improve the experience for those with specific disabilities and
impairments, such as sight impairment or dyslexia.

Touch gestures and electronic pens can be used to express
intent and modifications — for example on code. The Al would
provide real-time feedback on its interpretation, enabling it-
erative refinement without extensive textual prompting. This
approach would leverage visual thinking for a more direct



and less abstract coding experience. During group-based brain-
storming and modelling sessions, a virtual whiteboard can
be augmented with a GenAl-based assistant to explore group
ideation with Al in the loop [S5].

The more proactive agents previously discussed would
contribute in much the same way as other humans, listening to
conversations and providing thoughts and ideas. Subsequently,
Al-based engineering systems could consume the multimodal
outputs of this interaction, such as speech, architecture dia-
grams, or wireframes, to gain further insight into the design
process and produce better code outputs. These group ideation
scenarios often unintentionally isolate those who communicate
non-verbally, such as sign language users. Utilising Al for
understanding and audibly involving them will also contribute
to better, more efficient collaboration.

Humans will continue to work alongside these agentic
teams, with inter-human collaboration becoming streamlined.
Data will become more up-to-date through rapid task ex-
ecution, more complete and transparent due to the agents’
self-documentation of every decision point and the reasoning
behind it, and more queryable than ever due to agentic
knowledge retrieval.

This vision will be enabled through the maturation of
context and data management within organisations. As men-
tioned in Section 2.2] limited contextual awareness severely
hinders an Al system’s ability to produce meaningful outputs.
Organisations will address this by enhancing the rigour with
which they collect, store, and interpret data, driven by the as-
piration to leverage this data with Al, particularly autonomous
Al agents. The agents themselves, when working with data,
will therefore also identify poor-quality data during operation
and either propose improvements or independently implement
enhancements. This trend towards a robust and accurate rep-
resentation of a ’single source of truth’ will facilitate the
rich, ad-hoc collaboration of an agentic ecosystem in software
engineering.

Moreover, most agents will become more proactive, acting
on changes in their software engineering environment without
being manually invoked. This proactivity will be made possi-
ble by possessing an accurate, agent-centric representation of
the situation through this single source of truth.

3.3 Improved Trustworthiness: Reasoning, Robustness and
Transparency

We envision incorporating several key enablers to increase
the trustworthiness of Al in software engineering, including
stronger reasoning capabilities, greater robustness, and im-
proved explainability and transparency.

There is ongoing research on expanding the reasoning
capabilities of GenAl with other reasoning components, for
example based around inference engines, world models and
ontologies. These mechanisms will allow modelling of founda-
tional software engineering principles like architectural design

best practices, but also assist with higher-level tasks such as
architectural analysis, performance optimisation and security
aspects. These techniques, along with those mentioned in
Section [3.1] will contribute to the mitigation of challenges
discussed in Section 211

Additionally, the maturation of a model’s chain-of-thought
is integral to improving robustness. Currently, chain-of-
thought monitoring aims to ensure that if a model starts
to pursue an unrelated topic that will negatively impact the
correctness of the answer, it can be terminated and restarted,
even re-prompted. However, current approaches rely on having
a natural language representation of said chain-of-thought.
New approaches are currently being developed to improve the
efficiency of models utilising chain-of-thought by using non-
human-readable languages, often dubbed “Neuralese” [56].
Ensuring that chain-of-thought monitoring methods can work
alongside these new approaches is essential.

A key factor for trustworthiness is more increased insight
into the training data and process that led to the creation
and behaviour of the LLMs used. For example, Lindsey et
al. [57] apply attribution graphs to trace how an LLM arrives
at particular outputs, thereby offering one avenue towards
understanding model-internals and improving transparency.
Additionally, the architecture around GenAl should provide
truthful and understandable information about how a GenAl
model arrived at the provided answers. Such mechanisms
should be incorporated both in the architecture of the Al
infrastructure and into the SDLC process.

As mentioned in Section [2.4] the various types of bias held
by LLMs primarily derive from the contents of the training
data. The only way in which these biases can be reduced
is by having a thorough understanding of the training data.
We estimate that once the hype cycle surrounding GenAl
progresses and subsequently wanes, consumers and lawmakers
will demand greater transparency from model providers, forc-
ing them to reveal the underlying training data [58]]. Once this
occurs, establishing evaluation techniques and benchmarks that
assess bias at the training data level, opposed to the current
method of a standard question-answer benchmark, will give
further insight into the origins of the bias, enabling more
effective bias mitigation.

3.4 Embedding Security and Data Privacy into an Au-
tonomous SDLC

For the future, we anticipate that security and data privacy
will be significantly incorporated into Al models and their
infrastructure. Advancements, e.g., initiated by frameworks
like TRiSM [59] and ENISA [[60]] are heading towards struc-
tured defenses organised around trust, risk, and security. These
frameworks emphasise continuous monitoring, algorithmic
scoring, automated categorisation as well as human oversight
in line with the EU AI Act [61].

One of the primary security challenges identified in Section

patterns and tactics [18]]. We anticipate that the integration of [2.3] was the proliferation of security vulnerabilities in Al-

such knowledge during the training phase will enable LLMs
to not only generate code that adheres to software engineering

generated code from the AI’s training data. The agentic teams
discussed in Section [3.1] can also serve to be the resolution to



this challenge. It cannot be guaranteed that all security vul-
nerabilities are found and removed from the vast amounts of
training data. The agents responsible for generating code will
also be able to autonomously analyse the code they produce,
employ state-of-the-art static and dynamic code analysis tools
and methods to detect vulnerabilities and patch them, as well
as execute various testing frameworks to validate the generated
code.

Benchmarks used to assess the security of Al-generated
code will also become more robust, employing dynamic tech-
niques such as sandboxed executions of code to provide a
more in-depth, true-to-life determination of the LLM’s code
generation abilities. Future benchmarks will evaluate both the
security of the generated code and the AI’s ability to resist
being used in cyberattacks, such as creating malware or acting
as an attack tool for autonomous actions.

Advances in Al-augmented security testing and lifecycle
integration amplify these autonomous protection capabilities.
Static, dynamic, and hybrid application security testing are
increasingly coupled with emerging LLM-based reasoning
engines such as Codex Security Scanner [62] and SecCoder
GPT [63]], which apply contextual understanding to detect
vulnerabilities beyond pattern-based tools.

Privacy-preserving mechanisms, including federated learn-
ing or homomorphic encryption, further strengthen confiden-
tiality, while differential privacy safeguards individual data
contributions. Complementary threat modelling frameworks
like STRIDE or PASTA [64] systematically map risks across
components and phases, guiding mitigation of spoofing or ad-
versarial manipulation. However, embedding traditional secure
coding standards from OWASP or the ML Top 10 [65] will
remain crucial to ensure early and consistent enforcement.

3.5 Embedding Sustainability into GenAl-Driven Software En-
gineering

To address the challenges raised in Section [2.5] we propose
a vision in which sustainability is embedded as a measurable,
actionable objective throughout the GenAl-based software de-
velopment process. Rather than treating environmental impact
as a downstream effect, sustainability will be built directly into
the design, generation, and evaluation stages of Al-assisted
engineering.

We envision an approach that is grounded in two core
principles. First, sustainability must be treated as a requirement
across the SDLC. Second, GenAl systems must be able to
respond to sustainability-related constraints — generating code
and decisions that are not just accurate or performant, but
efficient, reusable, and low-impact by design.

Our vision will be operationalised through various changes
to process and developer opinion. Baseline emissions profiling
of GenAl-assisted workflows should become commonplace, as
without an accurate assessment of the current environmental
impact, there is no way of improving it effectively. We
already see early examples of this part of our vision being
implemented in practice [35], [|37]], [66]. These measurements
should be taken and monitored inherently as part of the SDLC,

just like other metrics associated with software quality. At
the architecture and source code level, embedding sustainable
design practices such as duplication and complexity minimisa-
tion will ensure that systems remain as sustainable as possible
as they mature.

Alongside, the way in which we interact with LLMs should
also be optimised for environmental impact. We envision that
certain workflows and processes are likely to produce higher
quality software with reduced carbon footprint [37]. Modifying
operationalisation of GenAl to reduce the energy required to
produce a certain output will become the standard, in addition
to hyperscalers and model providers optimising the underlying
platforms in the same way.

Evidence from sustainable computing research supports
this approach: energy consumption in code varies depending
on programming language, algorithmic structure, and how
system resources are accessed. Danushi et al. [66] report that
choosing suitable algorithmic strategies and data structures
can help reduce the number of operations, improve memory
access patterns, and ultimately lower energy consumption.
If GenAl systems are guided towards such optimisations —
through prompting, constraints, or agentic self-assessment —
they can reduce environmental impact without compromising
productivity.

This vision also aligns with wider movements in responsible
Al and environmental governance. Standards such as ISO/IEC
TR 30165 [67] and initiatives like the UN’s Green Digital
Action Pillar [68] call for systems that are not only functional,
but measurable, transparent, and accountable.

3.6 Evolution of Software Engineering Roles and Skills

As outlined in the previous sections, GenAl increasingly
becomes a natural part of software engineering along the entire
SDLC, for which we envision the potential impacts of this
on software engineering activities and the required skills. The
changes to the skills expectations can already be seen as a
result of the roll-out of coding assistants such as ChatGPT
[69], GitHub Copilot [1]] and Cursor [70]. In this section,
we will also examine the longer-term context of agent-based
development systems and end-to-end Al support for software
engineering.

As discussed in Section the direct impact of coding
assistants can already be observed as they streamline a sig-
nificant amount of development effort while at the same time
increasing effort in areas such as code reviews [71]]. While
at this point this does not fundamentally change any roles,
it marks a shift in where the majority of the effort is spent
when developing software. A major part of the work becomes
prompting and reviewing as discussed in Section This
requires a good understanding of the capabilities of the various
models and the problem space to decide both whether to rely
on LLM-generated code for addressing the problem at hand
as well as making optimal use of it.

This work will therefore likely require a higher technical
competence level grounded in deep domain and technology
understanding, which is typically associated with more senior



(as opposed to junior) developers. Additionally, using GenAl
will require a high degree of metacognitive monitoring and
control — the psychological ability to monitor and guide one’s
own thought processes — to adopt to challenges in prompting,
output evaluation, and workflow automation strategies [72].

A longer-term and more pervasive impact will likely be
the results of agentic assistants supporting the SDLC (Section
[3.2). These agentic capabilities will have increased autonomy
(Section and will focus on tasks beyond coding, incorpo-
rating additional steps such as requirements engineering [49]],
planning and task management, and quality assurance. This
increased autonomy and overall increase in accuracy compared
to traditional GenAl tooling [73|] mean that we can anticipate
coherent work results across many hours, if not days, of effort
in the future.

This likely will result in shifts of developer effort into other
disciplines (requirements engineering, architecting) towards a
more review-oriented execution, requiring more critical analy-
sis and breadth of knowledge to assess the proposed solutions.

While for critical processes and specialised topics (like
high-performance computing, embedded systems and mission-
critical control systems) a human in the loop is still required
[74], it is within the realm of possibility that more well-
understood tasks can be fully automated with agentic Al,
which will lead to a reduced need for the skills human require
to perform them.

A prominent challenge facing organisations in the future
is that the remaining tasks left in future development are
primarily done by senior people. This shift threatens the
competence acquisition pipeline and alternatives need to be
devised.

The logical conclusion for Al support is to have integrated
support across the development lifecycle, an approach of
which early signs of success have been seen [75]. In the
future, agent-based approaches scale to more complex tasks
with high quality across activities, with these systems po-
tentially replacing complete workflows across teams. In such
situations, humans will shift from an engineering towards
an orchestration perspective, i.e. they will be users with
a sufficient understanding of technology, able to supervise,
manage, and correct development processes. Effectively, this
means people need to have competences that are currently
typical of product managers and technical leads. At the same
time, new roles will emerge that support and enable these
Al capabilities to function across an organisation, such as
knowledge capture and management, new Al capability cre-
ation and Al governance. And of course, this also comes with
broader skill expectations when building software systems
that incorporate GenAl. Technical skills, such as retrieval-
augmented generation, embeddings, vectorisation, specific Al
frameworks like LangChain [[76]] and AWS Strands [2], and
Al-specific communication protocols like MCP, A2A will
be increasingly essential. Enhanced data-thinking skills will
also be required, including critically evaluating data sources,
identifying hidden biases, formulating precise analytical ques-
tions, and translating insights into robust and ethical software

solutions [77]. A core challenge for this scenario will lie
in skill acquisition and retainment especially for companies
that rely on outsourcing: while separate skills are required to
address the novel challenges, it is difficult to acquire and retain
the necessary depth of skills in an organisation to adequately
judge developed solutions. This comes on top of the issue of
a shift towards more senior competences.

Addressing these shifts demands deliberate strategies for
continuous learning and organisational adaptation, ensuring
that human expertise, motivation, and engagement remain vital
complements to increasingly autonomous Al systems.

4 OUTLOOK ON IMPLEMENTING THE VISION IN THE
GENIUS PROJECT

Building on the outlined current challenges and envisioned
future directions, we now turn to the practical realisation of
this vision. The ITEA4 GENIUS project [[10] brings together
leading European industrial and academic partners to develop
and evaluate key technological and methodological founda-
tions, translating this broader vision into tangible, validated
GenAl-based solutions across the SDLC.

4.1 Overview of the GENIUS Project

The ITEA4 GENIUS project ("Generative Al for the Soft-
ware Development Life Cycle”) is a European research and
innovation initiative that brings together more than 30 in-
dustrial and academic partners from 8 countries: Germany,
Austria, the United Kingdom, Tiirkiye, Portugal, Finland,
Belgium and Canada. The consortium comprises 10 large
industrial enterprises, 12 small and medium-sized compa-
nies, and 9 universities and research institutes, representing
a wide spectrum of domains such as industrial manufacturing,
telecommunications, automotive, healthcare and IT services.
The project’s overarching objective is to advance scalable,
trustworthy, and effective GenAl-enabled software engineering
across all phases of the SDLC.

GENIUS aims to leverage the potential of GenAl to enhance
and automate complex software engineering tasks, ranging
from requirements analysis and code generation to documen-
tation and quality assurance. It explicitly addresses the chal-
lenges of applying these technologies in industrial contexts,
including their integration into complex software ecosystems,
assurance of model quality, and compliance with domain-
specific standards. By systematically combining applied re-
search, tool development, and industrial evaluation, GENIUS
aims to establish the foundations for GenAl solutions that are
not only technically sophisticated but also production-ready
and aligned with real-world requirements.

GENIUS is characterised by its scale, industrial ground-
ing, and holistic perspective on the software lifecycle. The
project conducts large-scale studies and experiments with real
developers, codebases, and organisational processes across
multiple European industries, creating a rich, empirically
founded evidence base. Its lifecycle-centric approach covers
all phases of the SDLC, revealing integration and traceability
challenges that are often overlooked in isolated evaluations.



Moreover, GENIUS adopts an ecosystem-oriented view that
extends beyond model performance to include knowledge
management, development workflows, and human oversight,
laying the groundwork for trustworthy and effective GenAl
adoption in industrial environments.

In line with the strategic objectives of European techno-
logical sovereignty, the GENIUS consortium places a strong
emphasis on ensuring that the development and deployment of
GenAl solutions remain aligned with European values, regu-
latory frameworks, and innovation capabilities. This includes
actively prioritising and tracking the adoption of European-
based GenAl infrastructure, such as cloud service providers
and open-source LLMs like Mistral and other emerging initia-
tives. GENIUS also seeks to align closely with evolving policy
frameworks, in particular the EU Al Act, by emphasising
transparency in training data, traceability, and ethical Al
principles. Through this, the project contributes not only to
technical innovation but also to shaping a responsible and self-
determined Al landscape for European software engineering.

4.2 Use Cases as Drivers for Industrial Relevance and Eval-
uation

The GENIUS project is structured around 14 industrial
use cases that serve as the foundation for iterative tool de-
velopment, testing, and evaluation. These use cases, defined
and maintained by key industrial partners, are instrumental in
ensuring that project outcomes are directly relevant to real-
world development practices. They not only define technical
requirements and deployment environments but also offer a
testbed for the integration and validation of project innova-
tions.

Among the leading industrial contributors, Siemens AG
contributes to the GENIUS project with a strong emphasis
on enhancing developer experience through GenAl-driven ser-
vices embedded in the Siemens Developer Portal [78]]. This use
case explores how intelligent assistants and agents can support
software teams by offering context-aware guidance, automated
documentation, and code-related services tailored to specific
project phases and domains. The goal is to create a seamless,
Al-augmented development environment that empowers soft-
ware engineers with timely insights, reduces cognitive load,
and fosters higher productivity and quality throughout the
SDLC. These innovations are designed to integrate smoothly
into Siemens’ existing developer ecosystem and address key
industry requirements for scalability, reliability, and traceabil-
ity.

British Telecom (BT) contributes use cases that centre
around three major themes: architectural design, value quan-
tification of GenAl and knowledge management. The first
is concerned with embedding GenAl into the architectural
design process, hoping to explore themes of software qual-
ity optimisation and automated architectural refactoring. The
second will see the development of a common framework
for the quantification and representation of GenAl impact for
SDLC use cases when deployed within organisations. The final
theme concerns the advancement of knowledge management

and utilisation methods that power multi-agent systems. BT
has already demonstrated measurable improvements in produc-
tivity and software maintainability through GenAl-supported
workflows and will further expand these tools in GENIUS.

Akkodis, a global engineering services provider, contributes
multiple use cases that emphasise automated ticket resolution
and the automatic generation of test specifications and test
programmes. Their approach leverages GenAl to scan and
analyse historical data, extract knowledge and create search
agents, and automate the derivation of test code from high-
level requirements. These capabilities directly address key pain
points in quality assurance and operational efficiency.

The remaining use cases, ranging from embedded systems
development to large-scale platform engineering, are dis-
tributed among other industrial partners across sectors such as
automotive, industrial automation, telecommunication, health-
care, and IT services. They collectively ensure broad coverage
of SDLC phases and industry contexts. Together, the use cases
serve as the practical backbone for verifying the relevance,
scalability, and generalisability of GENIUS innovations.

4.3 Technological Innovations Addressing Core Challenges

The technological developments in GENIUS follow an
integrated approach that connects all major phases of the
traditional SDLC model. Advanced GenAl solutions for re-
quirements analysis, system design and code development, and
quality assurance are developed in close interaction, with the
resulting methods, tools, and models continuously integrated
into a shared infrastructure that ensures evaluation, interoper-
ability, and reuse. Artifacts created in earlier phases serve as
input for later validation and optimisation, and testing results
and feedback are iteratively transferred back to refine upstream
processes. This bidirectional flow of knowledge and artifacts
ensures consistency, traceability, and continuous improvement
across the lifecycle, consolidating all developments through
a common technological backbone that advances the overall
vision of reliable, context-aware, and integrated GenAl-driven
software engineering.

Requirements Analysis and Documents Processing: This in-
novation area advances requirements engineering through Al-
driven document intelligence, transforming heterogeneous in-
dustrial artifacts such as specifications, technical reports, stan-
dards, and project documentation into structured, validated,
and reusable knowledge. Building on advanced LLMs en-
hanced with retrieval-augmented generation, semantic search,
and domain ontologies, GENIUS develops pipelines that au-
tomatically identify and extract requirement-related informa-
tion, generate stakeholder-specific summaries, and harmonise
diverse document sources into coherent, traceable representa-
tions.

The developed assistants will not only extract and refine
existing requirements but also generate and adapt new ones
from text, chat, audio, or code, thereby enriching incom-
plete specifications. Human-in-the-loop validation ensures in-
terpretability, security, and fairness, while interactive features
allow engineers to clarify, correct, or extend Al-proposed



content dynamically. Further innovations address requirement
analysis and verification, where models evaluate completeness,
consistency, and clarity by detecting contradictions, ambigui-
ties, and missing information, supported by readability scoring,
terminology alignment, and visual feedback for collaborative
review.

Together, these technologies establish self-improving and
explainable requirement pipelines that embed domain ex-
pertise, enable cross-phase traceability, and form a reliable
foundation for downstream design and testing. They directly
address the challenges of hallucination and limited reasoning
(2.I), insufficient contextual grounding (2.2), and bias in
generated content (2.4), contributing to the vision of trustwor-
thy, context-aware, and collaborative GenAl-driven software

engineering (3.143.3).

System Design and Code Development: Building on the
structured and validated requirements generated in the pre-
vious phase, this innovation area extends GenAl support
towards architecture design, code generation, and software
comprehension. GENIUS develops intelligent assistants that
integrate architectural reasoning, reusable design patterns, and
domain knowledge to ensure that system structure and imple-
mentation remain consistent, explainable, and verifiable across
the lifecycle. The approach directly tackles the challenges of
limited reasoning and structured output and insufficient
contextual awareness by grounding generation in ex-
plicit architectural context and applying grammar- and type-
constrained decoding to enhance correctness and coherence.

Central to this work are architecture-aware generation
pipelines, where LLMs interact with analytical components
to derive design views, recommend suitable architectures, and
generate high-quality code templates from validated require-
ments and existing artifacts. Generated code is continuously
analysed for quality, performance, and security (2.3), embed-
ding secure-by-construction principles and automated detec-
tion of vulnerabilities and dependencies (3.4). In parallel, the
systems support reverse engineering and model co-evolution,
extracting architectural insights from existing implementations
to ensure alignment between design intent and realised code,
thereby addressing long-term maintainability and technical
debt (2.6).

To enhance robustness and reliability, GENIUS integrates
multi-agent collaboration frameworks, in which specialised
agents for design, coding, and evaluation cross-validate each
other’s outputs. By uniting creative generation with system-
atic validation, this work advances the vision of robust, au-
tonomous, and trustworthy GenAl-driven software engineering
(3-1}3.3) and forms an essential bridge between requirements
understanding and quality assurance in the overall SDLC.

Quality Assurance and Maintenance: This innovation area
strengthens the reliability and resilience of GenAl-assisted
software development through automated testing, defect anal-
ysis, and continuous validation. GENIUS develops intelligent
assistants and pipelines that transform requirements, designs,
and code artifacts from earlier stages into executable test cases,

quality metrics, and optimisation strategies. By embedding
validation directly into the development loop, the project
tackles the challenges of hallucination and limited reasoning
(2.1 and security and privacy (2.3)), ensuring that Al-generated
outputs are consistently verified against specifications and
operational data.

The technological core focuses on Al-enhanced test gener-
ation and prioritisation, where models derive and adapt test
cases from structured requirements and code to maximise
coverage and detect inconsistencies early. Defect and log
analysis leverage natural language processing to link issues
back to their root causes and recommend corrective actions,
while sustainability-oriented optimisation (2.5) reduces re-
source consumption during test execution. Continuous feed-
back from testing and maintenance phases is propagated up-
stream to refine code generation and requirements processing,
fostering self-improving quality loops across the SDLC.

Through these innovations, GENIUS establishes au-
tonomous and explainable quality assurance workflows that
close the gap between development and validation. They
directly contribute to the vision of sustainable, self-correcting,
and trustworthy GenAl-driven software engineering (3.1}{3.3]
[3.3) and ensure that GenAl-based systems remain dependable
and adaptable over their full lifecycle.

Cross-Cutting Technological Innovations: Complementing
the domain-specific innovations in requirements, design, and
quality assurance, this area consolidates the technological
foundations that ensure interoperability, security, and scala-
bility across all GENIUS developments. The work integrates
methods for data preprocessing, model adaptation, and bench-
marking into a shared infrastructure, while fostering agile
collaboration between research and industry. These cross-
cutting activities provide the connective layer of the project,
enabling modular, reusable, and privacy-compliant GenAl
solutions applicable throughout the SDLC.

A central outcome is context-aware artifact generation,
where requirements, architectural descriptions, and code bases
are transformed into executable artifacts such as test cases,
models, and quality metrics. By leveraging neural code gen-
eration, semantic parsing, and traceability mechanisms, these
techniques improve automation and reduce human work-
load without compromising correctness, compliance, or trans-
parency. This directly addresses challenges of limited rea-
soning and correctness (2.I), security and data protection
(2.3), and sustainability (2.3)), contributing to the vision of
trustworthy, self-improving engineering ecosystems (3.1}j3.3).

Another major line of innovation concerns semantic search
and knowledge management, enabling efficient access, reuse,
and integration of distributed engineering knowledge. GE-
NIUS develops graph-based retrieval-augmented generation,
fine-tuned LLM pipelines, and domain-specific embedding
models to connect requirements, designs, code, tickets, and
documentation through semantic links. These solutions form
the foundation for intelligent agents with autonomy in SDLC
tasks, enhance organisational learning and mitigate knowledge



loss, supporting the long-term vision of context-intelligent and
continuously evolving development processes (3.113.3).

Finally, Al-supported collaboration and cross-phase rec-
ommendations extend the use of GenAl towards integrated
decision support across SDLC stages. Assistants learn from
structured and unstructured data to provide actionable guid-
ance, such as design pattern selection, test prioritisation,
or configuration tuning, bridging the gap between isolated
development activities. In doing so, they reinforce human-AI
collaboration (3.2) and strengthen feedback loops that drive
quality, adaptability, and efficiency throughout the lifecycle.
Collectively, these foundations not only strengthen present-day
engineering workflows but also support the broader societal
and organisational transition towards Al-integrated develop-
ment cultures envisioned in (3.6).

Across all these innovations, GENIUS embeds robust safe-
guards for reliability, privacy, and explainability, including
on-premise deployment, fine-tuning under privacy constraints,
provenance tracking, and validation of Al outputs against
formal specifications. These measures ensure that the project’s
breakthroughs are not only technologically ambitious but also
industrially viable and aligned with the broader vision of
secure, transparent, and sustainable GenAl-driven software
engineering.
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